
CS 361 Meeting 28 — 5/4/20

Linear Bounded Automata
(Click for video)

1. Turing machines are a ridiculous model of computation. Real machines
do not have infinite memory (and what they have is easier to use).

2. Deterministic Finite Automata are even sillier. The assumption of a
fixed memory leaves them too weak for most interesting problems.

3. An alternative worth thinking about is a machine whose memory size
grows with its input size in some predictable way. That is, the memory
size is determined by some fixed function of the input size.

4. One very simple approach is to limit the memory to be some fixed
multiple of the input size.

5. If we limit a Turing machine so that it can never write past the end of
its input, we get a model that accomplishes this:

• Since we can give the machine an alphabet that simulates multiple
tapes, the memory available can be k times the input size for any
fixed k.

• We call such machines Linear Bounded Automata or LBAs for
short.

6. Despite the memory limitation, Linear Bounded Automata are actually
quite powerful.

7. Many of the languages we have determined are decidable by Turing
machines are clearly decidable by LBAs:

• ADFA = {〈M,w〉 |M is a DFA and w ∈ L(M).}

Imagine 3 tapes where the machine keeps its input (start-
ing with the description of the DFA) on its first tape, ini-
tially copies the input w to the second tape and the start

Click here to view the slides for this class

state of M to the third tape. It then repeatedly searches
the list of tuples that describe δ on the description of
M on the first tape to determine the correct next state.
Once the next state is determined, it gets copied to the
third tape and the head on the second tape moves to the
next input character. Then the head on the second tape
reaches the end of w, the machine checks to see if the
state on the third tape is in the list of final states on the
first tape. The contents of the “extra” tapes will always
be no longer than the original input, so this is an LBA.

• EDFA = {〈M〉 |M is a DFA and L(M) = ∅}

When we originally considered this question, I suggested
two approaches. One, was too exhaustively search all
strings of length less than the pumping length for a string
that the DFA accepted.
If there is any w in L(M), we can argue using the pump-
ing lemma that there must be at least one such input
whose length is no greater than the size of M ’s set of
states (which must be less than the length of the input
〈M〉. So, the same simulation technique described for
ADFA can be applied to all strings of size up to the num-
ber of states.
The other approach is to search that set of states as a
graph to see if there is any path from the start state to
any final state. This can be implemented by an algorithm
that simply places markers on the states it has found to
be reachable from the start state. This can easily be done
in place.

• ALLDFA = {〈M〉 |M is a DFA and L(A) = Σ∗}

〈M〉 ∈ ALLDFA iff a machine that accepts the comple-
ment of L(M) is in EDFA. We can easily convert our
simulation technique described for ADFA and EDFA so
that it treats the list of final states as a list of non-final
states. With this change, the algorithm for EDFA decides
ALLDFA.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ccef0161-eed6-48a0-8ac2-abab0146a785
http://www.cs.williams.edu/~tom/courses/361/notes/Lect28slides.pdf

• ECFG = {〈G〉 |G is a CFG and L(G) = ∅}
The algorithm we (briefly) discussed that decides ECFG

(see the notes for lecture 23) can be implemented by in-
cluding enough symbols in the tape alphabet of a machine
to enable it to mark the elements of the set of variables
known to be useless on the encoding of the CFG provided
as input.

8. If we think of computable functions instead of languages, many impor-
tant algorithms can be implemented on LBAs:

• Sorting

• Dijkstra’s algorithm

• Matrix multiplication

A Decidable Question about LBAs
(Click for video)

1. Given the power of these machines, it seems interesting to ask whether
members of our generic set of language questions:

• A??? = {〈M,w〉 |M is a ??? and w ∈ L(M).}
• E??? = {〈M〉 |M is a ??? and L(M) = ∅}
• EQ??? = {〈A,B〉 |A and B are ???s and L(A) = L(B)}
• ALL??? = {〈M〉 |M is a ??? and L(A) = Σ∗}

are decidable when applied to LBAs:

• ALBA = {〈M,w〉 |M is an LBA and w ∈ L(M).}
• ELBA = {〈M〉 |M is an LBA and L(M) = ∅}
• EQLBA = {〈A,B〉 |A and B are LBAs and L(A) = L(B)}
• ALLLBA = {〈M〉 |M is a LBA and L(A) = Σ∗}

item The technique we used to show ALLCFG depended on a lan-
guage that encoded computation histories of Turing machines. Similar
techniques can be used to show that many properties of LBAs are
undecidable (and in at least one interesting case, decidable).

