
CS 361 Meeting 27 — 5/1/20

Almost Computable Histories
(Click for video)

1. While descriptions of the languages of computation histories of a TM is
not computable, there is a related family of languages with computable
descriptions.

2. To get a bit closer to being able to find a way to compute
LComputation−history(M,w), we can define a slight variation of this lan-
guage:

Definition: Given a TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ∗, we define the language of reversed
computation histories of M on w as

LR
Computation−history(M,w) =

{w0w
R
1 ...wn | each wi is a configuration for M

w0 is the initial configuration for w
wn is a final/accept configuration
each wi yields wi+1 according to δ
every other wi is written backwards }

3. Again, if M is deterministic, this language is finite and therefore both
regular and context-free.

4. You can imagine that it would be possible to construct a CFG or a PDA
that ensures that all even-odd pairs of strings or all odd-even pairs of
configurations in such strings satisfied the “yields” requirement.

• Since the orientations of consecutive configurations alternate, a
PDA can check any pair by

– Pushing the contents of the first configuration on its stack.

– As it reads the next configuration in the input, pop the sym-
bols of the preceding configuration from the stack and make
sure that they either match the current configuration, or

Click here to view the slides for this class

– Check that the differences are consistent with the transition
function, δ, of the Turing machine considered.

• Alas, if configurations i and i + 1 are checked in this way it is
impossible for the PDA to check i+ 1 agains i+ 2 since its stack
is now empty!

5. Somewhat amazingly the complement of LR
Computation−history(M,w)

which is far from finite is context-free and we can effectively construct
a PDF or CFG that describes it given a description of M and w.

• Fundamentally, to recognize a string belongs to the complement,
a PDA just needs to find one thing “wrong” with it. One pair
of mismatched consecutive configurations is sufficient. We don’t
need to check all pairs.

• We can describe a PDA that uses its non-determinism to guess
where the feature that would make a string invalid as a computa-
tion history occurs and then use the stack of the PDA to validate
the guess.

• The PDA guesses one of the following issues:

– The whole string is not formatted properly,

– The first configuration is not a valid initial configuration for
w,

– The last configuration is not an accepting configuration.

– For any pair of consecutive configurations, the earlier configu-
ration does not yield the following configuration (a PDA could
nondeterministically guess which pair didn’t match, push the
first configuration on its stack and then verify the mismatch
as it read the next configuration),

• In the first three cases, checking the guess only requires recogniz-
ing that the input belongs to a regular languages. This is easiest
to see in the second case. There is one, known, correct initial con-
figuration. We know that a DFA can recognize the set of strings
that do not start with any given prefix. So, if our PDA guesses
this is what is wrong, it takes a transition to a set of states that
implement this DFA.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3d443ed6-77fb-4322-99a9-aba9015d8f9a
http://www.cs.williams.edu/~tom/courses/361/notes/Lect27slides.pdf

• For the last option, the PDA has to compare a pair of consecu-
tive configurations as suggested above to make sure it can find a
mistake,

6. Using this fact, we can show that ALLCFG is not recognizable by
reducing ATM to ALLCFG. To do this, we will assume the existence
of a TM MALLCFG

that recognizes ALLCFG and build a TM MATM

that recognizes ATM .

• MATM
should accept its input if it is not a valid encoding of a

TM description and input.

• Next, MATM
should create a CFG GM for

LR
Computation−history(M,w).

• Finally, MATM
should run MALLCFG

on 〈GM 〉 and accept if
MALLCFG

accepts.

• This machine recognizes ATM because M has an accepting
computation history on w iff w ∈ L(M). As a result,

LR
Computation−history(M,w) = L(GM) = Σ∗ exactly when w /∈

L(M).

• Since it would be a contradiction if we could recognize ATM , it
must be impossible to recognize ALLCFG.

7. Since we can recognize ALLCFG by simply checking all strings looking
for one that cannot be derived from the grammar, this implies that
ALLCFG is recognizable but not decidable.

8. If we could decide EQCFG, we could decide ALLCFG by taking the
input CFG and comparing it to a CFG that generates Σ∗. Thus, we
can also conclude that EQCFG is recognizable but not decidable.

Mapping Reductions
(Click for video)

1. We have observed that many of the proofs of undecidability and non-
recognizability we have explored have a very similar structure.

2. We can formalize these similarities in the notion of mapping reducibil-
ity and then use this idea to “simplify” the proofs for many results
involving decidability and recognizability.

3. First we should review the idea of a computable function.

Definition: A function f from Σ∗ → Σ∗ is computable if
and only if some Turing machine M on every input w, halts
with f(w) on its tape.

4. This definition is mainly an admission that Turing machines can do
interesting things other than just accept and reject.

• This is not new. One of the first TMs we considered implemented
a computable function. It took input strings and did its best to
insert a # in the middle of them.

• In each of the non-recognizability proofs we have given, we have
embedded such a computable function.

– All of the computations that generated some 〈M ′〉 given some
〈M,w〉 were examples of computable functions.

