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Announcements
1. None.

Thinking Conditionally
(Click for video)

1. The initial machine we considered (the one from Sipser that recog-
nized the language w#w over binary strings w), was not designed as a
transducer.

2. Suppose, however, if we turn this into a form of transducer by removing
the accept and reject states from the machine (we didn’t even show the
reject state in the machine’s diagram) and instead directed transitions
to these two states to distinct states in some larger TM.

3. While w$w is just one of our silly, theoretical languages, real programs
often include statements of the form

if ( x = y ) {

. . .

} else {

. . .

}

4. The Sipser w#w “transducer” is in some sense equivalent to such an
if statement.

5. We can even consider more complex conditional decisions.

• Remember all those weird languages with binary strings separated
by #’s?

• Let’s think about how to construct a Turing machine to recognize
the language:

{i#x#w1#w2#...#wk | i, x, wi ∈ {0, 1}∗, 0 < i ≤ k, and x = wn}
Click here to view the slides for this class

• I claim we can convert such a machine into a transducer that can
be used in a larger machine to perform the computation associated
with a statement like “if ( x = w[i] ) ...”

• The good news here is that instead of worrying about all the
details, we will view the machine we have looked at in detail as
enough to give us confidence that we can create sub-modules that

– subtract 1 from a sub-string of the input interpreted as a
binary number,

– determine if two clearly delimited substrings are identical (as
we did for w#w).

• The machine we would design would first turn the first two #’s
into some other marker.

• Next, it would repeatedly scan out to the second special marker,
replace it with a plain old #, replace the next # to the right with
the special marker

• Then it would go back and replace n by n − 1 and repeat the
marker moving trick over and over until n became 0.

• After this was complete, the two substrings that should be com-
pared would be marked with special markers.

• It should be clear we could adapt Sipser’s machine to check that
these two substrings were identical.

6. Even though we haven’t even precisely defined what a Turing machine
is, the examples I have been presenting are designed to do more than
familiarize you with the informal rules by which TM’s function.

In addition, I have been trying to help you understand how Turing ma-
chines can possibly be as powerful as real computers. In a real machine,
memory is divided into units (registers and words of memory) and com-
putations are divided into units (statements/instructions). By dividing
our TMs tape into subsections with appropriate markers (think #’s)
and building TM transducers that perform simple operations on infor-
mation encoded on the tape, we can accomplish computations similar
to “real” computers.
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Getting Formal
(Click for video)

1. We can formalize our understanding Turing Machines, with a few ex-
citing definitions:

Definition: A Turing machine is a 7-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject), where

Q is a finite set of states,

Σ is a finite input alphabet (not containing the blank sym-
bol),

Γ is a finite tape alphabet which is a superset of Σ including
the blank symbol,

δ : Q× Γ→ Q× Γ× {Left,Right} is the transition func-
tion,

q0 is the start state,

qaccept is the accept state, and

qreject 6= qaccept is the reject state.

2. Next, to capture the way we expect a Turing Machine to compute,
we need a precise way of describing a snapshot of a point in some
computation.

Definition: A configuration of a Turing machine is a triple
(u, q, v) where q ∈ Q is the current state, uv is the contents of
the non-blank portion of the tape with u being the portion to
the left of the current head position and u being the portion
from the symbol currently under the head to the end of the
non-blank tape.

Yielding a Configuration
(Click for video)

1. Given one configuration of a deterministic Turing machine, the transi-
tion function δ determines what configuration the machine will move
to next..

Definition: We say the configuration (u, q, av) yields con-
figuration (u′, q′, v′) for q, q′ ∈ Q, a ∈ Γ, and u, v, u′, v′ ∈ Γ∗

if for some b and c ∈ Γ:

• δ(q, a) = (q′, c, Left), u = u′b, and v′ = bcv, or

• δ(q, a) = (q′, c, Right), u′ = uc and v′ = v , or

• δ(q, a) = (q′, c, Left), u = u′ = epsilon, and v′ = cv, or

• δ(q, a) = (q′, c, Right), u′ = uc, v = ε, and v′ = .

2. This definition of “yield” is admittedly complicated.

• First, it helps to temporarily ignore the last two cases. They
handle the special situations that crop up if the machine moves
off either end of the used section of its tape.

• Each of the first two rules describes the details of what must
happen if the machine moves one position in the middle of its
tape. The first is for left moves, the second for right.

• Think of all of the primed and un-primed variables as patterns
matching the contents of the tape. For example, for the second
rule:

– u′ = uc′ is just a way of saying that the contents of the tape
to the left of the tape head after a right move (u′), must
be equivalent to the contents of the tape to the left of the
tape head before the head moved (u) with the symbol written
following the transition rules (c) appended to it.

– The third sub-piece of the description of the configuration
before the move is made (av) is a mathematical way of asso-
ciating two names with values at the same time. It indicates
that a is the name of the symbol under the tape head and the
v is the name of the symbols to the right of the tape head.

– av together represents the symbol under the tape head (a)
and the symbols to the right of the tape head (v). So, v′ = v
says that after a right move, the symbols after the tape head
become the symbols under and to the right of the tape head.

Forms of Acceptance
(Click for video)
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1. Given the definition of “yield”, the definition of acceptance is not that
different from the definitions of acceptance for other automata. We
require a sequence showing the step-by-step progress of the machine
from the start state to the accept state where each state yields the
next.

Definition: A TM accepts a string w ∈ Σ∗ if there is a se-
quence of configurations that begins with (ε, q0, w) and ends
in (w′, qaccept, w

′′) for some w′, w′′ ∈ Γ∗ where each configu-
ration yields the following configuration in the series.

2. If Turing machines were like DFAs or PDAs, we would be done now.
Turing machines, however, have a new option. A Turing machine can
accept a string, reject a string, or just run forever without making a
decision. So we need to distinguish two ways in which a language L
can be “the language of a Turing machine”.

Definition: A language L is Turing-recognizable if some
Turing machine accepts w if and only if w ∈ L. We call these
languages recursively-enumerable.

Definition: A language L is Turing-decidable if some Tur-
ing machine that halts on all inputs accepts w if and only if
w ∈ L. We call these languages recursive.
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