
CS 361 Meeting 3 — 2/12/20

Announcements
1. Homework 1 is due Today.

2. My Hours:

• Mon., Weds. : 1:30-3:00

• Thurs.: 1:30-3:30

• Fri.: 1:30-2:30

3. TA Hours (in Schow 030A)

Audrey Weds.: 7:00-9:00
Chris Weds.: 8:00-10:00

Spencer Weds: 10:00-10:45
Audrey+Chris Thurs.: 7:00-8:00

Audrey Thurs.: 8:00-9:00
Chris Thurs.: 9:00-10:00

Spencer+Chris Thurs.: 10:00- 11:00

Quick Review

1. All1 of our models of computation are described by the diagram:

Control

Memory

input string Yes or No

Click here to view the slides for this class
1This is a slight lie. We will sometimes talk about transducers which are machines

that produce finite strings as their output.

• The input strings are sequences over some finite set of values
called the alphabet.

– Strings come with some fairly obvious terminology including
concatenation, length, substring, suffix, and prefix.

• We call any subset of the set of all strings over an alphabet a
language over that alphabet.

– Languages come with some fairly obvious terminology includ-
ing union, intersection, complement, and member of. They
also come with some not so obvious terms like product2,
power, and closure.

• We will refer to the set of strings for which a given machine pro-
duces “yes” as the language recognized by that machine.

Finite State Machines

1. Last time we considered a diagram that described an algo-
rithm/machine that could recognize the language of strings over the
alphabet Σ = {0, 1} that contain an even number of 1s.

1
odd

00

even

1

2. In this diagram:

• Circles are states; One state represents the fact that we have seen
an even number of 1s so far. The other corresponds to situations
where we have seen an odd number of 1s.

2The product of two languages is very different from the cross cross product of two
sets.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect3slides.pdf


• The arrows indicate when and how our state should change based
on the symbols in the input.

• The circle with an arrow pointing to it is the start state.

• Double circles are accept states; The computation says “Yes” (ac-
cepts the input) if we end up in one of these states at the end of
the input string. There may be 0 or more accept states.

• If we end up in one of the states that is not final, we say the
computation rejects the input string.

3. An algorithm that can be described by such a diagram is called a
deterministic finite automaton (or deterministic finite state machine).

• We will give a more formal definition of DFA shortly, but just
thinking of DFAs as diagrams with states and transitions will do
to get some intuition about how such machines work.

Regular Languages

1. A language is said to be regular if and only if it is the language of some
DFA.

2. From the machine shown above from last class, we know that the set of
strings of binary digits exhibiting even parity form a regular language.

3. We also discussed the machine shown below:

o

10 e

0

1

The language of this machine is:

(a) The set of strings of 0s and 1s, that end with a 0.

(b) {w|w ∈ {0, 1}∗ & w represents an even number in binary }

4. Just to prove that we have not restricted ourself to the binary alphabet,
we also discussed this machine:

o
{ 1, 3, 5, 7, 9 }

{ 0, 2, 4, 6, 8 } e

{ 0, 2, 4, 6, 8 }

{ 1, 3, 5, 7, 9 }

• Its alphabet is the 10 decimal digits.

• Like our previous example, it recognizes even numbers. This time,
however, the input is in decimal rather than binary.

Practice, Practice, Practice

1. To make sure you are all comfortable with the fundamentals of finite
state machines before we work on making them all formal and mathe-
matical, I would like you to work (in pairs) on describing some FSMs
for the following languages. Then, I will ask you all to help me con-
struct working solutions for everyone to see.

While in class I will present all the problems first and then discuss
solutions, here, I have intermixed my solutions with the problems.

2. Most FSM construction problems are totally artificial (just look at the
exercises at the end of the first chapter). I have tried to think of a few
examples with a bit of a practical flavor.

• As a first exercise consider how to sketch out the state diagram for
a DFA that recognizes binary sequences that represent multiples
of 3.

2



As a hint, the machine will be a generalization of the machine
we just looked at for separating odd numbers from even ones.
It should have three states representing the conditions a) “The
digits scanned so far form a number that is divisible by 3”, b)
“The digits scanned so far form a number that is one greater
than a multiple of 3”, and c) “The digits scanned so far form a
number that is two greater than some multiple of 3”.

Here is my answer to this problem:

0

3n + 2

1

0

3n

3n + 1

1

1

0
1

!
0

– The state labeled “ε” is the start state. It ensures that the
machine does not accept the empty string since it is not even
a binary number.

– The transitions are designed so if the machine is in state
3n+i after processing some binary sequence, then the number
represented by that sequence equals 3n + i for some n. In
other words, the number represented by the binary sequence
equals i mod 3.

– Numbers divisible by three equal 0 mod 3, so only the 3n
state is final.

– The transitions between the 3n+ i states are justified by the
recognition that adding a 0 to a sequence of binary digits that
represented a given number is equivalent to multiplying that
number by 2 and adding a 1 is equivalent to multiplying by
2 and then adding a 1. So:

∗ If the machine is in state 3n, meaning that the digits

processed so far represent the number 3n for some n, and
the next symbol is a 0, the digits processed now represent
2 × 3n = 3(2n) = 3n′ if n′ = 2n, so the machine should
stay in state 3n.

