
CS 361 Meeting 31 — 5/11/20

Space: The Final Frontier
(Click for video)

1. We spent the last week talking about the relationship between the
amount of time an algorithm uses and the tasks it can complete.

2. A classic principle of computer science is that the design of algorithms
involves so called space-time tradeoffs. Situations in which it is often
possible to make an algorithm require less space (i.e. memory) by
taking more time or less time by using more space.

3. Accordingly, it seems natural that we should also consider the relation-
ships between limitations placed on the amount of space an algorithm
uses and the tasks it can complete. To do this, we stick with big-O
notation and define classes of languages associated with memory limi-
tations using:

Definition: Let s : N → R+ be a function (that increases
at least linearly with its input). Define the space complex-
ity class, SPACE(s(n)) to be the collection of all languages
that are decidable by a Turing machine using O(s(n)) dis-
tinct tape cells on inputs of size n.

4. Again, we will focus on languages associated with polynomial time
bounds. Therefore, we say:

Definition: PSPACE is the class of language that are de-
cidable in polynomial space on a deterministic single-tape
Turing machine. In other words

PSPACE =
⋃
k

SPACE(nk)

5. There are a number of useful things we can say about the relationships
between time and space complexity classes.

Click here to view the slides for this class

TIME(f(n)) ⊆ SPACE(f(n))
This follows from the fact that an algorithm that executes for
only n steps can at most look at n tape cells.

P ⊆ PSPACE
This is a special case of the preceding observation.

SPACE(f(n)) ⊆ TIME(2kf(n))
If a Turing machine ever repeats a configuration, it will loop rather
than halt. Since languages in our space and time complexity
classes require Turing machines that halt, we can assume that the
number of possible distinct configurations is an upper bound on
the running time of a space limited Turing Machine. The number
of configurations that are possible with at most f(n) tape cells is
roughly the size of the tape alphabet raised to the power of the
number of cells used or |Γ|kf(n).

6. Continuing to mimic our approach to time complexity classes, an ob-
vious next step is to consider the space complexity classes associated
with nondeterministic machines:

Definition: Let s : N → R+. Define the space com-
plexity class, NSPACE(s(n)) to be the collection of all
languages that are decidable by nondeterministic Turing ma-
chines using O(s(n)) distinct tape cells on any computation
path on inputs of size n.

and

Definition: NPSPACE is the class of language that are
decidable in polynomial space on a nondeterministic single-
tape Turing machine. In other words

NPSPACE =
⋃
k

NSPACE(nk)

7. It should be clear that

P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

but it turns out not to be as clear whether any of the ⊆s can be replaced
by ⊂.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9706eae6-1987-4926-b11b-abb8001eb825
http://www.cs.williams.edu/~tom/courses/361/notes/Lect31slides.pdf


8. Throughout the semester, we have seen that sometimes nondetermin-
ism gives us additional power to express algorithms, but sometimes
it doesn’t. Consider the following “map” of the inclusion relations
that might have existed between various classes of languages we have
considered:

DECIDABLE

RECOGNIZABLE

REALLY HARD!

N RECOGNIZABLE

N DECIDABLE

NPSPACE

PSPACE 

CoNPNP
P

CFL

DCFL

REGULAR

N REG

It shows what this universe would look like if adding nondeterminism
always added expressive power. In fact, we know that the real “map”
of these complexity classes looks more like:

DECIDABLE

RECOGNIZABLE

REALLY HARD!

NPSPACE

PSPACE 

CoNPNP
P

CFL

DCFL

REGULAR

because decidability, recognizability and regularity are properties of
classes of languages that are unchanged whether we include nondeter-
minism or not.

9. An interesting question to consider, therefore, is whether nondetermin-
ism matters when considering SPACE vs. NSPACE.

Why NPSPACE Might Properly Contain
PSPACE

(Click for video)

1. Just as it seems intuitively reasonable that NP would be a proper
superset of P, It seems likely that NPSPACE might properly contain
PSPACE.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3fa72fe4-8634-4682-84ab-abb8002347e7


2. One should, however, recall that we were able to simulate a nonde-
terministic Turing machine with a deterministic machine. Given this,
we should at least think about how much space that simulation might
require.

