
CS 361 Meeting 16 — 4/6/20

Announcements
(Click for video)

1. First, welcome back to CS 361 in online form. We are all facing the
challenge of trying to find the new normal in the midst of a world
that is very far from normal. I am writing this two weeks before you
are supposed to read it and/or view the video of this “class”. I hope
things are better by then! I fear they may be worse. In any case, I
am sure that we are all still facing challenges that will make the task
of completing this course and other school work more difficult than
we fully appreciate. With this in mind, I want to encourage you to
remember that we all need to support one another. Don’t hesitate to
reach out to me if you need extra help, extra time, or just want to talk
about things. At the same time, be patient with me (and all the other
students and faculty you may be working with this semester). We are
all in the same boat.

2. I have already tried to talk about issues of the mechanics of the course
in announcements I have sent to you through Glow. Let me know if
anything is unclear.

3. There will be no midterm this semester. We will still have a final exam.

4. Homework assignment 6 is available. It is due 24 hours before your
group meeting time.

Welcome Back (sort of)
(Click for video)

1. I want to help you refresh your foggy memories of what we were doing
back in March just before the virus changed all of our lives.

2. We had completed our discussion of regular languages. This had in-
cluded:

• Examining several formalisms for describing regular languages.

Click here to view the slides for this class

– Deterministic Finite Automata

– Non-deterministic Finite Automata

– Regular Expressions

• Proving that these ways to describe languages were of equivalent
power.

– The subset construction to build a DFA equivalent to an NFA.

– GNFAs and an algorithm for deriving a regular expression
given a DFA.

• Showing that there were languages that were not regular.

– The Pumping Lemma

– The Myhill-Nerode Theorem

3. We were beginning to study another, larger class of languages called
the context-free languages. Our goal is to hit the same three bullet
points I just listed for regular languages:

• Examine several formalisms for describing context-free languages.

• Prove that these formalisms are of equivalent power.

• Show that there are languages that are not context-free.

In addition, to appreciate that the mechanisms used to describe
context-free languages are more powerful than those we studied be-
fore, we want to show that there are languages that are not regular
but are context-free.

4. The first step in our exploration of context-free languages was to in-
troduce the notion of a context-free grammar in several forms.

• We first considered an example of a grammar for a fragment of a
typical programming language:

< stmt > → < var > = < expr >
| if (<expr>) <stmt>
| if (<expr>) <stmt> else <stmt>
| while (<expr>) <stmt>

<expr> → <var>
<var> → x | y | z

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2213e856-ba1c-428b-9c85-ab8e01303bbd
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=635b147b-6764-4daf-9add-ab8900f256b8
http://www.cs.williams.edu/~tom/courses/361/notes/Lect16slides.pdf

• We learned to understand such a grammar as a set of rules for
replacing symbols in angle brackets with the right-hand side of
an appropriate rule to form derivations that determined the set
of strings described by the grammar:

< stmt > =⇒ if (<expr>) <stmt>
=⇒ if (<var>) <stmt>
=⇒ if (x) <stmt>
=⇒ if (x) < var > = < expr >
=⇒ if (x) y = < expr >
=⇒ if (x) y = < var >
=⇒ if (x) y = z

5. We quickly moved away from the world of grammars that actually
describe useful things like programming languages to grammars for
the sorts of silly languages of a’s, b’s, #’s, 0’s and 1’s that we had seen
repeatedly when working with regular languages. In particular, we
saw a grammar for binary strings with even parity and one for binary
strings representing multiples of 3.

M → 0Z | 1U
Z → 0Z | 1U | ε
U → 0D | 1Z
D → 0U | 1D

6. Seeing that these examples of languages known to be regular could
also be described by context-free grammars raised a question. Can all
regular languages be described by context-free grammars? To pursue a
question like this, we needed to be more precise about how grammars
worked, so we gave a formal definition:

Context-free Grammar A context free grammar is composed of:

(a) A finite alphabet V of variables (or non-terminals).

(b) A distinct finite alphabet Σ called the terminals or terminal
symbols.

(c) S ∈ V referred to as the start symbol.

(d) A finite set R of pairs composed of one element from V and
one element from (V ∪Σ)∗ called the rules. Rules are usually

written in the form:

A→X1X2...Xm

rather than (A,X1X2...Xm).