∗ Similar reasoning says that since 2× (3n) + 1 = 3n′+ 1 if
n′ = 2n, on input 1 the machine should move from state
3n to state 3n+ 1 if the next symbol processed is a 1.

∗ Since 2× (3n+ 1) = 3(n2) + 2 = 3n′+ 2 if n′ = 2n, there
should be a transition on 0 from 3n+ 1 to 3n+ 2.

∗ Similar reasoning explains the other transitions.

• The next example involve validity of binary strings relative to a
simple scheme known as binary coded decimal (BCD for short).

In many business applications, decimal numbers are processed,
but so little arithmetic is done with them that the cost of con-
verting to binary and then back to decimal is bigger than the
processing that is actually done on the encoded numbers. In such
situations, an alternative to using binary place notation is to en-
code each digit of a decimal number using 4 binary digits (which
is enough since 24 > 10) and then just string these groups of 4
together.

For example, 361 would be represented as 001101100001 since
0011 is 3 in binary, 0110 is 6 and 0001 is 1. On the other hand
00111100001 would be invalid as a BCD encoding for two reasons:
a) it breaks up as 0011 1100 001 where the last group is shorter
than 4 because the total length of the sequence is not a multiple
of 4 and b) the second subsequence, 1100 is 12 in binary which is
bigger than any decimal digit.

Your exercise is to build a FSM that accepts binary strings that
are valid when interpreted as BCD encoded decimal numbers.

My solution to this problem is:

3



e all 4

1

1

0

10

0x

bad

xxx

0

0

0

1
1

1 or 0

1 or 0

1 or 0

1

0

0 or 1

This machine processes its input string four bits at a time to
make sure that the input length is a multiple of four and that
each substring is valid (i.e. represents a number between 0 and
9).

The roles of the states are as follows:

e The name e is short for empty. This is the start state. The
machine will only be in this state when it has processed none
of the input.

bad The machine enters this state and stays in this state if it
finds an invalid subsequence of 4 bits.

0, 1, 10 The names of these states all describe the digits of the
current subsequence of 4 bits that have been scanned so far.

0x The machine enters this state after scanning two bits of a
subsequence that starts with 0.

xxx The machine enters this state after scanning three bits of a
valid sequence (i.e., any sequence that starts with 0 or 100).

all 4 The machine enters this state after scanning all 4 bits of a
valid subsequence.

• States like “bad” are fairly common in FSMs. As a notational
convention to simplify the drawing of machines, it is common to
omit such states and all transitions to them from the machines
diagram. In such a diagram, if the machine finds itself in a state

from which there is no transition for the next input symbol, we
assume it rejects the input string. The diagram below is a version
of our BCD machine simplified in this way.

e all 4

1

1

0

10

0x

xxx

0

0

0

1 or 0

1 or 0

1 or 0

1

0

• It is worth noting that there are many ways to build a FSM for the
BCD problem or any other example. Some solutions may in some
sense be clearer than other. For example consider the machine:

e
good

1

1

0

2

0

3
bad

0

0

1

1 or 0

0

11

6

7

0
1

4

5

0

1

2

3

0

1

0

1

0

1

0, 1
0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0

1

4



– This machine makes it a bit clearer that it processes its input
4 symbols at a time.

– Also, rather than trying to cleverly come up with names like
0x and xxx for states, this machine lets us use simple names
for most states. The labels 0 through 7 in this machine indi-
cate the value represented by the sub-sequence of the current
4-digits being scanned.

3. Finally, since we have a bit of time to spare, we can discuss a solution
to the problem of identifying numbers in base 10 that are divisible by
3. One solution is shown below.

• The simplest way to understand this machine is to remember the
rule that a number is divisible by 3 if and only if the sum of its
digits is divisible by 3. Thus, the state 3n+i should be associated
with any prefix for which the sum of the digits can be written as
3n+ i for some values of n and i.

• An alternative is to note that we can capture how we interpret a
decimal number composed of a prefix of digits, p, followed by a
final digit d by writing

value(p+ d) = 10 ∗ value(p) + d

Then, note that if we are interested in the value of value(p +
d) mod 3 we can note that this must equal 10∗value(p)+d mod 3
which can be rewritten as 9∗value(p)+value(p)+d mod 3. Since
9∗value(p) clearly equals 0 mod 3 we can conclude that value(p+
d) mod 3 = value(p) + d mod 3 = [(value(p) mod 3) + d] mod 3.

1, 4, 7

3n + 2

0, 3, 6, 9

0, 3, 6, 9

3n

3n + 1

1, 4, 7

2, 5, 8

2, 5, 8
1, 4, 7

!
0, 3, 6, 9

2, 5, 8

0, 3, 6, 9

2, 5, 8

1, 4, 7

Formalizing DFAs

1. Now it’s time to develop a mathematical formalism for deterministic
finite automata. This will enable us to reason more broadly about their
properties.

Definition. A DFA is a five tuple D = (Q,Σ, δ, s, F ) where:

Q is a finite set of states

Σ is the input alphabet

δ : Q× Σ→ Q is a state transition function

s ∈ Q is the start state

F ⊆ Q is a set of accept states

2. Using this notation, we can give a formal description of our machine
that recognizes even binary numbers:

• Q = {e, o}

• Σ = {0, 1}

5



•
δ: 0 1

e e o
o e o

• s = o

• F = {e}

6


