
CS 361 Meeting 14 — 3/11/20

Announcements
1. Homework 5 is due Friday.

2. Take-home/self-scheduled midterm planned for next week!

Review

1. I want to remind you of two examples we considered last class.

• The second is:

LUnaryAddition = {1a + 1b = 1a+b | a, b ≥ 0}

• The key to the this example is to recognize that any string of the
form 1n + w1n where w ∈ LEQ belongs in LUnaryAddition.

• Therefore, the grammar:

A → 1 A 1
A → + E
E → 1 E 1
E → =

describes LUnaryAddition.

2. The third is a good “real” example of the use of context-free grammars
to formalize the recursive description of a language.

LRE = {e | e is a valid regular expression over {0, 1}}

It may help to recall that:

Definition: Given some finite alphabet Σ, we define e to be
a regular expression if e is

• a for some a ∈ Σ

• ∅

Click here to view the slides for this class

• ε
• e0 ∪ e1, where e0 and e1 are regular expressions

• e0e1 where e0 and e1 are regular expressions

• e∗0 where e0 is a regular expression.

• (e0) where e0 is a regular expression.

3. The grammar for LRE must include rules for the base cases of the
definition of regular expressions:

R → 0
R → 1
R → ∅
R → ε

together with rules for the recursive steps:

R→ (R)
R→ RR
R→ R ∪R
R→ R∗

4. Any language that can be described by a context-free grammar is called
a context-free language.

5. The examples we have considered raise an interesting question. We
know that there are non-regular languages that are context-free lan-
guages. We also know that there are regular languages that are
context-free. What we don’t know is whether there are regular lan-
guages that are not context-free.

6. The big question is whether the set of regular languages is a subset of
the set of context-free languages.

7. In fact, all regular languages can be described by context-free gram-
mars. The divisible by three example suggests we might go about
proving this using the approach outlined below:

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect14slides.pdf

• Proof: Given a regular langauge L, we know that there is some
DFA D such that L = L(D). Given D, we can construct a grammar
G with...

. . .

and clearly the grammar G describes the language L.

• Proof: Given a regular langauge L, we know that there is some
regular expression e such that L = L(e). Given e, we can construct
a grammar G with ...

. . .

and clearly the grammar G describes the language L.

• To do this, however, we need more precise definitions of what a
grammar is and what language it describes.

Formal Grammars

1. Like all good entities in the world of formal languages, a grammar is a
tuple. In this case, a 4-tuple.

2. Formally:

Context-free Grammar A context free grammar is composed of:

(a) A finite alphabet V of variables (or non-terminals).

(b) A distinct finite alphabet Σ called the terminals or terminal
symbols.

(c) S ∈ V referred to as the start symbol.

(d) A finite set R of pairs composed of one element from V and
one element from (V ∪Σ)∗ called the rules. Rules are usually
written in the form:

A→X1X2...Xm

rather than (A,X1X2...Xm).

3. The association between a context free grammar and the language it
describes is formalized through the notion of a derivation:

Yields Given a grammar, G = (V,Σ, S,R), and two strings x and y in
(V ∪Σ)∗ such that x = αAβ and y = αγβ where α, γ, β ∈ (V ∪Σ)∗

and (A, γ) ∈ R we say that x yields (or directly derives) y. In this
case we write

x=⇒y

4. Examples of direct derivations.

ConsiderG = ({B,G}, {a, x, z}, B, {(B, xGBy), (B, z), (G, aG), (G, ε)})
or less formally

B → x G B y
B → z
G → a G
G → ε

The following are examples of the “yields” relation for this grammar:

• B =⇒ x G B y.

• x G a =⇒ x a G a

5. More on the notion of a derivation:

Derivation Given a grammar, G = (V,Σ, S,R), and two strings x and
y in (V ∪Σ)∗ we say that x derives y if there exists a sequence of
string α0, α1, α2, ..., αm all in (V ∪ Σ)∗ such that

(a) for all i < m, αi=⇒αi+1,

(b) x = α0, and

(c) y = αm.

In this case we write

x
∗

=⇒y

The sequence α0, α1, α2, ..., αm is called a derivation of length m
of y from x.

6. Using the grammar G shown above we can say that that B
∗

=⇒ xaxzyy
since:

• B =⇒ x G B y

2

• x G B y =⇒ x a G B y

• x a G B y =⇒ x a B y

• x a B y =⇒ x a x G B y y

• x a x G B y y =⇒ x a x B y y

• x a x B y y =⇒ x a x z y y

7. Time for more definitions:

Sentential form Given a grammar, G = (V,Σ, S,R), a string w is
called a sentential form of G if S

∗
=⇒w.

Sentence A sentential form containing only symbols from the termi-
nal vocabulary of a language is called a sentence.

L(G) The language defined by a grammar G is the set of all sentences.

L(G) = {w | S ∗
=⇒w and w ∈ Σ∗}

8. To make the advantages of this formalism a bit more apparent, consider
how it can be used to clarify the arguments one might use to show that
all regular languages are context-free.

9. First, to give you an intuitive understanding of how me might convert
a DFA that recognizes a language into a context-free grammar for the
same language, consider the following example.

