
CS 361 Meeting 29 — 5/6/20

The Class NP
(Click for video)

1. Recall that in the previous discussion we argued that the class P:

Definition: P is the class of language that are decidable in
polynomial time on a deterministic single-tape Turing ma-
chine. In other words

P =
⋃
k

TIME(nk)

was interesting in that a) it included most practical algortihms and
b) its membership was insensitive to whether our computing model
was very low-level (a 1-tape deterministic Turing machine) or included
more powerful features (multiple tapes, multiple stacks, a GPU!).

2. Of course, one of the biggest variation in model we can make is to
switch from a deterministic model to a non-deterministic model. For
DFAs and TMs with no limits on the durations of their computations,
we have shown nondeterministic modes and deterministic modes are
equivalent. We might well wonder whether this is the case for TMs
limited by some time bound.

3. As you should already know, it is not known whether this is the case.

4. To allow us to explore this question, we consider the execution time
of a nondeterministic TM to be the length of the longest path in its
computation tree and say

Definition: NTIME(t(n)) = {L | L is a language decided
by an O(t(n)) time nondeterministic Turing machine }.

Definition: NP is the class of language that are decidable
in polynomial time on a deterministic single-tape Turing ma-
chine. In other words

NP =
⋃
k

NTIME(nk)

Click here to view the slides for this class

5. Given that one way to understand nondeterminism is that nondeter-
ministic machines are great guessers, another approach to defining the
cost of a nondeterministic algorithm is to concentrate on the effort
required to verify that the “guess” was correct.

6. We can therefore define the notion of a verifier and its running time

Definition: A verifier for a language A is a Turing machine
V where

A = {w | for some string c, w#c ∈ L(V)}

We say that V is a polynomial time verifier if it runs in
polynomial time in the length of w. In this case, we say that
A is polynomial verifiable.

7. In fact, a language is in NP if and only if it is polynomial time verifiable.

• If there is a verifier V for A, then we can build a non-deterministic
TM MA that on input w decides whether w ∈ A in polynomial
time by guessing a string c (of length bounded by the appropriate
polynomial) and then runs V on w#c.

• If A is decided in polynomial time by MA, then we can build a
machine V with language {w#c | c is an accepting computation
history of MA on input c}. Clearly, V can run in polynomial time
in the length of w since the number of configurations in the c
associated with w is bounded by a polynomial.

Two Sample Problems from NP
(Click for video)

1. My favorite example of a problem in NP is definitely the Subset Sum
problem.

2. Given a list of numbers like:

17, 24, 5, 9, 11, 24, 57, 4, 39, 40, 84, 11, 19

Is there some sublist of these numbers that adds up to exactly N? (for
some given N)

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0bd4f8b2-8726-4e4a-99dd-abb100dd5d68
http://www.cs.williams.edu/~tom/courses/361/notes/Lect29slides.pdf
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=abe8a029-8fd3-4666-8baf-abb100e5ddb3

3. It should be clear that there is a polynomial time verifier for this prob-
lem.

4. It should also be clear how this verifier could be turned into a non-
deterministic algorithm for the problem. We would first guess some
numbers and then use the verifier to see if we got lucky.

5. At the same time, checking every subset would require exponential
work and there is no obvious algorithm that is more efficient.

6. My second favorite problem in NP is the 3-dimensional matching prob-
lem.

Definition: Given three sets of items, X,Y, and Z, and a
set of allowable triples, A ⊆ X × Y ×Z, we say that M ⊆ A
is a 3-dimensional matching if for any pair of distinct triples
(x1, y1, z1), (x2, y2, z2) ∈M , x1 6= x2, y1 6= y2, and z1 6= z2.

The problem is whether given X,Y, Z, and A ⊆ X × Y × Z, we can
find an M ⊆ A of a specified size that forms a valid matching.

