
CS 361 Meeting 30 — 5/8/20

Encoding Problems as Satisfiability Questions
(Click for video)

1. In the early 70’s Stephen Cook and Leonid Levin independently showed
that there are examples of problems in NP that are universal in the
sense that all problems in NP are polynomial-reducible to these prob-
lems. Such problems are said to be NP-complete. That is:

Definition: We say that a language B is NP-Complete if
B ∈ NP and for all A ∈ NP, A ≤p B.

2. Surprisingly (given the reductions we have looked at), Subset-sum was
not the problem they showed to be NP-complete (although it is). In-
stead, they showed that satisfiability is NP-complete.

3. Before plunging into the proof of the Cook-Levin Theorem I want to
give you one artificial but concrete illustration of how you could encode
another problem as a SAT problem.

• Not surprisingly, what I want to show you is how to “reduce” a
Subset Sum problem to a satisfiability problem.

• I don’t however, want to do full-fledged Subset Sum. The con-
struction for the general problem would be too complex.

• Instead, I want to limit our attention to some trivial instances of
Subset Sum, namely

– The list of integers we get to work with is of size 2 (we will
call them a and b),

– Each of the integers in the set is a 1 bit binary number (so a
and b are just names for bits), and

– The target sum is a two bit binary number with s0 referring
to its low order digit and s1 its high order digit.

• Yes, this is silly, but I hope by showing all the details of how to
convert such a small problem into a boolean formula I will en-
able you to imagine how much larger problems might be similarly
encoded/translated/reduced.

Click here to view the slides for this class

4. Each of the names a, b, s0 and s1 can be thought of as a digit or as a
boolean value. So, we can build a truth table for the solvability of all
instances of the Subset Sum problem restricted to such small lists of
small numbers.

a b s1 s0

0 0 0 0 true
1 0 0 0 true
0 1 0 0 true
1 1 0 0 true
0 0 0 1 false
1 0 0 1 true
0 1 0 1 true
1 1 0 1 true
0 0 1 0 false
1 0 1 0 false
0 1 1 0 false
1 1 1 0 true
0 0 1 1 false
1 0 1 1 false
0 1 1 1 false
1 1 1 1 false

5. Recall that we showed how to convert a truth table into a conjunctive
normal form formula by focusing on the rows of the truth table that
evaluated to false. With this in mind, we can eliminate all but the false
rows of our table. Better yet, we can group them into 4 subgroups that
can be described by 4 formulae.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ebfc3df-3c3f-4d5c-b6ca-abb10163c0f4
http://www.cs.williams.edu/~tom/courses/361/notes/Lect30slides.pdf

a b s1 s0

0 0 0 1 false

a ∨ b ∨ s1 ∨ s0

0 0 1 0 false
1 0 1 0 false

b ∨ s1 ∨ s0

0 1 1 0 false

a ∨ b ∨ s1 ∨ s0

0 0 1 1 false
1 0 1 1 false
0 1 1 1 false
1 1 1 1 false

s1 ∨ s0

6. Combining these little formulas give us the boolean expression

(s1 ∨ s0)∧ (a ∨ b ∨ s1 ∨ s0)∧ (b ∨ s1 ∨ s0)∧ (a ∨ b ∨ s1 ∨ s0)

which describes whether a particular instance of our mini-subset sum
problem is solvable or not.

7. Given values for a, b, s1, and s0 we can complete the process of turning
that problem into an instance of SAT by anding the formula above
with a formula that is only satisfied by the particular values of a, b, s1,
and s0 we care about.

For example if a = 1 and b = 1 and s1s0 = 01, the formula

(s1 ∨ s0)∧ (a ∨ b ∨ s1 ∨ s0)∧ (b ∨ s1 ∨ s0)∧ (a ∨ b ∨ s1 ∨ s0) ∧

(a ∧ b ∧ s1 ∧ s0)

is satisfiable only if the corresponding Subset sum problem is solvable.

8. This isn’t meant to show how to reduce Subset sum to satisfiability. It
is merely provided to illustrate the fact that once the variable are as-
sociated with relevant information, satisfiability can be used to encode
interesting problems.

An Approach to Proving the Cook-Levin Theorem
(Click for video)

1. So, let’s figure out how to prove the Cook-Levin Theorem.

Theorem: SAT is NP-Complete. That is, SAT ∈ NP and
for any A ∈ NP, A ≤p SAT.

2. Just the statement of this theorem involves a number of technical def-
initions we have only recently covered:

SAT The satisfiability problem is the problem of deciding whether
given a formula over a set of Boolean variables there is an as-
signment of true and false values to the variables that make the
formula evaluate to true. Formulated as a language, this problem
becomes

SAT = {〈φ〉 | φ is a satisfiable Boolean formula }

NP is the class of languages that are decidable in polynomial time on
a nondeterministic single-tape Turing machine. In other words

NP =
⋃
k

NTIME(nk)

or equivalently NP is the class of language that are polynomial
verifiable.

