
CS 361 Meeting 12 — 3/6/20

Announcements
1. Homework 3 solutions are online.

2. Homework 4 is due today.

3. Homework 5 will be available over the weekend.

4. Our midterm will occur during the week of 3/16.

Quite Distinguished

1. Last time I introduced the notion of strings that were distinguished by
a language:

Definition: We say that w, v ∈ Σ∗ are distinguishable by a
language L if for some z ∈ Σ∗, exactly one of wz and vz is a
member of L.

2. Of course, the opposite of distinguished is indistinguishable:

Definition: We say that w, v ∈ Σ∗ are indistinguishable by
language L if for all z ∈ Σ∗, wz ∈ L ⇐⇒ vz ∈ L and we
write w ≡L v.

3. Two strings are indistinguishable relative to a language if in some sense
they are equivalent as prefixes of strings in the language.

4. The relation “indistinguishable by L” defined by

Definition: We say that w, v ∈ Σ∗ are indistinguishable by
language L if for all z ∈ Σ∗, wz ∈ L ⇐⇒ vz ∈ L and we
write w ≡L v.

is an equivalence relation on strings.

5. The number of distinct equivalence classes of strings under the indis-
tinguishable relationship has an interesting relationship to regularity.

Click here to view the slides for this class

• Given a language L and a set X of strings over L’s alphabet, we
say that the X is pairwise distinguishable by L if every pair of
strings in X is distinguishable by L.

• The index of a language L is the size of the largest set of strings
X that is pairwise distinguishable by L. Equivalently, the index
of a language is the size of the set of equivalence classes induced
by the “indistinguishable” relation relative to the language.

The Myhill-Nerode Theorem

1. This bring us to the big Theorem (introduced through problem 1.52 in
Sipser):

Theorem (Myhill-Nerode): A language L is regular iff it
has finite index and each regular language is accepted by a
DFA whose description includes as many states as the index
of the language.

2. We start by showing that regularity implies finite index.

Proof:

(a) Suppose that L is regular.

• Then there is some DFA D = (Q,Σ, δ, s, F) such
that L = L(D).

• Suppose that X is a set of strings that is pairwise
distinguishable by L with w, v ∈ X.

• Consider δ̂(s, w) and δ̂(s, v).

– If δ̂(s, w) = δ̂(s, v) then for all z ∈ Σ∗, δ̂(s, wz) =
δ̂(s, vz). But wz ∈ L ⇐⇒ δ̂(s, wz) ∈ F ⇐⇒
δ̂(s, vz) ∈ F ⇐⇒ vz ∈ L which would imply that
w and z were indistinguishable by L.

– Since the members of X are pairwise distinguish-
able, this cannot be the case so for all w, v it must
be the case that δ̂(s, w) 6= δ̂(s, v).

• This implies that the number of elements in X can-
not exceed the number of elements in Q since oth-
erwise there would have to be at least two strings

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect12slides.pdf

in X such that δ̂(s, w) = δ̂(s, v). Therefore, if L is
regular it is of finite index.

3. Now we need to consider the other direction of the if and only if ...

Proof (continued):

b) Suppose L is of finite index.

• First, let’s look at a very simple concrete example:
a∗b∗.

– We have seen that this language has index 3 since
{a, ab, ba} forms a maximal set of distinguishable
strings relative to the language.

– Any other collection of representatives of the equiv-
alence classes associated with these strings also
form maximal distinguishable sets.

– For example, {ε, b, ba} is another maximal distin-
guishable set for a∗b∗.

– Consider the following machine which uses the ob-
vious set of states to recognize a∗b∗, and names
those states, as we have often done, with “represen-
tatives” of the strings that would move the machine
to each state:

[ba]110[ϵ]

a,b

ab

ba

1[b]

– This suggests the following general construction.

• Let X be a maximal set of strings pairwise distin-
guishable by L.

• Construct a DFA

D = ({[x] | x ∈ X},Σ, δ, [ε], {[x] | x ∈ L ∩X})

where δ([x], a) = [xa].