7. With this definition (and definitions of derivations, sentential forms
and sentences) we reached the point where we could proved that all
regular languages are context-free.

8. We next considered another mechanism for describing languages which
we will ultimately show to be equivalent to context-free grammars —
the pushdown automaton or PDA. A PDA is basically a finite automa-
ton extended by giving it a stack onto which it can push symbols and
whose contents can help determine the transitions the machine makes.

9. We considered a few simple examples of PDA’s including one for the
language

Ladd = {1i + 1j = 1i+j | i, j ≥ 0}

of simple examples of valid unary addition like “111+11=11111”.

1, ε / 1

pre+

+, ε / ε

post =

ε, $ / ε

1, 1 / ε

start
final

ε, ε / $

1, ε / 1

pre =

=, ε / ε

10. We then formalized what we meant when we talked about a PDA and
its operation with two definitions:

(a) A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F) where:

Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε) is the transition function, and

F ⊂ Q is the set of final or accepting states.

2

(b) We say that a PDA M = (Q,Σ,Γ, δ, q0, F) accepts a string w =
w1w1...wn, wi ∈ Σε if ∃q1, ...qn ∈ Q and s0, s1, ...sn ∈ Γ∗ such that:

• s0 = ε

• ∀i, 1 ≤ i ≤ n,∃hi, pi ∈ Γε and ti ∈ Γ∗ such that si−1 =
hiti, si = piti and (qi, pi) ∈ δ(qi−1, wi, hi)

• sn ∈ F

Thinking Nondeterministically
(Click for video)

1. When we studied finite automata, we started with the deterministic
model and then moved on to consider nondeterminism later. With
pushdown automata, we have started right away using nondeterminism
(at least in the form of epsilon transitions).

2. To reinforce the power of nondeterminism in this model, I want to ex-
plore a few solutions to the problem of building a pushdown automaton
for the language

Leq occur = {w | w ∈ {a, b}∗ and w contains as many a’s as b’s}

3. Last time I showed a machine that recognized this language (almost).
Unfortunately, I made a mistake and the machine shown on the slides
during last class removed the $ that indicated the bottom of the stack
when it should not have done so.

• A corrected version of this machine appear below (and in the
posted version of the slides from last class period).

a, ε / a
#As ≥
#Bs

b, $ / $

final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / $

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / ε

1st letter

a, ε / a

b, ε / b

silly
state

ε, ε / a

silly
state

ε, ε / b

startstart

• This version works by using an epsilon transition to push a pair
symbols onto the stack during what it logically one transition
from one of the ≥ states to the other. This is easy enough to
do in general, that we will let ourselves label a transition with
a sequence of symbols to push on the stack even though Sipser’s
formalism doesn’t officially allow this.

a, ε / a #As ≥
#Bs

b, $ / b$ final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / a$

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / ε

1st letter

a, ε / a

b, ε / b

startstart

4. What I really want you to notice is the peculiar way this machine uses
nondeterminism.

• The only nondeterministic transitions in the machine are the ε
transitions leaving “start” and leading to “final”.

• The first ε-transition puts a marker at the bottom of the stack so
that other states can tell when it is (near) empty.

• The transitions to “final” reflect the fact that there is no deter-
ministic way to make a transition only when the machine reaches
end of input.

5. Once you realize that the machine is being nondeterministic in this
case, you might notice some other possibilities.

6. Consider the state “1st letter”.

• If the next input is an a, this state pushes it onto the stack and
goes to the “#As ≥ #Bs” state.

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=80a5fb2c-c763-4e6a-93dc-ab8a00efdaf4

• Notice that if we just allowed an ε transition from “1st letter” to
“#As ≥ #Bs”, the “#As ≥ #Bs” state would push the next a
onto the stack anyway,

• Notice also that the same is true for bs and the combination of
the “1st letter” state and the “#Bs ≥ #As”

7. So, we can actually get rid of the “1st letter” state and let the start
state guess whether the first letter will be an a or b by taking an epsilon
transition to the appropriate ≥ state:

a, ε / a #As ≥
#Bs

b, $ / b$ final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / a$

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / εε, ε / $
startstart

8. Now, let’s think about the transitions between the two ≥ states.

• Like the transitions from the “1st letter” state we just eliminated,
each of these transitions consumes a letter of input and pushes
the identical letter onto the stack.