7. Those of you who have taken 134 with me over the last few years have
seen this problem in the guise of the “Awkward Diners” problem:

Suppose a set C of dinner companions are at a restaurant
serving a set of entrees, E, and a set of desserts, D where
conveniently |C| = |E| = |D|. None of the diners wants to
order either the same entree or the same dessert as any of
their companions and each diner has his or her own prefer-
ences (expressed as a subset of E × D) of combinations of
an entree and a dessert they are willing to eat. Given all of
their preferences, is their an order for the table that satisfies
everyone?

8. If we let X = C, Y = E, Z = D, and A = {(c, e, d) | c is willing to eat e
as an entree with d as a dessert }, then the “Awkward Diners” problem
is clearly just a special case of 3-dimensional matching in disguise. In
particular, it is the case where |X| = |Y | = |Z| = |M |.

9. For example, we might have C = { Beth, Carl, Diana, Evan, Fred,
Gina, Harry }, E = { Sea Scallops, Pumpkin Ravioli, Roast Chicken,
Shortribs, Roast Skate, Flying Pig, Lobster}, and D = { Key Lime
Pie, Apple Tart, Black Forest Cake, Tangerine Sherbet, Cheesecake,
Tiramisu, Creme Brule }. Beth might only be willing to eat sea scal-
lops with key lime pie, shortribs with key lime pie, roast skate with
tangerine sherbet, or roast chicken with tangerine sherbet. Carl might
only be willing to eat ... and so on.

10. It should be clear that we can efficiently verify a proposed solution to
this problem and therefore it is in NP.

Polynomial Time Reducibility
(Click for video)

1. Hopefully, those of you who saw the subset-sum and “Awkward Diners”
previously in CS 134 remember the punch line. In some sense, the
subset sum problem and the 3-dimensional matching problem where
|X| = |Y | = |Z| = |M | are the same problem.

2. To see that this is the case, first number the elements of the sets X,
Y , and Z. That is, assuming all of the sets involved are of size n
we would write X = {x0, x1, x2, ...xn−1}, Y = {y0, y1, y2, ...yn−1}, and
Z = {z0, z1, z2, ...zn−1}.

3. Now, we can associate each triple (xi, yj , zk) ∈ A with the number
bi + bn+j + b2n+k. That is, we will associate each triple with a number
written in base b as 3n digits 000...1...000...1...000...1...000 where the
last 1 appears i positions from the end, the second 1 appears n + i
positions from the end and the first 1 appears 2n+ k from the end.

4. If there is a subset M of triples from A that forms a valid 3-dimensional
matching, then each element of X, Y , and Z will appear in exactly
1 triple. Therefore, for any position m, exactly one of the numbers
bi + bn+j + b2n+k associated with these triples will have a 1 at position
m. Therefore the sum of the numbers corresponding to the triples will
be 3n digits long and of the form 1111...111 = b3n − 1

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=84b87a43-7a83-48aa-a362-abb100ea271e

5. On the other hand, given the numbers associated with the triples in A,
if we can find a subset of these numbers that add up to b3n − 1, then
the corresponding set of triples must form a valid matching M . (To
be careful, we should choose b to be large enough that carries between
columns cannot occur during the addition.)

6. What we have shown is clearly a many-to-one reduction of 3-
dimensional matching to subset sum. That is:

3-dim matching ≤m subset sum

7. The reduction we have described, however, is more than computable.
It is easy to compute. In particular, the number of numbers we must
generate from the 3-dimensional matching problem and the number
of digits in each number is linear in the length of the description of
the original problem. As a result, we can build a Turing machine
to compute the appropriate subset sum problem in some polynomial
number of steps as a function of the input size (the size of the original
matching problem).

8. This leads to:

Definition: We say that A is polynomial-time reducible to
B (written A ≤p B) if and only if there exists a polynomial
time function f : Σ∗

A → Σ∗
B such that w ∈ A if and only if

f(w) ∈ B.

9. In particular, we now can say:

3-dim matching ≤p subset sum

10. Just as many-to-one reducibility allowed us to draw conclusions about
whether a language was decidable or recognizable, polynomial re-
ducibility allows us to make statements about membership in P (and
eventually NP).

