CS 361 Meeting 24 — 4/24/20

Why Recursively Enumerable is Equivalent to
Recognizable
(Click for video)

. We say that a language is recursively enumerable if we can build a TM,
E, that will write a sequence of strings that belong to L on one of its
tapes in such a way that every w € L will eventually appear in this
sequence. As a result, we can think of the machine as numbering the
elements of L (it would be easy though time consuming to eliminate
any duplicates). Each w € L is associated with the number of the
position at which it appears within the sequence output by E.

. Last class, we saw that every recursively enumerable language L is
recognizable.

e Given an enumerator F for a language, we can build a recognizer
R for the same language by having R run E as a sub-machine and
every time F writes a new member of L on its tape compare that
member to R’s input. If they match, R accepts.

. Slightly more surprising (and subtle to prove) is the fact that every
Turing-recognizable language is also recursively enumerable.

. The basic idea is that given a machine R that recognizes some language
L, we can build a machine E that uses R to check every string over its
alphabet to see if R accepts and writes all the accepted strings on its
tape.

. We have to be very careful because R may loop on any w; ¢ L. If we
just simulate R on every element of wg, wy,ws, ... in order our simu-
lator may get stuck in a loop on some early member of the sequence.

Dovetailing
(Click for video)

Click here to view the slides for this class

1. We implement the enumeration process using a technique called dove-

tailing. We will design a simulator that simulates R processing many
strings at a time. At each round, our simulator will simulate one step
of R on each string it is currently simulating and then add one more
string to the mix.

2. Our machine F will have three tapes:

e One will hold the latest string in an enumeration of all strings
over L’s input alphabet.

e One will hold a sequence of strings representing triples corre-
sponding to configurations reachable by R on certain inputs to-
gether with the input on which the computation that led to the
configuration began. That is, each item on the tape might look
like (u,q,v)#w where (u,w,v) is a configuration that R could
reach during a computation that started with w as input. This
sequence of configurations will be divided by special markers into
a prefix of configurations that have already been expanded, a mid-
section of configurations that are currently being expanded, and
a suffix that still need to be expanded.

e The last tape will hold the sequence of strings in L.

3. The machine will execute the following algorithm:

e Initialize the first tape with e.
e Initialize the second tape with (e, qo, €)#e.
e Repeatedly (forever):

— Place a marker at the end of the tape to separate the con-
figurations that will be expanded in this iteration from those
added in this iteration.

— For each unexpanded configuration before this marker:

* Write the next configuration it would yield at the end of
the input tape.

* Move the marker past this configuration to indicate that
it has been expanded.


https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f210ee0d-18f0-4c1f-951e-aba10157ab84
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=bd7b55a9-28dd-48a4-a329-aba2000e63ce
http://www.cs.williams.edu/~tom/courses/361/notes/Lect24slides.pdf

x If the new configuration is in the accept state, write the e The complement of a recognizable language is not necessarily rec-

input string that started this computation on the output ognizable. It should be clear that E7/ is a recongizable language,
tape. but its complement E7,; is a language that seems hard to recog-
— Remove the marker that was used to mark the end of the nize (we will prove it is impossible shortly).
sequence of configurations that were begin expanded on this e If both A and A are Turing-recognizable, then A must be decid-
iteration. able.

— Replace the string w on the first tape with w’, the next string

— Given TMs that recognize A and A we could run them in
over M'’s alphabet.

parallel on any input on a 2-tape TM. If the A machine ac-
— Add a configuration (e, go,w’)#w’ to the end of the second cepted we would accept. If the A machine accepted, we would

tape. reject. If both sets were recognizable, one of the two would
happen eventually, so the combined machine would decide

Closure Properties the language A.

(Click for video) . .
e As a result, if there are any languages that are recognizable but

1. A final exercise that might cement our understanding of the differences not decidable (we haven’t proved such a language exists yet), then
between decidable, recognizable, and non-recognizable languages is to recognizable languages must not be closed under complement. In
consider their closure properties. fact, in that case, there must be some recognizable language whose

complement is not recognizable.
e If A and B are decidable languages with deciders M4 and Mp,

then

— We can decide AU B or AN B by using a two-tape TM to
simulate M4 and Mp simultaneously and then appropriately
combine their decisions.

— We can decide AB using a non-deterministic machine that
nondeterministically guesses where to divide its input up into
an A prefix and a B suffix and then simulates M4 and Mp
on the substrings to verify its guess.

— We can decide A by just interchanging the accept and reject
states of My.

e The same simulations/arguments work for union, intersection and
concatenation if A and B are Turing-recognizable. It is important
to realize that it is a bit hard to do union with a deterministic TM.
To accomplish this the machine has to interleave the simulation
of machines for the individual languages. An easier argument is
to have a non-deterministic machine guess which of the languages
in the union to check.


https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a92ae6a8-4c2e-478e-b45a-aba2001fd9a3

