
CS 361 Meeting 24 — 4/24/20

Why Recursively Enumerable is Equivalent to
Recognizable

(Click for video)

1. We say that a language is recursively enumerable if we can build a TM,
E, that will write a sequence of strings that belong to L on one of its
tapes in such a way that every w ∈ L will eventually appear in this
sequence. As a result, we can think of the machine as numbering the
elements of L (it would be easy though time consuming to eliminate
any duplicates). Each w ∈ L is associated with the number of the
position at which it appears within the sequence output by E.

2. Last class, we saw that every recursively enumerable language L is
recognizable.

• Given an enumerator E for a language, we can build a recognizer
R for the same language by having R run E as a sub-machine and
every time E writes a new member of L on its tape compare that
member to R’s input. If they match, R accepts.

3. Slightly more surprising (and subtle to prove) is the fact that every
Turing-recognizable language is also recursively enumerable.

4. The basic idea is that given a machine R that recognizes some language
L, we can build a machine E that uses R to check every string over its
alphabet to see if R accepts and writes all the accepted strings on its
tape.

5. We have to be very careful because R may loop on any wi /∈ L. If we
just simulate R on every element of w0, w1, w2, . . . in order our simu-
lator may get stuck in a loop on some early member of the sequence.

Dovetailing
(Click for video)

Click here to view the slides for this class

1. We implement the enumeration process using a technique called dove-
tailing. We will design a simulator that simulates R processing many
strings at a time. At each round, our simulator will simulate one step
of R on each string it is currently simulating and then add one more
string to the mix.

2. Our machine E will have three tapes:

• One will hold the latest string in an enumeration of all strings
over L’s input alphabet.

• One will hold a sequence of strings representing triples corre-
sponding to configurations reachable by R on certain inputs to-
gether with the input on which the computation that led to the
configuration began. That is, each item on the tape might look
like (u, q, v)#w where (u,w, v) is a configuration that R could
reach during a computation that started with w as input. This
sequence of configurations will be divided by special markers into
a prefix of configurations that have already been expanded, a mid-
section of configurations that are currently being expanded, and
a suffix that still need to be expanded.

• The last tape will hold the sequence of strings in L.

3. The machine will execute the following algorithm:

• Initialize the first tape with ε.

• Initialize the second tape with (ε, q0, ε)#ε.

• Repeatedly (forever):

– Place a marker at the end of the tape to separate the con-
figurations that will be expanded in this iteration from those
added in this iteration.

– For each unexpanded configuration before this marker:

∗ Write the next configuration it would yield at the end of
the input tape.

∗ Move the marker past this configuration to indicate that
it has been expanded.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f210ee0d-18f0-4c1f-951e-aba10157ab84
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=bd7b55a9-28dd-48a4-a329-aba2000e63ce
http://www.cs.williams.edu/~tom/courses/361/notes/Lect24slides.pdf


∗ If the new configuration is in the accept state, write the
input string that started this computation on the output
tape.

– Remove the marker that was used to mark the end of the
sequence of configurations that were begin expanded on this
iteration.

– Replace the string w on the first tape with w′, the next string
over M ’s alphabet.

– Add a configuration (ε, q0, w
′)#w′ to the end of the second

tape.

Closure Properties
(Click for video)

1. A final exercise that might cement our understanding of the differences
between decidable, recognizable, and non-recognizable languages is to
consider their closure properties.

• If A and B are decidable languages with deciders MA and MB,
then

– We can decide A ∪ B or A ∩ B by using a two-tape TM to
simulate MA and MB simultaneously and then appropriately
combine their decisions.

– We can decide AB using a non-deterministic machine that
nondeterministically guesses where to divide its input up into
an A prefix and a B suffix and then simulates MA and MB

on the substrings to verify its guess.

– We can decide A by just interchanging the accept and reject
states of MA.

• The same simulations/arguments work for union, intersection and
concatenation if A and B are Turing-recognizable. It is important
to realize that it is a bit hard to do union with a deterministic TM.
To accomplish this the machine has to interleave the simulation
of machines for the individual languages. An easier argument is
to have a non-deterministic machine guess which of the languages
in the union to check.

• The complement of a recognizable language is not necessarily rec-
ognizable. It should be clear that ETM is a recongizable language,
but its complement ETM is a language that seems hard to recog-
nize (we will prove it is impossible shortly).

• If both A and A are Turing-recognizable, then A must be decid-
able.

– Given TMs that recognize A and A we could run them in
parallel on any input on a 2-tape TM. If the A machine ac-
cepted we would accept. If the A machine accepted, we would
reject. If both sets were recognizable, one of the two would
happen eventually, so the combined machine would decide
the language A.

• As a result, if there are any languages that are recognizable but
not decidable (we haven’t proved such a language exists yet), then
recognizable languages must not be closed under complement. In
fact, in that case, there must be some recognizable language whose
complement is not recognizable.

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a92ae6a8-4c2e-478e-b45a-aba2001fd9a3

