
CS 361 Meeting 23 — 4/22/20

Encoding Questions about Automata as
Languages
(Click for video)

1. We are getting close to the goal of showing an example of a problem
(i.e., language) that is not computable (i.e., decidable). The first ex-
ample of such a language (and many of the examples of such languages)
is a language that involves statements about automata.

2. To get ready for such languages, it makes sense to spend a little time
talking about languages that make simpler statements about automata.
That is, to talk about decidable languages about automata.

3. For example, given a deterministic finite automaton we might ask
whether a particular string belongs to its language. That is, whether
it accepts a particular string.

• To answer this question, we would need a description of the au-
tomaton.

• While our first inclination might be to draw a diagram of the
automaton, we have also seen that we can describe an automaton
in textual form as a tuple M = (Q,Σ, δ, s0, F ).

• Suppose that M is a string (i.e., a bunch of text) describing a
DFA as a tuple and w is any string over the DFA’s alphabet.

• The set of strings M,w formed by joining together a description
of M followed by any w such that w ∈ L(M) forms a language.

• Figuring out whether some M,w belongs to this language is equiv-
alent to answering the question does M accept w.

4. A few examples of the sorts of languages I have in mind include:

• ADFA = {〈M,w〉 |M is a DFA and w ∈ L(M).}
• AREX = {〈R,w〉 |R is a regular expression and w ∈ L(R).}

Click here to view the slides for this class

• EDFA = {〈M〉 |M is a DFA and L(M) = ∅}
• EQDFA = {〈A,B〉 |A and B are DFAs and L(A) = L(B)}
• ACFG = {〈G,w〉 |G is a CFG and w ∈ L(G).}
• ECFG = {〈G〉 |G is a CFG and L(G) = ∅}
• EQCFG = {〈G,H〉 |G and H are CFGs and L(A) = L(B)}

5. In the descriptions of all of these sets, the angle brackets, 〈...〉 are
included to suggest that descriptions of the grammars, automata, etc.
that are included in these languages must somehow be encoded in a
precise way.

• To determine that any of these languages is Turing-recognizable or
Turing-decidable, we would need to describe some Turing machine
that recognized the language in questions. This machine would
have some fixed alphabet Σ, but we wish to include machines and
grammars over all alphabets in these languages. Accordingly, we
will have to somehow encode arbitrary finite alphabets in some
single alphabet.

6. The exact encoding scheme used is usually unimportant and rarely
explicitly discussed in the proof of a language’s decidability, but before
we start ignoring these details, I thought it would be helpful to think
concretely about how we might represent one of these languages. So,
let’t think about how we might represent the strings in ACFG.

• This mainly boils down to how do we represent an arbitrary CFG
in some fixed alphabet.

• I would like you all to take a few minutes to design a scheme for
representing arbitrary CFGs given a fixed alphabet like:

Σ = {→,#, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, V, T}

• As an example, consider the grammar G =

L→ 1L1 | +R
R→ 1R1 | =

That is, be prepared to show how to construct the representation
of < G, 1 + 1 = 1 >

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a94e70be-7c37-499a-81e4-ab9e01142302
http://www.cs.williams.edu/~tom/courses/361/notes/Lect23slides.pdf


• There are many ways to do this. For example, we could number
the elements of the alphabets of terminals and variables (non-
terminals) and then use “Tn” to encode the nth terminal and
“V n” for the nth variable.

• We would then give up on the | symbol and just list all of the
productions separated by # as in:

V 1→ T1V 1T1#V 1→ T2V 2#V 2→ T1V 2T1#V 2→ T3

• We could complete the representation by adding w separated by
the remaining symbols with a pair of #’s.

V 1→ T1V 1T1#V 1→ T2V 2#V 2→ T1V 2T1#V 2→ T3##T1T2T3T1

• Of course, we could have used binary numbers instead of decimal,
or unary, or ...

7. All of the language we are interested in should only contain strings that
are valid given the representation scheme we have chosen. For example,
given our scheme for CFGs, a string that contained two consecutive
T’s should immediately be rejected.

8. Fortunately, for reasonable representation schemes, the language of
syntactically correct encodings is regular, context-free, or at worst de-
cidable, so we can assume that any TM we describe to recognize one
of these languages begins by rejecting anything with invalid format.