• We claim that L = L(D). To justify this claim, we
need to show that

– δ is well-defined. In particular that if a ∈ Σ, x, x′ ∈
[x] then [xa] = [x′a].

– for all w ∈ Σ∗, δ̂([ε], w) = [w], and

– [w] ∈ {[x] | x ∈ L ∩X} ⇐⇒ w ∈ L.

• The first condition is true because of the way the
indistinguishable relation is defined. If [xa] 6= [x′a],
then xa and x′a must be distinguishable by L which
would imply that for some z, one of the strings xaz
and x′az belonged to L and the other didn’t. In
that case, however, x and x′ would be distinguished
by the string az. If [x] = [x′], x and x′ must be
indistinguishable. Thus, δ is well defined.

• We can show the third condition by induction on
the length of w. It is clearly true for w = ε. Sup-
pose it is true for w and consider the a string of the
form wx. By definition, δ̂([ε], wx) = δ(δ̂([ε], w), x) =
δ([w], x) = [wx].

• For the final condition, suppose that [w] ∈ {[x] | x ∈
L∩X}. We know that there is some x ∈ L∩X such
that [w] = [x] which implies that w ≡L x. Therefore,
for any z ∈ Σ∗, wz and xz must either both belong
to L or neither be in L. Consider z = ε. This
implies that w ∈ L. In the opposite direction, if
w ∈ L,w ≡L x for some x ∈ X and therefore [w] =
[x] ∈ {[x] | x ∈ L ∩X}

Minimization of DFAs

1. Given that we now know that for any regular language there is a DFA
of size equal to the index of the language it recognizes, we would like to
have a way to algorithmically find this DFA given any precise descrip-
tion of the language (i.e., a DFA, an NFA, or a regular expression).

2. Given a regular expression, we can construct a NFA for the language

2

using the constructions embedded in the proofs that regular languages
are closed under the union, concatenation and closure.

3. Given an NFA, we can build an equivalent DFA using the subset con-
struction presented earlier.

4. All we need is a way to convert a non-minimal DFA into one of minimal
size (or to realize that the one we started with was already minimal).

5. We can precisely specify when two states can be merged by defining
state equivalence formally for two states p, q ∈ Q as:

p ≈ q ⇐⇒ ∀w ∈ Σ∗, δ̂(p, w) ∈ F ⇐⇒ δ̂(q, w) ∈ F

6. It should be clear that this notion of equivalence of states is in fact
reflexive, symmetric and transitive. Therefore, it partitions the set of
states of a DFA into equivalence classes.

7. This suggests a way that we could use the equivalence relation on the
states of a DFA to determine the minimal DFA. Namely, if [q] denotes
the equivalence class of state q induced by the state equivalence relation
we just defined:

Given M = (Q,Σ, δ, s, F) define

M ′ = ({[q] | q ∈ Q},Σ, δ′, [s], {[f] | f ∈ F})

where δ′([p], x) = [δ(p, x)].

8. As in the proof of the Myhill-Nerode theorem, we should be careful to
verify that δ′ is well defined, behaves as desired, and that the set of
final states is appropriate. We won’t.

9. Instead, we will consider an algorithm that determines which states
are equivalent to one another (by actually determining which states
are not equivalent to one another).

10. The basis of the algorithm is a somewhat recursive definition of not
being equivalent. The base case is basically

p 6≈ q if p ∈ F 6⇐⇒ q ∈ F

and the recursive clause is

p 6≈ q if ∃w ∈ Σ∗, δ̂(p, w) 6≈ δ̂(q, w)

11. In class this semester, I used a different machine as my example for
how we can algorithmically compute the 6≈ relationship. I didn’t have
time (or energy) to turn those slides into LATEX. So, here I will present
an old example based on the following DFA and it equivalent mimimal
DFA:

e

1

10

1000

0

e _

o

i n

g

0 1 0 1

0 1 10

0 1

0

0

0

1

1

1

1
0

1

0

e

x

x0

0 or 1

?