2. Recall that a Turing machine configuration is a triple (x, q, y) where q
represents the machine’s current state, x ∈ Γ∗ represents the contents
of the tape preceding the current position of the read head, and y ∈
Γ∗ represent the contents of the tape starting at the read head and
continuing until the last non-blank symbol.

3. We can define languages that encode the complete computations of a
TM.

Definition: Given a TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ∗, we define the language of computation
histories of M on w as

LComputation−history(M,w) =
{w0w1...wn | each wi is a configuration for M ,

w0 is the initial configuration for w,
wn is an accept configuration, and
each wi yields wi+1 according to δ }

4. While this definition applies to all Turing machines, the computation
histories of LBAs have some special properties.

• If w0w1...wn is a computation history of an LBA, then for all i
and j, |wi| = |wj | = |w| + k where k is a small constant that
depends on the encoding used.

– Most likely, k = 2, one symbol for the current state embed-
ded in w and another for a separator that appears between
configurations.

• Since all the configurations in an LBA computation history must
be of the same length, there are only finitely many different con-
figurations.

– Each of the |w| cells on the tape can hold any of the |Γ| tape
alphabet symbols, the head can be at any of the |w| tape
cells or looking at the space at the end of the input, and the
machine can be in any of its |Q| states leading to a total of
|Q| × (|w|+ 1)× |Γ||w| distinct configurations.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f291c1ee-b8fa-45ac-ab53-abab014af159

• No configuration can appear more than once in a computation
history.

– Configuration histories must end in the machine’s accept
state, so they must be finite.

– If an LBA every re-entered a previous configuration, it would
be trapped in a loop and could never terminate.

• If an LBA takes more than |Q| × (|w|+ 1)× |Γ||w| steps on input
w, it will never halt.

5. The acceptance problem for LBAs:

ALBA = {〈M,w〉 |M is an LBA and w ∈ L(M).}

is therefore decidable!

• We can build a Turing machine which when given an input 〈M,w〉
where M is an LBA, simulates M on w for at most |Q| × (|w| +
1)×|Γ||w| steps and accepts only if the simulated machine reaches
an accept state.

Some Undecidable Questions about LBAs
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d6998f06-

94b2-4c60-9a84-abac00221908

1. Computation histories also give us a way to show that LBAs are pow-
erful enough that the question of whether an LBAs language is empty:

ELBA = {〈M〉 |M is an LBA and L(M) = ∅}

is undecidable.

• First, it should be clear that for any Turing machine, the language
LComputation−history(M,w) is decidable.

– Given a string h on its input tape, a Turing machine designed
to decide LComputation−history(M,w) would need to verify that
h is a string of the form w0w1 . . . wn where:

(a) w0 is an encoding of the configuration (q0, ε, w).

(b) wn is a valid encoding where the Turing machine is in
qaccept.

(c) Each wi yields wi+1 according to the Turing machines’
transition function.

• Now, observe that a Turing machine designed to decide
LComputation−history(M,w) could do all its work by marking up
symbols on the original input. That is, this machine would be an
LBA.

• We know that ATM is undecidable. Suppose ELBA was decided
by MELBA

. Then, we could built a machine MATM
as follows:

– On input < M,w >, build a description of an LBA < M ′ >
that decides the language LComputation−history(M,w).

– Provide < M ′ > as an input to MELBA
and either accept if

it rejects or reject if it accepts.

This machine would decide MATM
, so the assumption that MELBA

exists must be false and ELBA must be undecidable.

• It should be clear that ELBA is recognizable. We just run the
machine on all possible inputs until one is accepted and then
accept. We don’t even have to dovetail since we can stop the
simulation on any input after executing |Q| × (|w| + 1) × |Γ||w|
steps.

• If ELBA were also recognizable, then both languages would be
decidable. Therefore, we can conclude that ELBA is not recogniz-
able.

2. Given that ELBA is unrecognizable, the language

EQLBA = {〈A,B〉 |A and B are LBAs and L(A) = L(B)}

must also be unrecognizable since if it were recognizable, we could
recognize ELBA by asking if a given LBA was equivalent to a trivial
LBA designed to accept no inputs.

3. Finally,

ALLLBA = {〈M〉 |M is a LBA and L(A) = Σ∗}

3

must be unrecognizable because we can equally easily built an LBA
that decides

LComputation−history(M,w)

and the machine that decided this language would belong to ALLLBA

exactly when w /∈ L(M).