Decidable Properties of DFAs and Regular
Expressions
(Click for video)

(Errata: As I reviewed the video for this topic (and the next) I noticed
that I said “DFA” when I should have said “NFA” on many occasions while
describing the argument supporting the claims that regular languages are
closed under union, product and closure.)

1. OK. Enough of that! Let’s get back to talking about language based
on questions about automata, grammars, etc.

2. Assuming now that the particular representation we use is not criti-
cal, let’s consider whether some of the problems mentioned above are
decidable.

3. Consider the first language:

ADFA = {〈B,w〉 |D is a DFA and w ∈ L(B).}

4. We can show that this language is decidable by arguing that a TM can
read in a description of a DFA from its input tape and then simulate
that DFA. We will assume that the representation used for a DFA is
essentially a list of triples of the form (q, x, δ(q, x)) describing the ma-
chine’s transition function together with descriptions of its initial state,
its final states and the number of states and symbols in its alphabet.

To make the explanation of the simulation as simple as possible, we
will assume a 3-tape machine.

• First, the machine will find w at the end of its first/input tape,
copy it to its second tape, and erase it from the first tape, leaving
mainly a list of transition function triples on the first tape.

• Next, the machine will write the description of the initial state on
its third tape.

• Mainly, the machine will repeatedly (until it reaches the last input
symbol):

– Scan its first tape to find a (q, x, δ(q, x)) with x matching the
symbol encoded starting with the position of the second tape
head and q matching the symbol on the third tape.

– Move the second tape head to the beginning of the next en-
coded symbol

– Copy the state δ(q, x) from the triple found on the first tape
over the state that had been stored on the third tape.

5. Consider the language

AREX = {〈R,w〉 |R is a regular expression and w ∈ L(R).}

2

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f98d1cd3-8856-43e6-8290-aba100fc75bc


• In some sense, this is the same as ADFA, since the language recog-
nized by DFAs are exactly the same as those described by regular
expressions.

• In particular, we know that there is an algorithm that can convert
a regular expression into a NDFA and then the subset construc-
tion can convert this NDFA into a DFA.

• Turing machines can be used to implement algorithms!

• Therefore, we can say that AREX is decidable because we can
build a TM that uses the algorithms we studied earlier to convert
the regular expression in its input into a DFA and then uses the
machine we described above for ADFA to finish the job!

6. Next, let’s think a bit about how we could argue that the following
languages is decidable.

• EDFA = {〈A〉 |A is a DFA and L(A) = ∅}, and

7. We can treat EDFA as a graph search problem. Viewing the machine’s
state diagram as a graph, if there is any path from the start symbol
to a final state in the graph, then the machine must accept the string
whose symbols label the edges of the path. A breadth-first search of
the graph will find all reachable states.

8. We can also take a more “brute force” approach in which we use a
decider for ADFA to check to see any member of a large group of strings
belongs to the DFAs language and accept 〈A〉 only if no members of
L(A) are found.

The feasibility of this approach depends on several factors:

• It is possible for a Turing machine to enumerate all of the strings
over an alphabet,

• It is possible for a Turing machine to simulate a DFA (or a PDA
or for that matter another Turing machine) on a given input,

• In the case of a regular language, L(D), the Pumping Lemma
allows us to argue that if D has n states than if any string belongs
to L(D), then some string of length less than or equal to n must

be in the language. So, we can stop enumerating strings once they
exceed this length.

More Decidable Questions Involving DFAs and
CFGs

(Click for video)

1. Next, let’s consider EQDFA = {〈A,B〉 | L(A) = L(B)}.

2. Actually, to further appreciate the option of using brute force for some
problems, let’s first consider the “almost” complement of EQDFA, the
language NEQDFA = {〈A,B〉 | L(A) 6= L(B)}. 1

3. Given description of A and B, observe that if we apply the brute force
approach of checking every string w until we find a string that is in one
of L(A) or L(B) but not the other and then accepting, we end up with
a machine that recognizes NEQDFA but does not decide NEQDFA

because it goes on trying forever when processing < A,B > in the case
that L(A) = L(B).

