
CS 361 Meeting 26 — 4/29/20

Lot’s of Languages
(Click for video)

1. We have now identified specific examples of languages that are de-
cidable, recognizable but not decidable, and not recognizable but have
recognizable complements. I would like to round things out by showing
a specific language such that neither the language nor its complement is
recognizable. There are lots of of such languages and lots of languages
for us to think about!

2. REALLY! LOTS!

3. If you think about the counting argument I discussed in our first class
this semester, you will realize in that discussion, I suggested that there
had to be functions that were not computable because there are un-
countably infinitely many functions and only countably infinitely many
programs (now known as Turing machines).

4. You may mistakenly think that the undecidable or unrecognizable lan-
guages we have identified are examples of these uncomputable functions
I was discussing during our first class. They aren’t.

5. Consider how many languages there are that are recognizable (includ-
ing the ones that are decidable).

• Every such language can be “paired” with a Turing machine.

• Every Turing machine can be encoded as a string over some pre-
selected alphabet.

• There are only countably infinitely many strings over any lan-
guage.

• This implies that there are only countably many recognizable lan-
guages (including all the undecidable ones).

6. A similar argument says that the elements of the set of all languages
that are not recognizable but have recognizable complements can be

Click here to view the slides for this class

paired with the TMs that recognize their complements. Therefore the
set of all such languages is also countable.

7. Recall! The set of all languages over a given alphabet is uncountable.

8. So, there must be uncountably many languages that are not associated
with any Turing machine. These are the language that are not recog-
nizable and have complements that are also not-recognizable. We still
haven’t identified a single language that belongs to this much larger
group.

Estimating the Computational Challenge of a
Language

(Click for video)

1. Before you try to prove that a language is decidable, recognizable or
not, it is a good idea to get an intuition for how computationally
challenging the language is by considering relatively naive approaches
to identifying its members.

2. Let’s start by trying to develop some intuition about the correct cat-
egories for the following eight languages in the hope that we might
find some candidates for the languages that are neither recognizable or
co-recognizable:

• EQCFG = {〈A,B〉 |A and B are CFGs and L(A) = L(B)}
• EQCFG = {〈A,B〉 |A and B are not CFGs or L(A) 6= L(B)}
• ALLCFG = {〈M〉 |M is a CFG and L(A) = Σ∗}
• ALLCFG = {〈M〉 |M is not a CFG or L(A) 6= Σ∗}
• EQTM = {〈A,B〉 |A and B are TMs and L(A) = L(B)}
• EQTM = {〈A,B〉 |A and B are not TMs or L(A) 6= L(B)}
• ALLTM = {〈M〉 |M is a TM and L(A) = Σ∗}
• ALLTM = {〈M〉 |M is not a TM or L(A) 6= Σ∗}

3. With a little thought (and luck) you should be able to guess that:

• None of these examples are decidable.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=7a8702af-991c-4f24-9b04-aba90132f513
http://www.cs.williams.edu/~tom/courses/361/notes/Lect26slides.pdf
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f44d8e1b-a058-4d20-8dd8-aba90135cf61

• EQCFG and ALLCFG are recognizable since we can convert the
grammars into Chomsky normal form and then enumerate all
strings checking to see if some string is in one language but not
the other (for EQCFG) or that a given string is not in ALLCFG

and accepting as soon as we find an example.

• EQCFG and ALLCFG are probably not recognizable (since if there
is no counter-example, the procedure described in the preceding
bullet point loops forever). Their complements, however, seem
recognizable.

• Neither EQTM , ALLTM or their complements are clearly recog-
nizable because a TM may loop forever on a single a string if it
is not in its language so we may reach a string that is a counter-
example but never be sure it is because the machine just loops
rather than reaching a reject state.

4. So, the best candidates for our goal of finding examples of a pair of a
language and its complement that are both not recognizable seem to
be EQTM , ALLTM .

A Language that is not Recognizable or
co-Recognizable

(Click for video)

1. Let’s consider ALLTM . Our hunch is that this language and its com-
plement are both not recognizable. That means that proving they are
undecidable won’t help much. That would tell us that one of them
must not be recognizable, but we would not know which one was not
recognizable or that both of them are actually not recognizable.

2. Instead, we will seek two separate reduction proofs that ALLTM and
its complement are not recognizable.

3. To start, we will first assume that ALLTM is recognizable and try to
show that if this was true we could construct a TM to recognize some
language like ATM or ETM that we already know is not recognizable.

• We will use ATM = {〈M,w〉 |M is not a TM or w /∈ L(M)}

• Since we will be using proof by contradiction, we begin by assum-
ing that ALLTM is recognized by some TM MALL.

• Next, we construct a machine MATM
that will use MALL to rec-

ognize ATM . This machine behaves as follows:

– Accept the input if it is not a valid TM + input description

– On input 〈M,w〉, construct a description, 〈M ′〉 of a TM M ′

that behaves as follows:

∗ On input w′, simulate M on input w. Accept w′ if M
accepts w. Otherwise, reject.

– Run MALL on 〈M ′〉 and accept if it does.

• The way we construct M ′ in our MATM
ensures that L(M ′) = Σ∗

exactly when w ∈ L(M) and L(M ′) = ∅ exactly when w /∈ L(M).
Therefore, < M ′ >∈ ALLTM exactly when w /∈ L(M).

