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The Church-Turing Thesis
(Click for video)

1. An important part of our agenda at this point is to explore the case that
the Turing Machine is a model that captures everything a computer can
do. This assumption is known as the Church-Turing Thesis. We cannot
prove this, but we can reassure ourselves that it seems reasonable to
make this assumption in several ways.

• We have already been building a case that we can implement
algorithms on a Turing machine in ways that mimic familiar ways
you have already learned to implement algorithms in traditional
programming languages and using conventional architectures.

– We have seen it is possible to copy information like an assign-
ment statement, to do simple arithmetic, to mimic control
structures like if statements and loops and to divide a Tur-
ing machine’s tape into subsections corresponding to distinct
program variables and even arrays.

– Taking this approach to the limit, we could potentially de-
scribe a Turing machine that could interpret its input as a ma-
chine language program for some available architecture and
then simulate the machines execution of that program.
It would be possible but very tedious!

– If we believe that traditional programming languages and ar-
chitectures are “computationally complete”, then this would
support the claim that TMs are too. Alas, it would not rule
out the possibility that there is some more powerful notion
of computation that we are missing.

• To convince ourselves that Turing Machines are as powerful as we
can get, we will explore models of computation based on adding
features to the TM and to other models.

– If adding features does not increase the computational power
of the model, maybe the model is as powerful as it could be!
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– For example, we have already done a bit of this with DFAs.
We saw (surprisingly?) that adding nondeterminism to our
model for DFAs did not extend its computational power. On
the other hand, if we changed the DFA model so that a DFA
could move back and forth and write on its tape as long as
it did not go beyond the space originally filled with its input,
this would increase the power of the model.

2. As a starting point, rather than adding a feature to the TM model,
let’s consider the impact of adding a feature to one of our less powerful
models, the PDA. What happens to the computational power of a PDA
if we give it two stacks?

• We have seen that the intersection of two context-free languages
can be a language that is not context-free.

• For homework, I asked you to prove that the intersection of a
context-free language and a regular language is context-free.

• The answer to this homework question involved starting with a
PDA for a CFL and a DFA for a regular language and building a
new PDA that simulated the simultaneous execution of the orig-
inal PDA and DFA to make sure each input string belonged to
both machine’s language.

• It isn’t obvious how to do a similar construction for two PDA’s
because in order to simulate two PDA’s with one PDA, you would
have to fit two stacks into one.

• If, however, you merged two 1-stack PDAs into a 2-stack PDA, it
would be easy to simulate the stacks of the original 1-stack PDAs.

• This suggests that a 2-stack PDA could recognize languages that
are not context-free. We will show that this is the case shortly.

2-PDAs
(Click for video)

1. Recall the formal definition of a pushdown automaton:

Definition: A pushdown automaton is a 6-tuple
(Q,Σ,Γ, δ, q0, F ) where:
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Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε) is the transition function, and

F ⊂ Q is the set of final or accepting states.

2. A PDA is constructed by adding a stack to a DFA. Adding a stack
clearly increases the power of the machine! What if we did it again?
That is, would a PDA with two stacks be more powerful that a PDA
with just one stack?

• To better motivate this idea, recall the homework problem where
you were asked to show that the intersection of a context-free
language and a regular language had to be a context-free language.

• The correct approach to this problem was to take a PDA for the
context-free language and a DFA for the regular language and
show how to build a single PDA whose state set could keep track
of both the state of the original PDA and the original DFA while
its stack held the same contents as the original PDA’s stack.

• Suppose we tried the same approach to show that the intersection
of two context-free languages had to be context free. We would
start with two PDAs. We could build a new PDA that kept track
of the states of both of the original PDA’s but the new PDA would
not have the resources to keep track of two separate stacks!

• We saw that in fact, the intersection of two context-free languages
may be a language that is not context-free (i.e., recognizable by
a PDA).

• If we had a PDA with two stack, we could simulate two, 1-stack
PDAs! So, such a machine should be able to recognize the inter-
section of the languages of any 1-stack PDAs (i.e. the intersection
of any pair of context-free languages).

• By similar logic, one might imagine that a 2-stack PDA would
not be able to simulate 2 2-stack PDAs so that recognizing the
intersection of the languages of 2-stack PDAs might require 4-
stack PDAs. Fortunately, this logic is not correct.

3. To explore these ideas, we can define a 2-tape PDA:

Definition: A pushdown automaton is a 6-tuple
(Q,Σ,Γ, δ, q0, F ) where:

Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite stack alphabet,

δ : Q× Σε × Γε × Γε → P(Q× Γε × Γε) is the transition
function, and

F ⊂ Q is the set of final or accepting states.

4. The diagram below is an example of the specification of a 2-stack PDA.

a, ε, ε / a, ε 

pre #
 #

post #

ε, ε, $ / ε, ε

S F

ε, ε, ε / $, $

ε, b, ε / ε, b

at #

ε, $, ε

b, ε, ε / b, ε 

ε, a, ε / ε, a

a, ε, a / ε, ε b, ε, b / ε, ε 

• If a transition arrow is labeled “a, b, c / d, e” it means that if the
machine is in the state where the arrow originates, it can tran-
sition to the target of the arrow if a is the next input character,
b and c are the characters at the tops of its two states. If the
transition is used, then the symbols b and c should be popped
from the stacks and d and e should be pushed. Any of a, b, c, d,
and e can be empty.