4. We can build a TM that decides EQDFA (or NEQDFA) by observing
that (L(A) ∩ L(B)) ∪ (L(B) ∩ L(A)) describes the set of all counter
examples to the equality of the languages of the two machines. This
language contains any string w that either is an element of L(A) but
not L(B) or is an element of L(B) but not of L(A)

5. Since regular languages are closed under complement, union and inter-
section, we know that the language (L(A) ∩ L(B)) ∪ (L(B) ∩ L(A))
must be regular. In fact, by following the details of the proofs
of these closure properties, we can construct a DFA to recognize
(L(A) ∩ L(B)) ∪ (L(B) ∩ L(A)). Therefore, we can decide whether
L(A) = L(B) by deciding whether the DFA we construct to recognize
(L(A) ∩ L(B)) ∪ (L(B) ∩ L(A)) accepts the empty language.

1I said “almost” because the complement of EQDFA is actually the union of NEQDFA

and all strings that are not valid encodings of a pair of DFAs given the encoding scheme
chosen.

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0eadbfe1-ef6c-4d7e-a4e2-aba1010214dc


• Note that we are employing a technique here that we will be using
quite a bit — passing the buck. Given one problem, we construct
an instance of another problem that we already know how to solve.

• While the algorithm we just described to decide EQDFA must
build a description of a DFA whose language is (L(A) ∩ L(B)) ∪
(L(B)∩L(A)), it doesn’t explicitly simulate or analyze the struc-
ture of this DFA.

• Instead, having already concluded earlier that EDFA is decidable,
we just feed the description of the machine for (L(A) ∩ L(B)) ∪
(L(B)∩L(A)) to some Turing machine (i.e., algorithm) that can
decide EDFA. We don’t need to know how this algorithm works.
We just need to know it exists.

6. I want to conclude our introduction to decidable problems about lan-
guages by briefly considering two questions related to context-free
grammars.

7. For

ACFG = {〈G,w〉 |G is a CFG and w ∈ L(G).}

we can easily imagine a nondeterministic TM that would recognize
the language. It would just guess a derivation using the grammar’s
productions and verify that it yields w.

8. Unfortunately, if a grammar has rules like P → Q and Q → P ,
there can be derivations of unbounded length. If we design a non-
deterministic machine so that it can choose any option in searching
for a derivation, that machine will have non-terminating computation
sequences. So the nondeterministic machine would be a recognizer for
this language, but not a decider. To build a decider, we need some way
to put a bound on the length of the derivations we need to consider.

9. In class, we saw an algorithm to convert a CFG into Chomsky normal
form. If we build a TM that converts its input CFG into Chomsky
normal form, it can then limit its search to derivations of length less
than twice the length of w plus 1. This makes our machine a decider.

10. The language

ECFG = {〈G〉 |G is a CFG and L(G) = ∅}

is a bit trickier. The decidability of this language depends on an algo-
rithm that determines for each variable or terminal in a CGF whether
that symbol derives any string composed entirely of terminals. Given
a CFG G = (V,Σ, R, S), we iteratively compute a set USEFUL of
symbols known to derive some string of terminals as follows:

• Initially, set USEFUL = Σ

• Repeatedly (until the following process does not increase the size
of USEFUL)

– For each V → β ∈ R where V /∈ USEFUL,

∗ if every s ∈ (Σ ∪ V ) in β is already in USEFUL, then

add V to USEFUL

If at the end of this algorithm, S ∈ USEFUL, then we know that
L(G) 6= ∅, otherwise, L(G) = ∅.

Recursive, Recognizable, not even Recognizable,
and worse!
(Click for video)

1. We have not considered one of the languages in our original list:

• EQCFG = {〈G,H〉 |G and H are CFGs and L(A) = L(B)}

2. In addition, we have not considered the decidability of similar lan-
guages about TMs:

• ATM = {〈M,w〉 |M is a TM and w ∈ L(M).}
• ETM = {〈M〉 |M is a TM and L(M) = ∅}
• EQTM = {〈M,N〉 |M and N are TMs and L(M) = L(N)}

3. In case you cannot guess, these are all examples of languages that are
not decidable. In fact, one of them is not even Turing-recognizable.

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0eadbfe1-ef6c-4d7e-a4e2-aba1010214dc


4. Before proving these facts, I want to take some time to make sure we
are as comfortable as we can get with the terminology we will be using
to distinguish different degrees of computability relative to the Turing
machine model.

5. We will focus on three types of languages. The diagram below sum-
marizes the inclusion relationships that exist between these three sets
of languages and several others we have (or will) encounter.