• In addition, if we had just made the transition without consuming
input or pushing anything on the stack, the destination states
would consume and push the same symbols.

9. So, we can let the machine do more guessing. Whenever the stack
becomes empty, we can just guess whether the remaining input will

start with an a or b and epsilon transition to the appropriate ≥ state.
If we guess wrong, we can just jump back. This leads to:

a, ε / a #As ≥
#Bs

ε, $ / $start
final

ε, ε / $

b, ε / b
#Bs ≥
#As

ε, $ / $

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / εε, ε / $
start

10. Can you see where this is going? We have given the machine the option
of jumping back and forth between the two ≥ states at will. It is almost
as if it doesn’t matter which one of the two ≥ states the machine is in.
In fact, it doesn’t. We can merge them giving:

4

a, ε / a

push/
popstart

final
ε, ε / $

b, a / ε

ε, $ / ε

b, ε / b a, b / ε

Another Example of Nondeterminism (and a
Deterministic PDA!)

(Click for video)

1. As another example of the use of nondeterminism, let’s consider how
to construct a PDA that recognizes the language

LUnary-diff = {#1p1#1p2# . . .#1pn# | |pi| > 0 & for some i, j, pi 6= pj}

• This is the language of non-empty unary strings separated by
pound signs which contain at least two unary substrings of differ-
ent lengths.

• This is an interesting example because to solve it you have to take
non-determinism seriously.

• The machine cannot check every pair of 1pi and 1pj because if it
pushes pi symbols on the stack to remember the value pi, once it
clears the state to see if pi equals pj the pi symbols are gone and
cannot be compared to any other string of 1s.

• An important thing to observe, is that if there is any pair of 1pi

and 1pj of different lengths, we can replace one of them with 1p1

and still have a pair of distinct strings. This is because p1 must
be different from one of 1pi and 1pj and that string together with
1p1 is just as good an example of two strings of different length
as 1pi and 1pj .

2. Given this observation about 1p1 , we can describe a machine that rec-
ognizes this language by a) pushing p1 symbols on its state, a) non-
deterministically skipping substrings of 1’s until it guesses the next
substrings is a different length than p1, c) comparing the stack to the
length of the guessed substring, and d) if the substring’s length is dif-
ferent, skipping over any additional substrings and accepting as long
as the string ends with a #.

The machine below follows this strategy.

1, ε / 1

first w

#, ε / ε

pick w'

#, ε / ε

1, ε / ε start find end

#, ε / $

#, ε / ε

w'

1, 1 / ε
1, $ / ε

1, ε / ε

#, ε / ε #, 1 / ε

#, ε / ε

finalfinal

1, ε / ε

• In state “first w” it fills the stack with as many ones as it finds
in the first string.

• In state “pick w” it uses non-determinism to guess which # pre-
cedes a string of 1s of a different length. It can also use non-
determinism to skip “pick w” and move right to w’ if it guesses
that the second substring does not match the first.

• In state w’, it verifies its guess leaving state w’ only if the number
of 1s in the stack is different from the length of the selected string
of ones.

• Depending on whether there were fewer 1s in the second substring
(it reached a # before the stack was empty) or more 1s in the

5

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f1a012f9-7449-483c-af3d-ab8a013e2391

second substring (the stack ran out of 1s while there was still
another 1 in the input) it either moves to “find end” or “final”.

• We need states “find end” and “final” because to accept a PDA
must read all the way to the end of the input and be in a final
state when it gets there. Also for this language, the last symbol
before the end must be a #. So...

• We go to and state in “find end” as long as there are 1s still
remaining. It transfers to “final” each time it sees a #. If the
is the end of input, the machine accepts. If it see another 1 it
returns to “find end” where it can skip over 1s looking for another
that is potentially the end of the input.