≤p We say that A is polynomial-time reducible to B:

A ≤p B

if and only if there exists a polynomial time function f : Σ∗A → Σ∗B
such that w ∈ A if and only if f(w) ∈ B.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3261988b-6ebb-4b1d-9ac2-abb2013ff174

NP-Complete We say that a language B is NP-Complete if B ∈ NP
and for all A ∈ NP, A ≤p B.

3. The only thing we have to go on when we try to prove that A ≤p
SAT for some A, is that A ∈ NP. That is, we know that there is
some nondeterministic TM, MA, that decides A and that there is some
polynomial pA(x) such that the length of all computation branches
that can be followed by MA on input |w| is bounded by pA(x).

4. To show that A ≤p SAT , we need to show how to construct a
polynomial-time computable function f : Σ∗A → Σ∗SAT such that
f(w) ∈ SAT if and only if w ∈ A.

5. Since we don’t really know what A is, but only can assume we have a
description of MA and pA, what we really need is a polynomial time
computable procedure

F : TM × polynomial→ (Σ∗A → Σ∗B)

such that F(MA, pA) = fA. That is, we need a (not-necessarily even
computable) function that given a Turing machine description and
a polynomial description produces a polynomial-time algorithm that
translates strings over the alphabet of A into strings over the alphabet
of SAT in such a way that exactly the members of A get mapped into
into members of SAT.

Building SAT Formulae about Computation
Histories

(Click for video)

1. Given a description of a TM, M , and a polynomial bounding its run-
ning time our procedure F has to produce a procedure that will take a
possible input w to the machine M and produce a string encoding a 3-
SAT formula that is satisfiable if and only if w belongs to the language
of the machine.

2. The formulae we produce will encode properties of possible computa-
tion histories of M on w.

3. We have to show how to do this for any Turing machine A, but to
enable us to give concrete examples of elements of the construction we
will use the NTM shown in Figure 1 that decides subset sum.

4. We know that a Turing machines computation process can be described
by sequences of configurations called computation histories.

• We have previously written configurations as triples composed
of the current state, the string of symbols before the tape head
and the string of symbols from the tape head to the end of the
tape. For example, the following could be a string encoding a
computation history for the machine shown in Figure 1.

(S $ 1 0 1 0 $ 1 0 # 1 0 1 # 1 1 1 #)

($ S 1 0 1 0 $ 1 0 # 1 0 1 # 1 1 1 #)

($ 1 S 0 1 0 $ 1 0 # 1 0 1 # 1 1 1 #)

($ 1 0 S 1 0 $ 1 0 # 1 0 1 # 1 1 1 #)

($ 1 0 1 S 0 $ 1 0 # 1 0 1 # 1 1 1 #)

($ 1 0 1 0 S $ 1 0 # 1 0 1 # 1 1 1 #)

($ 1 0 1 0 $ C 1 0 # 1 0 1 # 1 1 1 #)

($ 1 0 1 0 $ # Z 0 # 1 0 1 # 1 1 1 #)

($ 1 0 1 0 $ # # Z # 1 0 1 # 1 1 1 #)

($ 1 0 1 0 $ # # # C 1 0 1 # 1 1 1 #)

• In this version, we have left out the commas typicially used to sep-
arate the three components of a configuration and instead simply
inserted symbols representing the machine’s state at the point
that separates the string of symbols before the tape symbol from
those at or under the read head.

• Also, while we have typically encoded computation histories as
linear strings, it should be clear that we can view the computation
history as a table with the symbol in the rth row and cth column
representing the cth symbol of the configuration describing the
state of the machine before its rth move.

5. Given this tabular view of computation histories, we can imagine cre-
ating a set of boolean variables that completely describe a computation

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=33b6b01a-8b8d-4e6c-9bbe-abb201443c03

S

1/0 -> #, R

$/1/0 -> $/1/0, R

C

$ -> $, R

1/0 ->1/0, RK Z

_ -> _, L

$/1/0 -> $/1/0, R
1/0 ->#, R

-> #, R # -> #, R

F

X

D
$ -> $, L

0 -> $, L

B

0/1-> 0/1, R

L 0/1/# -> 0/1/#, L

A

1 -> @, L

-> #, L

0 -> #, L

$ -> $, L

M

1 -> 0, R

0 -> 1, L

R
0/1/$/# -> 0/1/$/#, R

@ -> #, L

0/1 -> 0/1, L

-> #, L

$ -> $, L

$ -> $, L

E
0/1/$/# -> 0/1/$/#, R

_ -> _, L

$-> $, R

V

0/$/# -> 0/$/#, R

_ -> _, R

Figure 1: A non-deterministic Turing machine that decides Subset sum in
polynomial time.

history. For each cell in the computation history table there would be
one boolean variable for each symbol that could appear in that cell.
That is, we would have a variable

xr,c,s

for every row r, column c and symbol s in the union of our Turing
machines tape alphabet Γ, its state set Q, and any other symbols we
use to encode the configurations (like the parentheses we use to mark
the beginning and end of each configuration) with xr,c,s = true ⇐⇒
s appeared in the cth position of the rth row of the table.

