
CS 361 Meeting 17 — 4/8/20

Announcements
1. Homework assignment 6 is due today (if your group meets with me

tomorrow) or tomorrow (if your meeting is on Friday).

Ambiguity
(Click for video)

1. The grammatical structure that a grammar induces on a sentential
form can play a role in the way we associate meaning with the string.

• Consider the string 9 − 9 − 9 − 9 (which is intended to be in-
terpreted as a very simple arithmetic expression involving three
subtractions).

• This string clearly belongs to the language of both of the following
grammars:

L→ L− 9 | 9 R→ 9−R | 9

but the parse trees induced on 9−9−9−9 by these two grammars
suggest different interpretations of the string as an arithmetic
expression:

L

L - 9

- 9L

- 9L

9

R

R-9

-9 R

-9 R

9

-18 = 0 =

• The tree on the left suggests the expression should be interpreted
with left associativity for the subtraction operations so that the
result is equal to (((9− 9)− 9)− 9) = −18. The tree on the left

Click here to view the slides for this class

suggests right associativity so that the result would be (9− (9−
(9− 9))) = 0.

2. In the example above, as long as we know which of the two gram-
mars should be used we would know how to interpret input strings.
There are, however, grammars for which a single string may have both
multiple derivations and multiple parse trees.

• Consider the following grammar for the sort of simple subtraction
languages we have been discussing:

E → E − E | 9

• Relative to this grammar, the string 9− 9− 9 has two parse trees
with fundamentally different structures:

E

E - E

E - E

99

9

E

E - E

E - E

99

9

• The tree on the left suggests left-association so that 9−9−9 = (9−
9) − 9 = −9 while the tree on the right suggest right-association
so that 9− 9− 9 = 9− (9− 9) = 9.

3. If for any string w, a context-free grammar induces two or more parse
trees with distinct structures, we say the grammar is ambiguous. Oth-
erwise we say the grammar is unambiguous.

The Pumping Lemma for Context-Free Languages
(Click for video)

1. Just as we used the Pumping Lemma to prove that certain languages
were not regular, there is a pumping lemma for context-free languages
that provides a way to show that certain languages are not context-free.

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=99de3377-4481-44ac-99fe-ab8b01762aeb
http://www.cs.williams.edu/~tom/courses/361/notes/Lect17slides.pdf
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8481fec4-d999-4e06-aead-ab8d015c0757

Lemma: If C is a context-free language, there is a number p
known as the pumping length such that if w ∈ C and |w| ≥ p,
then we can partition w into five substrings w = uvxyz such
that:

• |vxy| ≤ p
• |vy| > 0

• ∀i ≥ 0, uvixyiz ∈ C

2. Since a pushdown automaton only has finite states, the same argu-
ment that states must be repeated on long inputs that applies to finite
automata applies to PDAs, but...

3. If a PDA enters the same state with different elements in its stack,
it isn’t necessarily possible to repeat the process indefinitely by just
duplicating the string that brought the PDA back to a previously vis-
ited state. The “effective state” of a PDA includes both its current
state and its stack contents. There are infinitely many possible stack
contents, so a machine may not return to the same effective state no
matter how long an input is processed.

4. As a result, the Pumping Lemma for CFLs is not derived from an
argument based on PDAs.

5. Instead, the proof of the Pumping Lemma for CFLs follows from two
properties of parse trees:

(a) If a non-terminal is repeated on some path from the root to the
leaves of a parse tree for a sentence of a language, then we can
increase or decrease the number of occurrences of the symbol on
the path leading to the duplication of substrings as required in
the Lemma,

(b) If a parse tree is sufficiently large, it must have repeated symbols
on some path.

6. Suppose that some variable R appears more than once on a path from
the root to some leaf of a parse tree relative to a CFG as shown in the
figure below.

S

R

R

u v x y z

• In this case, we could replace the subtree rooted at the second
occurrence of R with a copy of the full tree rooted at the first
occurrence of R as shown below:

S

R

R

u v x y zR

v x y

• If (as shown in the figure), x was the string at the frontier of the
subtree rooted at the second occurrence of R, vxy was the string
on the frontier of the subtree rooted at the first R, and uvxyz
was the frontier of the full parse tree, this shows that we could
construct a parse tree for uv2xy2z showing that this string must
be in the language of the grammar.

• Simply repeating the process of replacing the last smallest subtree
rooted at R with the subtree rooted at the preceding copy of R
shows that uvixyiz is in the language for all positive values of i.

• Similarly, replacing the subtree rooted at the first occurrence of

2

R with the subtree rooted at the second shows that uv0xy0z must
be in the language.

S

R

u x z

7. All we need to show to prove that sufficiently large strings in a CFL
can be pumped is that some variable must repeat along a path from
the root to the leaves of the parse tree of any such string.