3. The clear emphasis of the two examples we have just considered is
that non-determinism often plays a big role in the design of PDAs.
In the world of finite automata, we learned that nondeterminism was
often helpful but never essential. We will eventually want to explore
the question of whether nondeterminism is essential in PDAs (Spoiler
alert: it is!). With this in mind I would like to turn back to the
language

Leq occur = {w | w ∈ {a, b}∗ and w contains as many a’s as b’s}

and see how it can be recognized using a deterministic machine.

4. To accomplish this, let’s look back at the least nondeterministic PDA
we considered for Leq occur

a, ε / a #As ≥
#Bs

b, $ / b$ final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / a$

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / ε

1st letter

a, ε / a

b, ε / b

startstart

• The only nondeterministic element of this PDA is the use of ε-
transition from the two “≥” states to the final state.

• Fundamentally, the problem is that the “≥” states are “≥” states
rather than “>” states. For example, if we are in the “As ≥ Bs”
state and read a “b” we will pop an “a” off the stack. This might
be the last “a” on the stack! But, until we see what is underneath
the “a” we don’t know whether the total number of “a”s seen is
greater than the number of “b”s or actually equal to the number
of “b”s. If we did, we could transition to a final state when we
popped the last “a” (and similarly when we pop the last “b” in
the “As ≥ Bs” state).

5. We can address this by taking advantage of the fact that be can use any
set of symbols we want as our stack alphabet. In the original machine,
every “a” read as input while the number of a’s exceeds the number of
b’s was represented on the stack by the same symbol, another “a”. If
we instead use a special symbol when we push the bottom-most a on
the stack, the presence of the distinct symbol will enable the machine
to tell that the stack is about to become empty.

6. This idea is made concrete in the machine shown below:

6

a, ε / a #As >
#Bs

a, ε / A

b, ε / b
#Bs >
#As

b, a / ε

a, b / ε

b, ε / B

b, A / ε

a, B / ε
start#As =
#Bs

• First, notice that unlike every other PDA I have shown you, this
machine never bothers to push a “$” onto the stack!

• Instead, this machine marks the bottom of the stack with a capital
letter (an A or a B) and pushes lower-case letters whenever it
knows that the stack already is non-empty.

• The start state, “#As = #Bs”, is also the only final state in the
machine. The machine is designed to enter this state whenever
it has read a prefix of the input string in which the number of
a’s and b’s is equal. The stack will always be empty when the
machine reaches this state.

• Like the other machine, when the stack contains one or more a’s
(whether upper or lower case), the total number of a’s in the stack
will equal the difference between the total number of a’s read so
far and the total number of b’s read so far.

• Similarly, when the stack contains one or more b’s (regardless
of case), the number of b’s in the stack will equal the difference
between the total number of b’s read so far and the total number
of a’s read so far.

7. The punchline is that this machine is completely deterministic.

Parse Trees
(Click for video)

1. In previous classes, we considered the context-free language

Ladd = {1i + 1j = 1i+j | i, j ≥ 1}

which is generated by the context-free grammar:

L→ 1L1 | +R
R→ 1R1 | =

2. We have seen that we can establish the fact that a string belongs to
the language of a grammar like this by describing a derivation of the
string from the start symbol of the grammar.

L =⇒ 1L1 =⇒ 11L11 =⇒ 11 + R11 =⇒ 11 + 1R111 =⇒
11 + 1 = 111

3. As an alternative to using derivations to show that a given string be-
longs to the language of a grammar G is to discover a parse tree for
the string relative to the grammar.

• To illustrate this idea, consider the parse tree for “11+1=111”
relative to our grammar for Ladd:

L

1 L

1 L 1

1

+ R

1 R 1

=

7

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2e25b8e2-fe95-44db-8e90-ab8b015edf45

• In general, we say that a labeled tree is a parse tree relative to
a context-free grammar G = (V,Σ, R, S) for a sentential form
w ∈ (Σ ∪ V)∗ if:

– The root is labeled with the start symbol, S.

– All interior nodes of the tree a labeled with symbols in the
alphabet of variables, V .

– All leaves are labeled with terminal symbols and the sequence
of symbols found as one visits the leaves in order form left to
right along the frontier forms the string w.

– If an interior node is labeled with L ∈ V and its children
are labeled with the symbols in the string β ∈ (Σ ∪ V)∗ then
V → β ∈ R.

8