TURING-RECOGNIZABLE /
RECURSIVELY ENUMERABLE

NOT RECOGNIZABLE
BUT COMPLEMENT IS R.E.

 TURING-DECIDABLE /
 RECURSIVE REG

CFGS

NEITHER RECOGNIZABLE NOR
COMPLEMENT RECOGNIZABLE

Turing-decidable We say a language L is Turing-decidable if there
exists a TM M that halts on all inputs for which L = L(M). The
terms “decidable” and “recursive” are synonymous with “Turing-
decidable”. All of the languages we discussed so far this semester
including regular and context-free language belong to this group.

Turing-recognizable We say a language L is Turing-recognizable if
there exists a TM M for which L = L(M). Basically, we have sim-
ply dropped the requirement that M halt on inputs that are not
in L. Therefore, all Turing-decidable languages are also Turing-
recognizable. The terms “recognizable” and “recursively enumer-
able” are synonymous with “Turing-recognizable”.

• It should be clear that

ATM = {〈M,w〉 |M is a TM and w ∈ L(M).}

is Turing-recognizable. Just as a TM can simulate the com-
putation of a DFA, we can design a TM to simulate any other
TM as long as it is given a description of that TM and the
input that machine should process. If w ∈ L(M), then the
simulation will eventually reach an accepting state and the
simulator can accept < M,w >. However, it is not clear that
this language is decidable since if M does not halt on w, there
is no obvious way that the simulator can distinguish this from
a very long computation that will eventually accept so it will
not halt either.
Note: This is not intended as a proof that ATM is not de-
cidable. The goal is just to help us clearly understand the
structure of these classes of language before we do prove that
various language fall into various categories.

Not Turing-recognizable Each Turing-recognizable language is as-
sociated with one or more (actually always more) Turing ma-
chines. We know that there are only countably many TMs. There-
fore, there can only be countably many Turing-recognizable lan-
guages. Since there are uncountably many subsets of the set of
all strings over any alphabet, there must be many languages that
are not Turing-recognizable (a.k.a. not recursively enumerable).

Intuitively, it should seem likely that

ETM = {〈M〉 |M is a TM and L(M) = ∅}

is such a language. The only obvious way to determine that the
language of a TM is empty is to check every string to make sure
that there is no string that the machine accepts. Since there
are infinitely many strings, this process will not terminate if the
language is actually empty.

The diagram below summarizes the language we have suggested might
belong to each of these three sets of languages.

5



DECIDABLE/RECURSIVE

RECURSIVELY ENUMERABLE

NOT RECURSIVELY ENUMERABLE

ATM 
ADFA

ETM

Mr. Goldbach (Optional Section)
(Click for video)

1. While we know that there must be (plenty of) languages that are not
recursively enumerable, the argument given above that ETM is unlikely
to be recursively enumerable is not that compelling. We have seen
several results already this semester that run counter to intuition, so
it might not be a surprise to discover there was some sneaky way to
determine that a TM was not going to halt on an input (other than
waiting for eternity to see what happens).

2. To give you a more compelling reason to believe no such secret way
to predict an infinite loop exists, consider the following open problem
from mathematics:

Goldbach’s Conjecture: Every even integer greater than
2 can be written as the sum of two primes.

This simple statement has been an open question since June 7, 1742.

3. To appreciate how this conjecture relates to computability, consider
the TM:

MGB =

• On input n:

– if n is odd, reject

– For all 1 < i < n

∗ if i is prime and n− i is prime

reject

– accept

4. To determine if 〈MGB〉 ∈ ETM we would have to build a machine that
could prove or disprove the Goldbach Conjecture (and any other open
mathematical program for which we could write a similar algorithm to
search for counter examples). Thus, deciding or recognizing ETM is
probably very hard!

5. A related algorithm suggests that ATM is also difficult to decide.

M ′GB =

• On input n:

– ignore n.

– for every even i > 2

∗ for all 2 < j < i

· if i is a counter-example to the Goldbach conjecture,
accept

– reject (by looping infinitely)

6. If you think about it, you will realize that L(M ′GB) = ∅ if the Goldbach
conjecture is true and L(M ′GB) = Σ∗ if it is false. Therefore, deciding
〈M ′GB, w〉 ∈ ATM for any w would require resolving the Goldbach
conjecture.

6

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=93dd2a75-b38d-4282-80ce-aba10132682d