• Given a CFL C we know that we can find some CFG G =
(V,Σ, R, S) such that L(G) = C.

• Suppose that N is the largest number of symbols in the right-hand
side of any rule in R.

• Consider how the height of a parse tree is related to the length of
the associated string w:

– If the parse tree has height 1, then it has at most N leaves:

S

T2T1 T3 . . . TN

– If the parse tree has height 2, then it has at most N2 leaves
since each of the N symbols one step from the root can have
produced at most N leaves.

S

T2T1 T3 . . . TN

U1 UN . . . V1 VN

– In general, therefore, a tree of height H can have at most NH

leaves. In other words, if w ∈ L(G) and |w| ≥ NH , then the
parse tree for w must have some path containing more than
H interior nodes.

– Suppose that we choose w such that |w| ≥ N |V |+1. Then the
parse tree for w must contain some path of length greater
than |V |. That is, there must be more nodes in the path then
there are variables in the grammar.

– Just as in the proof of the Pumping Lemma for regular lan-
guages, we observe that the sequence of variables that label a
path of length greater the number of variables must contain
at least one repeated variable.

8. This is how we can determine a bound on the value of the pumping
length p described in the Pumping Lemma. If p = N |V |+1 then the
parse tree for any string of length p or greater will contain a path with
a repeated variable and therefore the string can be pumped.

9. To ensure that the vxy we are pumping satisfy all of the conditions
of the Pumping Lemma, we have to be a bit careful. Rather than
picking any parse tree for w, we have to pick the smallest one. This
ensures we cannot have used a rule like R → R on the path we select
(since otherwise we could get a smaller parse tree by removing it).
This means that either v or y must be non-empty. Also, if there are

3

multiple repeated variables, we must pick a pair as close to the leaves
as possible to ensure that |vxy| < p.

Using the Pumping Lemma for Context-free
Languages
(Click for video)

1. As a very simple example of how we could use this lemma, consider
L = {0n1n0n | n ≥ 0}:

• Consider the string 0p1p0p = uvxyz with |vxy| ≤ p.
• Since vxy is no more than one third the length of 0p1p0p it can

overlap no more than two of the three segments of 0’s and 1’s that
make up the string.

• Therefore, in the string uv2xy2z the lengths of at least one of the
segments of 0’s and 1’s will remain p while either one or two of
the other segments will increase in length.

• Therefore, uv2xy2z cannot be of the form 0n1n0n for any n. If
the language was context-free, this would contradict the pumping
lemma. Therefore, the language must not be context-free.

Deciding whether a language is a CFL?

1. NO VIDEO????

2. The following section of notes cover several more examples of the
Pumping Lemma for CFL’s. Given that we had an extra week of
spring break (and wasn’t it fun?!), I have to find some material to
skip over the next few weeks. These examples are one of the things
I am going to skip (in the sense that there will be no video you have
to watch), but I thought I would still include the notes in case you
wanted to look at some of the examples.

3. Let’s consider a few problems that should provide some practice for
deciding whether or not a language is context-free. For each language
described, try to either think of a string in the language that cannot
be pumped or described a grammar or PDA for the language:

• Is L = {anbjanbj | j, n ≥ 0} a CFL?

• How about C = {anwwRan | n ≥ 0, w ∈ {a, b}∗}?
• How about C ′ = {anwanwR | n ≥ 0, w ∈ {a, b}∗}?
• How about notP = {w | w ∈ {a, b}∗ and w is a palindrome}

4. We can show that the first is not a CFL, the second is, and the third...

• Consider whether L = {anbjanbj | j, n ≥ 0} is a CFL?

If C is a CFL, then there is some p such that all strings
longer than p can be pumped. Consider the string w =
apbpapbp and consider whether w can be partitioned as
w = uvxyz in any way that satisfies the requirements of
the pumping lemma.
First, note that all members of L are also members of
a∗b∗a∗b∗. That is, each string in L contains at most 2
alternating pairs of a strings of as followed by a string
of b. If w is partitioned in such a way that either v or y
contained both as and bs, then w′ = uv2xy2z would no
longer be a member of a∗b∗a∗b∗ since it would contain at
least three alternating pairs of as and bs. Therefore both
v and y must fall entirely within a sequence of as or a
sequence of bs.
Given that v falls in (including on the trailing edge of) a
given strings of as or bs, y must either fall entirely in the
same group or in the following group. This means that
in the string w′ = uv2xy2z, the length of at least one and
no more than two of the four groups of substrings of the
same symbol in w will have grown while at least two will
remain unchanged. Moreover, if two of the substrings
have changed, they must be adjacent. Thus, if the first
strings of as is longer in w′ the second strings of as will
not have grown and therefore cannot match it. Similarly,
if the second substring (the first string of bs) is the first
substring whose length has increased, the final substring
of bs will not have changed. Finally, if v falls in the second
half of w, then one of the two substrings in the second

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=15ecb1c6-72ff-458b-a4b8-ab8d016348b6

half of w′ will have grown and therefore no longer match
it partner in the first half.