• The example is one of my favorites. Binary strings that represent
values that are multiples of 3. You may recall that the following
FSA recognized this language:

0

3n + 2

1

0

3n

3n + 1

1

1

0
1

!
0

• This language can be recognized by a grammar whose variables
correspond roughly to the states of the FSA for the language:

M → 0Z | 1U
Z → 0Z | 1U | ε
U → 0D | 1Z
D → 0U | 1D

Here, Z generates suffixes that can be added to a binary string
that is divisible by 3 to yield a longer binary string that is divisible
by 3. U generates suffixes that can be added to a binary string
representing a value that equals 1 mod 3 to turn it into a binary
string that is divisible by 3. Similarly, D generates appropriate
suffixes for strings of binary digits that equal 2 mod 3.

10. Given a regular language L, we know that for some DFA, D =
(Q,Σ, δ, s, F) L = L(D). From D, we can construct a grammar
G = (Q,Σ, s, R) where R = {(q, xq′) | q′ = δ(q, x)} ∪ {(q, ε) | q ∈ F}
such that L(G) = L(D) = L.

To establish this we must show that δ̂(s, w) = q in D if and only if
s
∗

=⇒wq in G. The proof is by induction on the length of w. For the
basis, it is clear that for w = ε, δ̂(s, ε) = s and s

∗
=⇒s as required.

Now, we assume the result holds for |w| < n and consider any string
wx with x ∈ Σ and |wx| = n. If δ̂(s, wx) = q then by the definition of
δ̂, δ(δ̂(s, w), x) = q. Let q′ = δ̂(s, w). Then, we know that δ(q′, x) = q

3

so by our definition of G, (q′, xq) ∈ R. By our inductive assumption,
s
∗

=⇒wq′. Therefore, by adding one step using the rule (q′, xq) we
can conclude that s

∗
=⇒wxq. On the other hand, suppose we know

that s
∗

=⇒wxq. Given the way we have defined G, we know that this
derivation must end with the application of a rule of the form (q′, xq) ∈
R. That is, we can write s

∗
=⇒wq′=⇒wxq. Such a rule, however, would

only be included if δ(q′, x) = q. Moreover, given that s
∗

=⇒wq′ our
inductive assumption implies that δ̂(s, w) = q′. From this, we can
conclude that δ̂(s, wx) = δ(δ̂(s, w), x) = δ(q′, x) = q as desired.

Finally, we note that we can extends a derivation of the form
S
∗

=⇒wq=⇒w to generate a sentence in G if and only if G contains
a rule of the form (q, ε) ∈ R. G contains such a rule for q if and only
if q ∈ F in D. Therefore, S

∗
=⇒wq=⇒w if and only if w ∈ L(D).

Pushdown Automata

1. We first encountered regular languages as those languages recognized
by a class of automata (DFAs) and then encountered a generative no-
tation (regular expressions) that was associated with exactly the same
class of languages.

2. With context-free languages, we are taking the opposite approach.
First, I presented a generative notation (context-free grammars) that
describes these languages. Now, we will examine a type of automaton
that recognizes the same set of languages.

3. The new type of automata is not finite! Instead, we will allow for a
potentially infinite memory.

• We will still limit our attention to machines that accept or reject
finite input strings.

• We will restrict access to the machine’s memory in a way that
makes them more powerful than finite automata, but still limited
in computational power.

4. The model we will consider next is called a pushdown automata.

• The control of a pushdown automata will be a lot like a finite
automata, The machine will have a finite set of states and a tran-
sition function that specifies the possible moves.

• It is nondeterministic.

• The control has final and non-final states and accepts if there is
a way that it can be in a final state when the input is exhausted.

• In addition to its input, the machine will have the ability to read
and write symbols on an unbounded stack.

• The symbol on the top of the stack can help determine the possible
transitions from the current state and can be removed from the
stack as part of the transition.

• In addition to a new state, a transition can specify a new symbol
that should be pushed onto the stack.

• The alphabet used on the stack can be distinct from the alphabet
of the input language.

5. An example should make all of this clear. Recall the language {1n =
1n|n ≥ 0}.

• This was one of the early examples of a language we showed was
not regular.

• Consider how this language can be accepted by a pushdown au-
tomata.

– The diagram below provides an informal description of a
pushdown automaton that recognizes this language.

– When we draw a state diagram for a PDA, each edge is labeled
by a triple “i, p/s” where i is the current input symbol, p is
the symbol to be popped from the stack while taking the
transition (or ε if nothing needs to be popped while taking
the transition), and s is either a symbol to be pushed on the
stack or ε.

– Basically, a pushdown automata can count up by sticking
symbols on the stack as it reads one part of the input and
count down by popping those symbols later.

4

– Note that this machine has one feature that is somewhat
an artifact of the way Sipser chooses to describe PDAs —
namely, his formalism provides no way for the machine to
sense if its stack is empty. This will lead most of our ma-
chines to include a start state with just one transition that
puts a recognizable symbol at the bottom of the stack before
processing any input.

– Also note that this trick depends on epsilon-transitions. In
particular, for now, all PDAs are non-deterministic.

1, ε / 1

pre =

=, ε / ε

post =

ε, $ / ε

1, 1 / ε

start final

ε, ε / $

5