0

1

0 or 10 or 1

3

12. The mechanics of the algorithm use a table in which we record all pairs
of states we can identify as non equivalent. Each entry in the table
reflects our knowledge of the relationship between the states at the top
of its column and the right end of its row. For our example machine,
the table starts out like this (with names like oh! and eee used to make
it easy to distinguish the states for empty and zero from those for the
letters O and E).

e
0

1
00

10
oh!

gee
eee

i
n

13. The first step is to use the basis step described above to realize that
all final states are not equivalent to all non-final states. We record this
by putting big X’s in all of the cells in the table for such pairs..

e
0

1
00

10
X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

14. Next, we use the recursive step over and over again for different pairs
of states that still appear to be equivalent restricting our attention to
strings w of length 1. For example:

• At this point in our table, the entry for the pair of states e, 0 is
empty because these state might still be equivalent:

e
? 0

1
00

10
X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

• Looking back at the state diagram, we can see that on input 0,
δ(e, 0) = 0 and δ(0, 0) = 00. Since the entry in our table for
this pair of destinations (0, 00) is still empty, these states might
be equivalent, so it would still appear that e and 0 might be
equivalent.

• On the other hand, on input 1, δ(e, 1) = 1 and δ(0, 1) = oh!. The
entry for the pair of states (1, oh!) in our table already has an X in
it indicating we know these states are not equivalent. Therefore,
we can conclude that e and 0 are not equivalent and record this
fact with a new X in our table.

4

e
X 0

1
00

10
X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

15. We then continue methodically (we will go left to right and top to
bottom) through the table considering all of the unmarked pairs:

(e,1) Since δ(e, 0) = 0 and δ(1, 0) = 10 and the pair (0, 10) is still
unmarked in our table, we make no changes.

However, δ(e, 1) = 1 and δ(1, 1) = gee and the states 1 and gee
are known not to be equivalent, so we get to put another X in for
e, 1:

e
X 0
X 1

00
10

X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

(0,1) Since δ(0, 0) = 00 and δ(1, 0) = 10 and the pair (0, 10) is still
unmarked in our table, we make no changes.

Similarly, δ(0, 1) = oh! and δ(1, 1) = gee and the states oh! and
gee are still unmarked so we make no changes.

It is important to note, however, that in both cases, we are de-
ciding whether the two states the machine would move into are
not equivalent by checking to see if their entry in our table con-
tains an X before we have even gotten to that entry. If, when we
eventually process those entries we discover they should have X’s,
we will need to reconsider the pair (0,1). We won’t do this by
specially reconsidering (0,1). Instead, we will make an additional
pass over all table entries that are still blank after the first pass.

(e,00) Since δ(e, 0) = 0 and δ(00, 0) = eee and the pair (0, ee) is
marked as non-equivalent, we get to mark (e,00)

Similarly, δ(e, 1) = oh! and δ(00, 1) = gee and the states oh! and
gee are still unmarked so we make no changes.

e
X 0
X 1
X 00

10
X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

16. Continuing to consider every empty cell in the table in the same way
until we reach (i,n), we eventually get the following:

5

e
X 0
X 1
X X X 00
X X X 10
X X X X X oh!
X X X X X gee
X X X X X eee
X X X X X
X X X X X i
X X X X X n

17. At this point, as mentioned above, we need to reconsider all of the
blank cells because when we considered them on the first pass we might
have based our decision not to mark them on cells that we had not
yet processed. In this case, on the second pass, we will discover that
nothing actually changes. In general, we would keep making passes
until nothing changes during one complete pass.

18. The information in the table justifies many simplifications of the orig-
inal machine. It indicates that states 0 and 1 can be merged as can 00
and 10. It also says that all of the final states are equivalent and can
be merged. Thus, the reduced machine will look like:

e

x

x0

0 or 1

?

0

1

0 or 10 or 1

6