• How about C = {anwwRan | n ≥ 0, w ∈ {a, b}∗}?
First, note that we can pump any string of this form.
If w is empty this is obvious. If w is non-empty, then
let u be the prefix up until the last symbol of w, let
x = ε, v = y = the last character of w (which is also the
first character of wR and let z be the rest of the string.
Pumping by setting i > 1 just adds multiple copies of
the last character of w to w and its reverse so the string
remains within the language. Setting i = 0 just deletes
the last character.
The fact that a language satisfies the Pumping Lemma
does not prove it is context-free. To accomplish this we
need to show that we can describe the language with a
PDA or context-free grammar.
We know that the grammar

P → aPa | ε

generates {anan | n ≥ 0} and that

S → aSa | bSb | ε

generates {wwR | w ∈ {a, b}∗} We can combine these to
form:

P → aPa | S
S → aSa | bSb | ε

which will generate C. Even easier, we can note that

{anwwRan | n ≥ 0, w ∈ {a, b}∗} = {wwR | w ∈ {a, b}∗}

and just use the second grammar.

• Consider the string apbpapbp ∈ C ′ = {anwanwR | n ≥ 0, w ∈
{a, b}∗}. For any uvxyz = apbpapbp, with |vxy| ≤ p either vxy
is completely contained in one of the 4 specified subsections of
length p in w or it overlaps two of them in which case it cannot

overlap the first character of the first quarter or the last character
of the second quarter.

Let’s start by seeing that this isn’t as simple as it first appears.
Suppose vxy falls entirely within the second ap. It is tempting
to naively say that in that case uvixyiz cannot be in C ′ since it
would have too many as in the third component to match the
as in the first component. However, if the number of as in the
combination of v and y is even (say 2k), we can view half of them
as belonging to w which grows from bp to be bpak and the other
half as belonging to wR making it akbp so that the total string is
viewed as ap bpak ap akbp.

Luckily, if we pump down removing a’s from the third component,
there is no way we can remain within the language since there
won’t be enough a’s anywhere in the last 3/4 to match the first
ap.

Pumping within any of the other quarters is less subtly impossible.
If you increase the size of the first collection of a’s you cannot treat
some of them as part of the reversed w because the extras would
have to show up at the end of the string. Increasing either set
of b’s alone will not work because reversal does not change the
number of b’s leading to an unavoidable mistmatch.

and so on...

• What language is described by:

R→ XRX | S
S → aTb | bTa
T → XTX | X | ε
X → b | a

Answer: The complement of the set of palindromes over {a, b}.
It is worth noting, however, that this is an exception to the rule.
In general, context-free languages are not closed under comple-
ment.

Closure Properties of CFLs and Deterministic
CFLs

(Click for video)

5

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=46f318ab-9a98-4e58-b021-ab8f01264ec9

1. Recall that the regular languages were closed under many operations:
complement, union, intersection, closures, ...

2. The context-free languages don’t have nearly as many nice closure
properties

• Context-free languages are closed under union. Given two
context-free grammars, G1 = (V1,Σ, S1, R1) and G1 =
(V2,Σ, S2, R2),

1 it is easy to build a grammar for their union by
introducing a new start symbol that can derive either of the start
symbols of the original languages. That is, the new grammar is
built by adding a new start symbol S with rules S → S1 and
S → S2. Formally,

Gunion = (V1 ∪ V2 ∪ {S},Σ, S,R1 ∪R2 ∪ {(S, S1), (S, S2)})

• Similarly, they are closed under product. Given two context-free
grammars, G1 = (V1,Σ, S1, R1) and G1 = (V2,Σ, S2, R2), it is
easy to build a grammar for their product by adding a new start
symbol S and the rule S → S1S2 to the rules of the original
grammars. Formally,

Gproduct = (V1 ∪ V2 ∪ {S},Σ, S,R1 ∪R2 ∪ {(S, S1S2)})

3. Context free languages are not closed under intersection.

• Consider the languages L1 = {0n1n0m | n,m ≥ 0} and L2 =
{0m1n0n | n,m ≥ 0}. Both of these languages are context-free.
We can argue this easily using some of the closure properties just
discussed:

– A grammar with the two rules S → 0S1 and S → ε describes
the language {0n1n | n ≥ 0}, so this language is context-free.

– The language described by the regular expression 0∗ must be
context-free since all regular languages are context free.

– L1 is the product of these two languages so it must be context-
free.

1Where, for simplicity we assume that the grammars have disjoint sets of variable/non-
terminal names and identical terminal alphabets.