6. To create such a set of variables, we would need to know the size of
the largest computation history we might have to explore to find an
accepting computation.

• Since we know that the language A which we hope to reduce
to SAT is in NP, we know that some TM, MA decides A and
operates in TIME(pA(n)) for some polynomial pA(n). Therefore,
if we include pA(n) rows and columns in our table that will be
sufficient.

• The number of variables will be the square of the running time of
the TM but that is still a polynomial in the size of the input.

Details of the Conditions on 3-SAT Variables, Pt.
1

(Click for video)

1. To encode our tabular representation of a polynomial-time-bounded
TM as a sequence of variable, we will have one variable of the form

xr,c,s

for every row r, column c and symbol s that can appear in the history
table with xr,c,s = true ⇐⇒ s appeared in the cth position of the
rth row of the table.

2. Given these variables, we want to construct a boolean expression that
will be satisfiable iff there is an accepting computation on a given input.
Our expression will need to capture four requirements:

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0bba64e1-c946-407a-8faa-abb3001fb1b7

• Only one symbol can appear in each cell of our computation his-
tory table. Therefore, for any r and c, exactly one of the xr,c,s
should be true.

• The contents of the first row of the table must correctly describe
the initial configuration.

• The computation must accept.

• For each r row r + 1 must describe a configuration reachable in
one step from the configuration described by row r.

3. We can describe a formula happyr,c that is true iff the variables reflect
that a unique symbol is associated with cell r,c.

• We can capture the need for some symbol to be associated with
the cell with the formula:

assignedr,c =
∨

s∈Γ∪Q∪{(,)}
xr,c,s

• We can capture the need for the assignment to be unique with
with the formula:

uniquer,c =
∧

s,t∈Γ∪Q∪{(,)}
(xr,c,s ∨ xr,c,t)

• Combining these we then get:

happyr,c = assignedr,c ∧ uniquer,c

• Note that this formula is in CNF (so it could easily be turned into
3-CNF).

• Note that the size of this formula depends on the size of the
machine’s state set and tape alphabet, but not on the input size.

4. Capturing the initial configuration is easy. Assuming the input is w =
w1w2...wn, we define:

start = x0,0,(∧ x0,1,q0 ∧ (
∧

1≤i≤n
x0,i+1,wi) ∧ x0,n+2,) ∧ (

∧
n+2<i≤p(n)

x0,i,)

This ensures that the first row describes a configuration starting in the
machine’s start state with w on the tape followed by blanks.

5. Making sure that the computation accepts simply require making sure
that some cell in the table contains the accept state:

accept =
∨

0≤r,c≤p(n)

xr,c,qaccept

Details of the Conditions on 3-SAT Variables, Pt.
2

(Click for video)

1. The tricky part is making sure that the configuration in each row of
the table yields the configuration in the next row.

• The secret to capturing this is to notice that the contents of con-
secutive rows in the computation history must be identical except
for the symbols before and after the cell holding the state in the
earlier row. Therefore, if we verify the correctness of each 2 by
3 block of cells in our table, we can be sure all transitions are
handled correctly.

• Given that the size of the tape alphabet and state set are fixed we
know that there are a fixed number ((|Γ|+ |Q|+ 2)6) of possible
configurations of a 2 by 3 subsection of the history table. The
number of invalid 2 by 3 subsection must be smaller that this.

• For each invalid configuration, we can produce a boolean expres-
sion that verifies that the bad configuration does not appear at a
particular point in our table. For example, the subsection:

0 q4 1

1 1 q4

would be invalid for any machine (since the symbol 0 which was
not under the tape head has changed into a 1).

• If we name this configuration b, then the expression

notbadb(r, c) =

xr,c,0 ∨ xr,c+1,q4 ∨ xr,c+2,1 ∨ xr+1,c,1 ∨ xr+1,c+1,1 ∨ xr+1,c+2,q4

yields true only if this particular bad configuration does not ap-
pear at position r,c.

5

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=38bd796a-f758-4de5-a6bf-abb4015a5744

• Better yet, this formula is a disjunction. So the formula:

notAllBad(r, c) =
∧

b ∈ bad configurations

notbadb(r, c)

ensures us that everything is fine at r,c and is in CNF.

2. With these pieces, we can describe the formula we use to reduce A to
SAT:

φ = (
∧

0≤r,c≤p(n)

happy(r, c))∧(
∧

0≤r,c≤p(n)−ε
notAllBad(r, c))∧start∧accept

3. This shows that we can reduce any language in NP to 3-SAT!

6