Theorem: If A ≤p B and B ∈ P then A ∈ P .

and conversely

Theorem: If A ≤p B and A /∈ P then B /∈ P .

11. Thus, we now know that if subset sum is in P then 3-dimensional
matching (at least looking for complete matchings) is in P. Also, if
3-dimensional matching is not in P then subset sum must not be in P
either.

Satisfiability (and 3-SAT)
(Click for video)

1. Another interestingly difficult problem is satisfiability for boolean ex-
pressions.

• We restrict our attention to expressions involving boolean vari-
ables, ands (∧), ors (∨), and negation (e) like:

(x1 ∧ ((x2 ∧ x3) ∨ (x3 ∧ x2))) ∨ (x1 ∧ ((x2 ∧ x3) ∨ (x2 ∨ x3)))

• We say such a formula is satisfiable if there is an assignment of
the values true and false (equivalently 0 and 1) to the variables
used in the formula that causes the formula to evaluate to true
(1).

• For example,

(x1 ∧ ((x2 ∧ x3) ∨ (x3 ∧ x2))) ∨ (x1 ∧ ((x2 ∧ x3) ∨ (x2 ∨ x3)))

is an example of a boolean formula over three variables. If I
got it right, its value is true exactly when the number of true
variables is even (i.e., it is based on even parity). As a result this
is an example of an easily satisfiable formula. (The truth table is
shown below.)

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d60d5368-546e-42f7-95d0-abb100f15fab

x1 x2 x3 ans

false false false true

false false true false

false true false false

false true true true

true false false false

true false true true

true true false true

true true true false

• On the other hand,

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x1) ∧ (x1 ∨ x2)

is an example of a formula with no satisfying assignment.

2. The satisfiability problem is the problem of deciding membership in
the language

SAT = {〈φ〉 | φ is a satisfiable boolean formula }

3. We will also be interested in a version of the problem restricted to
formulas written in a canonical form called 3-conjunctive normal form
or 3-CNF.

4. 3-CNF is a special form of a more general special form called conjunc-
tive normal form.

• A formula is in conjunctive normal form (CNF) if it is a sequence
of clauses all connected by conjunctions (ands) where each clause
is a series of disjunctions (ors) or variables or their negations.

• Given any boolean formula, we can rewrite it in conjunctive nor-
mal form.

• A simple way to see that this is true is to visualize the truth table
for the formula you want to express in CNF.

– Your CNF formula will have one clause for each row of the
truth table where the value of the function is false. Each
clause should be true only if the variables do not have the
values corresponding to that row.

– Your formula collectively says the result should be true if the
variable values do not match any row where the value would
be false.

5. In 3-CNF, all formulas are conjunctions of clauses that are disjunctions
of exactly 3 variables or negations of variables.

• Given a formula in CNF, two tricks let us convert it into 3-CNF.

– If the formula has less than three terms, duplicate one of its
terms.

– if the formula has more than three terms, add a new variable
and break the formula up into two subparts such as:

x1 ∨ x2 ∨ x3 ∨ x4 = (x1 ∨ x2 ∨ xnew) ∧ (xnew ∨ x3 ∨ x4)

– Any satisfying assignment of the original problem will be a
satisfying assignment of the 3-CNF form with added vari-
ables, and any assignment to the formula with added vari-
ables will reduce to a satisfying assignment of the original
problem when the added variables are ignored.

6. The problem of determining if a boolean formula in 3-CNF is satisfiable
is known as 3-SAT.

3-SAT = {〈φ〉 | φ is a satisfiable boolean formula in 3-CNF }

Reducing 3-SAT to Subset Sum
(Click for video)

1. Our ultimate goal is to show that any problem in NP can be polynomial
reduced to satisfaction of a boolean formula. Before we do that, let’s
see that satisfaction for 3-CNF terms can be reduced to subset sum.

• As we did for the 3-dimensional matching problem, we will gen-
erate a peculiar set of number to use as an instance of the subset
sum problem based on the 3-CNF formula we are given.