– A similar argument can be provided for L2.

• The intersection of L1 and L2 is {0n1n0n | n ≥ 0} which we have
already shown is not context-free (at the end of our discussion of
the Pumping Lemma).

4. This implies that the complement of a context-free language is not
necessarily context-free.

• Recall that for any sets A and B, A ∩B = A ∪B.

• As a result of this fact, if context-free languages were closed un-
der complement and union, they would need to be closed under
intersection.

• We have just seen that context-free languages are closed under
union but not under intersection.

• This implies that context-free languages cannot be closed under
complement.

5. The fact that context-free languages are not closed under complement
has an important consequence. It shows that non-determinism is a
significant feature of push-down automata.

6. Recall how we were able to show that regular languages were closed
under complement.

• Hint: We didn’t do it using regular expressions!

• Our proof was based on a simple property of deterministic finite
automata. If you complement the set of final states of a determin-
istic finite automaton, you complement the language accepted.

– For example, if you take the machine:

6

110pre
1

1 11
1 0

0

0

1

1

0

which recognizes strings that end in 110, and make its final
states non-final and vice versa, you get the machine below

110pre
1

1 11
1 0

0

0

1

1

0

which recognizes strings that don’t end in 110.

7. Now, consider how this trick plays out if we apply it to a non-
deterministic finite automaton.

• Consider the machine

110pre
1

1 11
1 0

0

1

which recognizes strings that end in 110. We used this machine
weeks ago to motivate the advantages of non-determinism since
its structure makes it much clearer what it does that the structure
of the corresponding DFA.

• If we interchange the final and non-final states of this machine we
get

110pre
1

1 11
1 0

0

1

which recognizes Σ∗! This is clearly not the complement of the
language of the other machine.

8. Given a deterministic PDA, i.e., a PDA D = (Q,Σ,Γ, δ, s, F), where
|δ(q, x)| = |x|, x ∈ Σε, it is the case that if D = (Q,Σ,Γ, δ, s,Q − F),
then L(D) = L(D).

9. We call a language that is recognized by a deterministic PDA a deter-
ministic context-free language. DCFLs are closed under complement.
Therefore, the set of DCFLs is a strict subset of the set of CFLs.

Chomsky Normal Form
(Click for video)

1. Have you ever heard of Noam Chomsky?

2. He is best know these days for his political activism.

3. Before his political career, Chomsky played a significant role in the
development of formal grammars (of which CFGs are one example).

4. One of his contributions was describing a restricted form of CFG that
was powerful enough to describe any CFL. In particular, we say that a

7

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=551f900e-0be2-4ce7-ab74-ab8e0157db17

grammar is in Chomsky Normal Form, if all productions in the gram-
mar are of the forms:

• A→ BC, where A,B, and C are all non-terminals,

• A→ t for some non-terminal A and terminal t, or

• S → ε where S is the start symbol.

5. At some level, this is not all that surprising. In particular, if you take
a “typical” production like

S → if(B) S

it can be replaced by a collection of productions of the second type to
handle the terminals:

T1 → i
T2 → f
T3 → (
T4 →)

together with a collection of non-terminals and chain of rules to capture
the original rule:

S → T1S1
S1 → T2S2
S2 → T3S3
S3 → BS4
S4 → T4S

6. The tricky part is finding a replacement for productions like T → ε
and T → N .

• The basic idea is that if such rules are present, we will make
multiple copies of other productions that reference the variable
on the left side (T in our examples) with multiple productions
that reflect the option of using these simple rules.

• For example, if our grammar included the rules

S → if(B) S
S → if(B) S else S
S → ε
S → T

– We would begin by adding a copy of the first rule that re-
flected the possibility of using the ε-rule:

S → if(B)

– This is a bit trickier for the second rule because we have to
account for the fact that either one, both, or neither of the
instance of S in the rule might be expanded using the ε-rule:

S → if(B) else S
S → if(B) S else
S → if(B) else

– Similar productions would be added to take the place of the
S → N rule:

S → if(B) N
S → if(B) N else S
S → if(B) S else N
S → if(B) N else N

– After all these additions are made, the offending rules can be
removed

7. The existence of Chomsky Normal Form means that if we are given
a context-free grammar and a string we can determine whether the
string belongs to the language of the grammar.

• You may already think this is obvious because we could just build
a PDA from the grammar for the language, but PDAs are non-
deterministic and simulating the non-determinism to see if there
is any combination of production choices that leads to the desired
string might go on forever if no such choices existed.

• Chomsky Normal form means we can find a grammar for the
language with the property that the sentential forms we generate
get larger and larger as we do more production steps.

• This means we can cut off the non-deterministic search once we

8

reach any sentential form that is longer than the desired sentence
and backtrack to explore other short derivations.

9