Resource Restrictions and Big-O
(Click for video)

1. Over the last several weeks, we have happily discussed Turing machine
algorithms that required vast amounts of time and tape for relatively
simple problems. For the remainder of the semester, we will examine
the power of Turing machines when the amount of tape or the number
of steps they can use while processing an input is limited.

2. Today, we talked about a model of computation in which one of the
resources the machine could use, memory, was related to the size of its
input:

Definition: A linear bounded automaton is a restricted type
of Turing machine wherein the tape head is not permitted
to move off the portion of the tape containing the input.

3. Suppose that we instead decided to place a restriction on the number
of steps a TM could take to process its input:

Definition: A linear-time bounded automaton is a restricted
type of Turing machine wherein the tape head is not permit-
ted to move more than once for each symbol on the tape
containing its input. (Assume that if the TM tries to take
too many steps, the input is rejected by default.)

4. This restriction changes the beast quite dramatically.

• Such machines cannot recognize even simple context-free lan-
guages like w$wR.

• Such machines can clearly still recognize all regular languages.

• In fact, they can only recognize regular languages!

5. Changing from |w| steps to k × |w| steps does not help:

• Still cannot recognize simple context-free languages like w$wR.

6. On the other hand, changing from |w| steps to |w|2 steps makes a big
difference. With |w|2 a TM can recognize many languages that are not
context-free.

• {w#w | w ∈ Σ∗}
• {n#w#w1#w2#...#wk | n,w,wi ∈ {0, 1}∗, n ≤ k, and w = wn}
• {anbncn | n ≥ 0} — this language is not context-free.

7. This provides a handy refresher on and justification for big-O notation:

Definition: Let f and g be functions f, g : N → R+. We
say that f(n) = O(g(n)) if for some positive integers c and
n0

f(n) < cg(n)

for all n ≥ n0. We say that g(n) is an asymptotic upper
bound for f(n).

8. Basically, when we explore what can be computed by TMs where the
amount of space they can use or the number of steps they take is limited
to be less than some function of the size of the input, we only discuss
the highest order term of the function that describes the amount of
time/space used by an algorithm, ignoring both constant multipliers
and lower-order terms

9. Based on this notion, we can define classes of languages recognized
by TMs in numbers of steps bounded asymptotically bounded by any
function:

Definition: Let t : N → R+ be a function. Define the
time complexity class, TIME(t(n)) to be the collection
of all languages that are decidable by an O(t(n)) time Turing
machine.

Why P?
(Click for video)

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acc9c29b-6def-41a2-84fd-abac00fda8e4
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=7993dd2f-6d13-4b1d-ac08-abac01018833

1. Consider how many steps are required to recognize the languages below
on a multi-tape TM:

• {w#w | w ∈ Σ∗} — O(n)

• {n#w#w1#w2#...#wk | n,w,wi ∈ {0, 1}∗, n ≤ k, and w = wn}
— O(n)

• {w0#w1#w2#...#wk | ∃i, j ≤ k with wi = wk} — O(n log n)

2. Now do the same thing for a single-tape TM. In general, you should
recognize that for every step made by a multi-tape TM, a single tape
TM may have to make a complete pass over its tape whose length can
be as large as the number of steps executed. As a result, the running
time will be at most the square of that of a single tape machine.

3. A similar pattern emerges if you compare the expected running time
of an algorithm when that algorithm is implemented on a conventional
computer (using a standard programming language). If the running
time on a conventional machine is bounded by a polynomial, then
the same algorithm can be implemented on a Turing machine and its
running time will just be bounded by a polynomial of a higher degree.

4. The key observation is that for all the variations in our computing
model, any bound on one model that is a polynomial remains a poly-
nomial on most other reasonable models.

5. This inspires:

Definition: P is the class of language that are decidable in
polynomial time on a deterministic single-tape Turing ma-
chine. In other words

P =
⋃
k

TIME(nk)

6. Of course, the biggest variation in model we can make is to switch
from a deterministic model to a non-deterministic model. For DFAs
and TMs with no limits on the durations of their computations, we have
shown nondeterministic modes and deterministic modes are equivalent.
We might well wonder whether this is the case for TMs limited by some
time bound.

7. As you should already know, it is not known whether this is the case.

8. To allow us to explore this question, we consider the execution time
of a nondeterministic TM to be the length of the longest path in its
computation tree and say

Definition: NTIME(t(n)) = {L | L is a language decided
by an O(t(n)) time nondeterministic Turing machine }.

Definition: NP is the class of language that are decidable
in polynomial time on a deterministic single-tape Turing ma-
chine. In other words

NP =
⋃
k

NTIME(nk)

5