– In the argument for ALLCFG, the conversion of 〈M,w〉 into
a description of a PDA for the complement of the languages
of computation histories of M on w is another computable
function.

5. Given the notion of computable functions, we can capture the essence
of what our M ′s and similar concoctions are really about.

Definition: Language A is many-to-one reducible to lan-
guage B (written A ≤m B) if there exists a computable
function f : Σ∗ → Σ∗ such that for every w ∈ Σ∗

w ∈ A⇔ f(w) ∈ B.

In this case we call f a reduction.

6. Let me share two handy memory aids for dealing with the notation.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d0c812c3-6e98-40ee-bebd-abaa014cb988

(a) The point of the ≤ goes in the direction opposite the function
arrow.

(b) It helps to read the ≤ as “is easier than” rather than “is less
than”.

7. The following diagram illustrates what this definition requires and al-
lows.

• It must map members of A to members of B.

• It must map strings that are not in A to strings that are not in
B.

• It can map multiple input strings to the same output.

A B

f

f

f

8. As a simple example, the computable function

f(< M,w >) = < M ′ > where M ′ is a TM that ignores its
input, runs M on w and accepts
its input if M accepts w.

shows that ATM ≤m ALLTM since it maps any < M,w > that belongs
in ATM to an < M ′ > that belongs in ALLTM .

9. Note that there is nothing that inherently ties this computable function
to ATM and ALLTM . As long as we can identify two languages A and
B such that w ∈ A⇔ f(w) ∈ B, the function f justifies the claim that
A ≤M B.

• As an easy example of this, note that this function also shows
that ATM ≤m ALLTM . In general A ≤M B ⇔ A ≤M B.

• As a more daring example, this function also shows that ATM ≤m

ETM since it maps any < M,w > that belongs in ATM to an
< M ′ > that belongs in ETM .

Using Mapping Reductions
(Click for video)

1. With these definitions, we can succinctly formalize the technique we
have been using in all our proofs for the last few classes:

Theorem: If A ≤m B and ...

(a) B is decidable, then A is decidable,

(b) A is undecidable, then B is undecidable,

(c) B is recognizable, then A is recognizable, and

(d) A is not recognizable, then B is not recognizable

• We won’t give a detailed proof of these claims, but they are all
just obvious applications of the proof techniques we have been
employing.

2. As an example of how we might use such a mapping reduction, consider
the language

DISJOINTTM = {〈M,M〉 | M & N are TMs and L(M)∩L(N) = ∅}

.

• We will show that DISJOINTTM is not recognizable by showing
that ETM ≤M DISJOINTTM .

• To do this, we need a mapping that will take any w of the form
〈M〉 to a pair of TM descriptions 〈N,N ′〉 in such a way that L(N)
and L(N ′) are disjoint if and only if L(M) is empty.

• Technically, we also have to make sure that in the case that w
is a string that is not of the form 〈M〉 (i.e. it is not a valid

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=23b3b4ca-c51b-453b-b28d-abaa01511105

TM encoding) that f(w) is still defined and that in this case,
f(w) /∈ DISJOINTTM . We can do this by either making f(w)
be a badly formed string (i.e., not of the form 〈M1,M2〉) or a
string of the form 〈M1,M1〉 where L(M1) is non-empty.

• Now, for w of the form 〈M〉:
– let EV ERY be a TM that accepts all strings over Σ.

– Consider the function f(w) = 〈M,EV ERY 〉 where w = 〈M〉.
– This is clearly computable.

– It is also clear that f(〈M〉) = 〈M,EV ERY 〉 ∈ C if and only
if 〈M〉 ∈ ETM .

• Given that we know that ETM is not recognizable, we can con-
clude that DISJOINTTM is not recognizable.

3. One can give a similar, short argument that EQCFG is not recognizable
by reducing it to ALLCFG.

• Let EV ERY be a CFG that generates all strings over an alphabet.

• Consider the computable function f(w) = 〈G,EV ERY 〉 when w
= 〈G〉 for some CFG G, and f(w) = any string that is not in
ALLCFG otherwise.

• Given this function, it is clear that ALLCFG ≤M EQCFG.

• This implies that EQCFG is “harder than” ALLCFG in the sense
that EQCFG must not be recognizable since we already know that
ALLCFG is not recognizable.

Turing Equivalence
(Click for video)

1. It is important to notice that the symbol we use for Turing-reducability
is ≤M rather than <M . It is “less than or equal” rather than “strictly
less than”.

2. This suggest, that there may be examples of languages such that A ≤M

B while at the same time B ≤M A. In this case, we say that A and B
are Turing-equivalent and write A ≡M B.

3. As an example of this, consider the languages ATM and ETM . We
already know that these language are of similar difficulty since both
are recognizable but both of their complements are not recognizable.
They fall in the same bubble of our favorite Venn diagram!

4. Consider the reductions that are possible between these two languages.

5. We can easily show that ATM ≤M ETM using one of our favorite
constructions.

Let f(w) = 〈M ′〉 where:

• if w is a string of the form 〈M,w〉 (i.e. a suitable input for ATM),
then M ′ is a Turing machine that on input w′ runs M on w and
accepts w iff M accepts w.