4. If you are having deja vu, that is reasonable. The details of this proof
(notably the construction of M ′ should seem very familiar from our
argument that ETM was undecidable.

ALLTM is not Recognizable Either
(Click for video)

1. Next, we will assume that ALLTM is recognizable and try to show that
if this was true we could construct a TM to recognize some language
like ATM or ETM that we already know is not recognizable.

2. This isn’t as easy as the first proof. A first guess would be that we
could just reverse the way the M ′ used in out argument for ALLTM

behaved.

• That is given 〈M,w〉, construct a description, 〈M ′〉 of a TM M ′

that behaves as follows:

– On input w′, simulate M on input w. Accept w′ if M rejects
w. Otherwise, reject.

• Unfortunately, this machine cannot do what its description says
(accept w′) in the case that M rejects w by looping because it
can never be certain that M is looping rather than just running
for a long time.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8937dea6-90d5-4a42-92e2-aba90139bcdf
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=be5d8801-08f1-48ca-b328-aba9013d696c

3. We need to somehow turn M looping (or rejecting) into M ′ accepting
all strings and M accepting into not accepting all strings.

4. We can do this by making M ′ accepts strings as long as M takes more
steps to decide how to handle w than some function that grows without
bounds as a function of w. Length of w is such a function.

• That is given 〈M,w〉, construct a description, 〈M ′〉 of a TM M ′

that behaves as follows:

– On input w′, simulate M on input w for |w′| steps. Reject w′

if M accepts w within the period of simulation. Otherwise,
accept w′.

• If M rejects or loops on w, L(M ′) = Σ∗. If M accepts w, then
L(M ′) is the finite set of strings whose length is less than the
number of steps M executes before accepting w.

5. The complete proof looks like:

• We will use ATM = {〈M,w〉 |M is not a TM or w /∈ L(M)}
• Since we will be using proof by contradiction, we begin by assum-

ing that ALLTM is recognized by some TM MALL.

• Next, we construct a machine MATM
that will use MALL to rec-

ognize ATM . This machine behaves as follows:

– Accept the input if it is not a valid TM + input description

– On input 〈M,w〉, construct a description, 〈M ′〉 of a TM M ′

that behaves as follows:

∗ On input w′, simulate M on input w for |w′| steps. Ac-
cept w′ if M has not accepted w during the simulation.
Otherwise, reject.

– Run MALL on 〈M ′〉 and accept if it does.

• The machine we have described will accept 〈M,w〉 iff w /∈ L(M)
since if w /∈ L(M), M ′ will accept all input since no matter how
long the input is, simulating M will not accept w if simulated for
as many steps as the length of the input. On the other hand, if
M does eventually accept w, then M ′’s language will be finite.

6. It should be clear that the fact that neither ALLTM nor its complement
is recognizable puts EQTM in the same category.

• If EQTM was recognizable by MEQTM
, we could use MEQTM

to
recognize ALLTM by building a machine that would take its input
〈M〉 and convert it into an input of the form 〈M,MΣ∗〉 for MEQTM

where MΣ∗ is a machine that accepts Σ∗ by simply consisting of
a single state that is both a start state and the accept state.

• We could do the same trick for EQTM by using a machine that
could recognize EQTM to build a machine that could recognize
ALLTM .

Computation Histories
(Click for video)

1. Some very interesting proofs of undecidability rely on the technique of
constructing a language that describes the possible computations of a
TM on one or more inputs.

2. Examples of such proofs include showing that two of the CFG-related
languages from our list: EQCFG and ALLCFG are not recognizable.

3. Recall that a TM configuration is a triple (q, u, v) with q ∈ Q represent-
ing the current state of the control, u ∈ Γ∗ representing the contents of
the tape to the left of the current head position, and v ∈ Γ∗ represent-
ing the tape contents from the head to the right end of the non-blank
tape.

4. We can use a sequence of strings that describe configurations to de-
scribe the complete computation of a TM.

Definition: Given a TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ∗, we define the language of accepting
computation histories of M on w as

LComputation−history(M,w) =
{w0w1...wn | each wi is an encoding of a configuration for M

w0 is the initial configuration for input w
wn is a final/accept configuration
each wi yields wi+1 according to δ }

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=bec5160b-47b5-4cab-a7e9-aba90159894d

5. Interestingly, if M is deterministic, then LComputation−history(M,w) is
actually a very simple language. It is either equal to ∅ if w /∈ L(M) or
it contains a single string if w ∈M .

• This is interesting because the empty language and any language
containing just 1 (or any finite number) of strings must be regular
and therefore context-free.

• If given the description of M and w we could build a DFA that
accepted LComputation−history(M,w) then since emptiness of a reg-
ular language is decidable, we could decide whether w ∈ L(M).
This question is better known as ATM and we know that it is
undecidable!

• This implies that even though LComputation−history(M,w) must
be regular if M is deterministic, there is no algorithm to find
a DFA for the language given a description of M . The DFA is
uncomputable!

6. This reflect the idea that the fragments of Turing machines we called
transducers have their limitations too! We can formalize the idea of
what a transducer can do with a definition.

Definition: A function f : Σ∗ → Σ∗ is computable iff there
is a Turing machine M such that on every input w, M halts
with f(w) on its tape.

• The function f(〈M,w〉) = 〈M ′〉 where 〈M ′〉 is an encoded descrip-
tion for a PDA or DFA with L(M ′) = LComputation−History(M,w)
must not be computable function!

4