• Recall, that our technique for simulating all of the possible paths
a non-deterministic TM on a single deterministic TM involved a
form of dovetailing. One way of thinking about the simulation is
as a doubly nested loop of the form:

Repeat

For each ongoing path being explored

add all possible next configurations to our tape

until we find an accept state or run out of configurations.

• As we implement it, we require enough space on our tape to store
every possible configuration in the tree of possible execution paths
on our tape.

• The height of the tree is bounded by the length of the longest
execution path. We argued earlier that if only k tape cells are
used, there must be at most O(2k) steps taken because otherwise
a configuration would be repeated. At each step, the number of
leaves in the tree can multiply by a constant determined by the
degree of nondeterminism in the machine’s δ function. So, the
number of configurations we must store is doubly-exponential!

• We can “economize” by only storing the configurations that have
not yet been expanded (unlike time, we can reclaim space stor-
ing information we no longer need), but this is still doubly-
exponential.

3. Our original simulation used breadth-first search because we could not
otherwise ensure that every thread eventually made progress. If each
thread guaranteed to halt in a finite number of steps (which is true
since we are assuming these machines decide their languages) it is safe
to instead use depth-first search. This, however still requires a stack
of exponential size so that we can back out and explore other threads.

4. Basically, it seems hard to imagine any way to explore the entire space

of reachable configurations of the nondeterministic machine, until you
learn about...

Savitch’s Theorem, Pt. 1
(Click for video)

1. So that you don’t miss the point of this next topic, remember that we
all believe that P 6= NP because we can’t imagine any way to capture
all the paths a nondeterministic machine might take in polynomial
bounded time. Similar logic might lead to the assumption that it must
be true that PSPACE 6= NPSPACE.

2. Consider the following alternate approach to “exploring” the space of
configurations that a polynomial space limited nondeterministic Turing
machine might reach. In particular to explore whether it can reach any
terminal configuration.

• Define a recursive boolean function canReach (details shortly)
that takes two states and a step limit and returns true only if the
nondeterministic Turing machine being considered could reach the
second state from the first in at most the step limit moves.

• Execute the algorithm

for every accepting configuration f {
if ( canReach( initial configuration, f, 2s(n) ) ) {

accept
} }

reject

• First, observe that if we ignore the space required by the call to
canReach, this loop only requires polynomial space. To see why:

– Imagine an odometer that counts in base n where n is the
size of the alphabet used to encode configurations using the
letters of that alphabet as digits.

– Make the odometer contain p(|w|) + 1 digits and initialize it
to 1. Whenever the odometer hits a value whose first non-
zero high-order digit is 1, treat all the digits that follow the
first non-zero digits as the next string over the alphabet used
to encode configurations.

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e20bbe8d-958c-449d-8a4b-abb800ed6032


– Scan each such string to make sure it follows the rules for
encoding a configuration. If it does, then apply canReach to
the string.

Savitch’s Theorem, Pt. 2
(Click for video)

1. The tricky part is how we define canReach:

canReach( start, end, steps) {
if steps == 1 {

return start == end
} else if steps == 2 {

return ( start yields end )
} else {

for every mid ∈ configurations {
if ( canReach(start, mid, steps/2) &

canReach(mid, end, steps/2) ) {
return true

}
}

return false
}

2. Note that each recursive invocation of this function requires space to
store the four parameters/local variables start, end, mid and steps.
Each of these requires O(p(n)) tape cells.

3. The depth of the recursion will be at most O(p(n)) as well since “steps”
starts out at O(2kp(n)) and is halved with each nested call effectively
reducing the power of 2 used by 1. After O(p(n)) of these repeated
divisions by 2 will yield 1.

4. As a result, the complete computation will require O(p2(n)) space.
We can therefore conclude that in general NSPACE(p(n)) ⊆
SPACE(p2(n)) and in particular that PSPACE = NPSPACE!

5. This brings us a step closer to an accurate map of the classes of q we
have discussed this semester:

REALLY HARD!

coRECOGNIZABLE

DECIDABLE

RECOGNIZABLE

EXPTIME

PSPACE ( = NPSPACE)

CoNP?NP?

P

CFL

REGULAR

DCFL

I say closer because this map is still uncertain. It is known that

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

and that
P 6= EXPTIME

so we know that one of the ⊆s on the first line must be a ⊂, but we
don’t know which one or how many.

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=482483fb-a852-461b-8edd-abb800f23a36