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d1acc150-2ad1-42b2-9c6f-abb1013a2e97

• Let’s assume the formula has t clauses over v variables. We will
assume the variables are numbered x1, x2, ...xv and we will number
the clauses from 1 to t. Each number in our collection will be
2k + v digits long (possibly with leading 0s). The digits of each
number will be divided into three groups as shown below:

x1 x2 ... xv c1 c2 ... ct s1 s2 ... st

• There will be two numbers in the set for each variable xi. One of
these numbers will correspond to setting xi to true, the other to
setting xi to false.

– In both numbers the ith digit will be 1.

– All of the remaining v + t leading digits will be 0.

– The remaining digits, labeled si in the diagram above, will
differ in the two numbers for a given variable. In one number
sj will be one if xi appears in clause j. In the other number,
sj will be one if xi appears in clause j. Otherwise, sj will be
0.

For example, given the formula:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

We would generate the numbers:

x1 x2 x3 c1 c2 c3 c4 s1 s2 s3 s4
x1 1 0 0 0 0 0 0 1 1 0 0
x1 1 0 0 0 0 0 0 0 0 1 1
x2 0 1 0 0 0 0 0 1 0 1 0
x2 0 1 0 0 0 0 0 0 1 0 1
x3 0 0 1 0 0 0 0 0 1 1 0
x3 0 0 1 0 0 0 0 1 0 0 1

• The goal of selecting these numbers in this way is to connect
the set of numbers chosen to a possible truth assignment for the
variables in such a way that the sum of the numbers chosen will
indicate which clauses are satisfied by the corresponding truth
assignment.

– In the final subset sum problem, we will require that the first
v digits of the sum be all ones. This will imply that in any
solution to the subset sum problem we have chosen one of
the numbers associated with each variable xi. The number
chosen reflect whether that variable is set to true or false in
our assignment.

– If this is done, the each of the low order t digits of the sum
will equal the number of literals in each clause that are true.
If all of these digits are greater than 0, we know we have a
satisfying assignment.

• To complete the reduction to the subset sum problem, we need
more than knowing that the lower order digits must all be greater
than 0. We need to be able to predict their exact values. To
accomplish this we add 3 numbers to our subset sum problem for
each of the clauses in the original formula.

– In each of the numbers for clause j, the j + vth digit of the
number (i.e., cj)will be 1.

– All of the remaining ck digits will be 0.

– The value of sj (i.e., the v + t + jth digit) will be 0 in one
number, 1 in the second, and 2 in the third. All of the other
sk digits will be 0.

Given that our sample formula has 4 clauses we would generate
the numbers:

5

x1 x2 x3 c1 c2 c3 c4 s1 s2 s3 s4
clause 1 0 0 0 1 0 0 0 0 0 0 0
clause 1 0 0 0 1 0 0 0 1 0 0 0
clause 1 0 0 0 1 0 0 0 2 0 0 0
clause 2 0 0 0 0 1 0 0 0 0 0 0
clause 2 0 0 0 0 1 0 0 0 1 0 0
clause 2 0 0 0 0 1 0 0 0 2 0 0
clause 3 0 0 0 0 0 1 0 0 0 0 0
clause 3 0 0 0 0 0 1 0 0 0 1 0
clause 3 0 0 0 0 0 1 0 0 0 2 0
clause 4 0 0 0 0 0 0 1 0 0 0 0
clause 4 0 0 0 0 0 0 1 0 0 0 1
clause 4 0 0 0 0 0 0 1 0 0 0 2

• If we have a satisfying assignment of the formula corresponding
to the subset sum problem we have generated, then the number
of literals that are not true in any clause of the formula must be
0, 1, or 2. By selecting the corresponding number for each clause,
we can therefore ensure that the sum we obtain will be a number
consisting of t+ v 1s followed by t 3s.

• Thus, it should be clear that if there is a satisfying assignment,
then the subset sum problem we have constructed has a solution.

• Conversely, if there is a solution to the subset sum problem, it
must involve choosing either the number associated with xi ore
xi for each i and the numbers chosen in this way must correspond
to an assignment that satisfies the original boolean formula.

6