• if w is not a string of the form 〈M,w〉, thenM ′ is a Turing machine
that rejects all inputs.

6. With a bit more effort, we can show that ETM ≤M ATM .

Let f(w) = 〈M ′, ε〉 where

• If w is of the form 〈M〉 for some Turing machine M , then M ′ is
a Turing machine which ignores its own input and instead uses
dovetailing to simulate M on all w over its alphabet looking for
some w ∈ L(M). If such a w is found, M ′ accepts its own input.

• If w is not a valid input for ETM , the M ′ should be a Turing
machine that accepts all inputs.

7. Given these reductions, we can conclude that ETM ≡M ATM and, that
ETM ≡M ATM .

Rice’s Theorem
(Click for video)

1. While we have categorized a large number of languages as decidable,
recognizable, or not recognizable, there are still plenty of additional
examples we could consider:

• REGULARTM = {〈M〉 | L(M) is regular }

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9ce8dfc6-e525-4d1f-ac0f-abaa01568605
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d1cd7d9f-ddab-427e-ad86-abaa01590cdd

• CONTEXT -FREETM = {〈M〉 | L(M) is context-free }
• PALINDROMETM = {〈M〉 | w ∈ L(M) ⇐⇒ wR ∈ L(M)}
• EV ENTM = {〈M〉 | w ∈ L(M)⇒ |w| = 2}
• PRIMETM = {〈M〉 | w ∈ L(M)⇒ |w| is prime }

2. There is a single theorem that will quickly allow us to show that all of
the languages listed above are undecidable.

• This result is known as Rice’s Theorem.

3. Informally, Rice’s Theorem says that any nontrivial property of a Tur-
ing machine’s language is undecidable.

• Nontrivial means that the languages of some but not all TMs have
this property.

• The fact that it is a property of the language rather than the TMs
means that it must be based strictly on the set of strings a given
TM accepts rather than on how the TM is designed or operates.

4. We can formalize this notion as:

Rice’s Theorem. Suppose that L is a language with

∅ ⊂ L ⊂ {〈M〉 | 〈M〉 is a valid Turing machine}

such that if L(M) = L(N) then 〈M〉 ∈ L ⇐⇒ 〈N〉 ∈ L
then L is undecidable.

• The first requirement:

∅ ⊂ L ⊂ {〈M〉 | 〈M〉 is a valid Turing machine}

captures the idea that the property is non-trivial by saying that
some TM languages have to have the property while others don’t.

• The requirement

L(M) = L(N) then 〈M〉 ∈ L ⇐⇒ 〈N〉 ∈ L

captures the idea that all TMs with the same language have to
share having the property or not having it. A property like “being
a TM with an even number of states” would violate this because
one could easily imagine machines with even and odd state counts
that recognized the same languages.

5. Recall that the set of decidable sets is closed under complement. So if
L is decidable, then L is also decidable and vice versa. Therefore, we
could restate the theorem as:

Rice’s Theorem’. Suppose that L is a language with

∅ ⊂ L ⊂ {〈M〉 | 〈M〉 is a valid Turing machine}

such that if L(M) = L(N) then 〈M〉 ∈ L ⇐⇒ 〈N〉 ∈ L
then L and L are undecidable.

6. This minor change in the statement of the theorem is useful, because
it allows us to add an assumption about L that will make the proof
easier without reducing the strength of the theorem. In particular, we
would like to assume that Turing machines whose languages are empty
are in L rather than L.

Rice’s Theorem: Suppose that L is a language with

∅ ⊂ L ⊂ {〈M〉 | 〈M〉 is a valid Turing machine}

such that if L(M) = L(N) then 〈M〉 ∈ L ⇐⇒ 〈N〉 ∈ L and
L(M) = ∅ ⇒ 〈M〉 /∈ L, then L and L are undecidable.

7. The proof of this theorem is a good opportunity to utilize the notion
of mapping reducibility we discussed last class. In particular, to prove
this theorem we just need to show that some undecidable set like ATM

is reducible to the L in the statement of the theorem. That is, we must
show that

ATM ≤m L

.

8. To do this, we need to find a computable function f(〈M,w〉) = 〈M ′〉
such that

5

• if w ∈ L(M) then 〈M ′〉 ∈ L, and

• if w /∈ L(M) then 〈M ′〉 /∈ L

9. Let 〈MinL〉 be any member of L. Since we assumed that L was not
empty we know such a machine description must exist.

10. Define f as follows. Given 〈M,w〉, f will produce a description of a
machine M ′ that first ignores its input w′ and simulates M on w and
loops if M either loops or rejects. If, however, the simulation of M
would have accepted w, M ′ will then run MinL on w′ and accept or
reject w′ as MinL would.

11. If w /∈M , then L(M ′) = ∅ and therefore f(〈M,w〉) /∈ L as desired.

12. if w ∈M , then L(M ′) = L(MinL)⇒ 〈M ′〉 ∈ L.

13. This completes the proof that ATM ≤m L and therefore shows that
neither L nor L is decidable.

6