• While in state pre #, the machine shown scans until it finds a #
while pushing all of the as and bs it encounters onto its first stack
so that at the end the first symbol from the input is at the bottom
of the first stack and the last is at the top of the first stack.

• When it hits the #, it pops each symbol from its first stack and
pushes it on the second stack until the first stack is empty. When
this is complete, the second stack contains a copy of the first half
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of the input with the first symbol at the top of the stack and the
last symbol at the bottom.

• Next, it scans to the right popping symbols off the second stack as
long as each symbol on the stack matches the next input symbol.

• If the second half of the input matches the first, it will eventually
empty the second stack and then transition to its only accepting
state. Thus, the machine is designed to accept w#w.

5. Remember, w#w is not a context-free language. The machine we just
described therefore verifies our suspicion that 2-tape PDAs are more
powerful than single stack PDAs.

The Power of 2 Stacks
(Click for video)

1. It may be a bit surprising, but adding a second stack to a PDA gives
us a formalism for describing languages that is just as powerful as a
Turing Machine!

2. To appreciate how we can justify this claim, recall the notion of a
Turing machine configuration:

Definition: A configuration of a Turing machine is a triple
(u, q, v) where q ∈ Q is the current state, uv is the contents of
the non-blank portion of the tape with u being the portion to
the left of the current head position and u being the portion
from the symbol currently under the head to the end of the
non-blank tape.

• Given a TM configuration, we could store all the symbols that
are before the tape head (u) in one stack and all of the symbols
after the tape head (including the symbol under the tape head)
in the second stack.

• We could arrange for this initially using a few states equivalent to
the pre# and at# states of the sample machine for w#w shown
above.

• We could then define the remaining states and transitions of the
2-tape PDA in a way that mimicked any TM. In particular, if
δTM is the TM’s transition function and δPDA is the transition
function for our PDA then

– If δTM (q, a) = (q′, b, Right) then δPDA(q′, ε, ε, a) =
{(q′, b, ε)}.

– If δTM (q, a) = (q′, b, Left) then for all c,

∗ δPDA(q′, ε, ε, a) = {(q′-push, ε, b)}, and

∗ δPDA(q′-push, ε, c, ε) = {(q′, ε, c)}
(the intermediate state q′-push-c is only required because our
definition of PDA’s limits us to pushing one symbol on the
stack at a time).

Thus, a 2-tape PDA is at least as powerful as a Turing Machine!

n-tape Turing Machines
(Click for video)

1. Given that adding multiple stacks to a PDA increases the model’s
power in a fundamental way, we might wonder what happens to the
computational power of a TM if we give it more than one tape?

2. That is, we stick with one finite control that will be in a single state at
any point, but we give the machine n-tapes and one read head that can
be independently positioned for each tape as suggested by the figure
below:

q

a b a a b a a a . . .

b b a b a a b b . . .

a a b b b a b a . . .

CONTROL

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=cb267b69-76c5-4c4c-b426-ab9b013bb906
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=37fecde8-9333-40ed-a09b-ab9c002d72cd


3. Such a machine might or might not be able to compute things that a
Turing machine cannot compute, but it is much easier to program. To
see this consider the following example.

• At the risk of making you think it is the only language any TM
can decide, I will again use w#w.

• This language does not require a machine with many tapes, but
it is definitely easier to recognize w#w on a 2-tape TM than on
a single-tape TM.

• On a single-tape TM, recognizing w#w requires making |w| passes
back and forth from one copy of w to the other w marking match-
ing symbols to verify that each symbol has a match.

• On a 2-tape TM, we can complete the entire process in one and
a half passes:

C

ACCEPT

_ , _ → _ , _, L,L

a, _ → a,a',R,R

B

a, a' → a, a, R,L 

#, _ → #, _, L,L 

b, _ → b,b',R,R b, a' → b, a, R,L 

a, b' → a, b, R,L 
b, b' → b, b, R,L #, a' → #, a, L,L 

#, b' → #, b, L,L 

a, a → a, a, R,L 

b, a → b, a, R,L 
a, b → a, b, R,L 

b, b → b, b, R,L 

#, a → #, a, R,L 

#, b → #, b, R,L 

M

b, b → b, b, R,R 
a, a → a, a, R,R 

– The machine would start with the input on its first tape and
nothing on the other.

a b a # a b a  . . .

        . . .

– It would first scan the input from left to right copying sym-
bols from the input tape to the machine’s second tape until
reaching a #. This is the role of state C = COPY.

a b a # a b a  . . .

a b a      . . .

– Next, it moves the head on the second tape back to the left
end of the tape (We would like to keep the head on the first
tape right where it is, but since my version of n-tape TMs
require each head to move left or right at each step, we have
to make it wiggle back and forth). This is the role of state B
= BACKUP.

a b a # a b a  . . .

a b a      . . .

– Finally, it scans right on both tapes at the same time making
sure that the contents of the second tape matches the contents
of the second half of the input/first tape. This is the role of
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state M = MATCH.

a b a # a b a  . . .

a b a      . . .

• Hopefully, you could imagine how having multiple tapes could
simplify recognizing other languages:

– For example, the other day we considered

{i#x#w1#w2#...#wk | i, x, wi ∈ {0, 1}∗, i ≤ k, & x = wi}

– A 3-tape TM could recognize this language easily by first
copying i from the input tape to a second tape and next
copying w to its third tape. Then, as it moved to the right
on its input tape it could decrement the value of n on the
second tape each time it hit a marker. When the counter
became 0, it could match the w on the third tape with wi on
the input tape. It would never have to back up on its input
tape!
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