CS 361 Meeting 11 — 3/4/20 100001 is 33 which is not divisible by 5

Announcements while
1. Homework 4 is due Friday. 10110 = 32
10001 = 27
Distinguishable Prefixes are indistinguishable by L p;,5 because they are both equal to
2 mod 5 so any digits that one could add to 10110 to make
1. Consider the relation “distinguishable” that exists between strings over it divisible by 5 would also extend 10001 into a number that
an alphabet relative to some language L. was divisible by 5.
Definition: We say that w,v € ¥* are distinguishable by a Equivalence Relations
language L if for some z € ¥*, exactly one of wz and vz is a
member of L. 1. Three of the “prerequisites” that you were supposed to review when
you read Chapter 0 of the text are relations (in general), binary rela-
e [t may help to first think about what it would mean for two strings tions and equivalence relations (in particular).

to be “distinguishable” in a human language. Interestingly, hu-
man languages are so rich with nuance that I found it hard to
think of examples that were not distinguishable.

e A binary relation is a subset of the set A x A of all pairs of elements
of some set A. Familiar examples include those induced on sets

of numbers by relational operators
— One simple example is our definite and indefinite articles. Y P

The set of strings that can validly follow “A” is different from — The “less than” relation is the set {(z,y) | z <y}
those that can follow “An”. — The “equals” relation is the set {(x,y) | = = y}

— One might think words we think of as synonyms would serve e In general, if R C A x A we write 2Ry <= (z,y) € R.
as counter examples, but the pair “big” an “large” don’t quite
work because “big bird met ernie” just isn’t the same as “large
bird met ernie”.

e An equivalence relation is a binary relation the satisfies three
properties that seem to be key to the notion of equality:
reflexive Vo € A, xRx.

e We, of course, will be interested in how the term “distinguishable”

) .. . symmetric Vz,y € A, xRy < yRz.
applies to more exciting, formal languages like:

transitive Vz,y,z € A, xRy and yRz = xRz.
Lpiys = {w | w € {0,1}*, value of w is divisible by 5 } e If R is an equivalence relation we often write x =g v.

e Some familiar examples of equivalence relations include simple
equality of number, equality mod n, has the same birthday as (
which is sort of equality mod 365).

— For this language, the strings
10110
10000

o _ e With our interest in strings, we can also consider some equivalence
are distinguishable by L p;,5 because

relationships on strings. To keep things simple, let’s consider

Click here to view the slides for this class — equality


http://www.cs.williams.edu/~tom/courses/361/notes/Lect11slides.pdf

— same length as e Given a language L and a set X of strings over L’s alphabet, we
— game number of 1s say that the X is pairwise distinguishable by L if every pair of

— represents the same binary number (considering leading 0s strings in X is distinguishable by L.

insignificant) e The index of a language L is the size of the largest set of strings

X that is pairwise distinguishable by L. Equivalently, the index

2. Given an equivalence relation, we can define the notion of an equiva- of a language is the size of the set of equivalence classes induced
lence class: by the “indistinguishable” relation relative to the language.

[wlr ={y |y =r =} — Note: The index of a language can be infinite.

e If 2Ry then [z] = [y]. — If Lis {a"0" | n > 0} then X = {a" | n > 0} is pairwise
e Note that if z is not equivalent to x, then [z] N [y] = 0. Elsf;nf;lﬁ;la;l;i}:e Eizlinée;fu? I;}; bzi :éj e
e Every element belongs to some equivalence class. _ Consider the index of a*b*:
e The equivalence classes therefore form a partition of the set of all Every string in X* falls in one of three equivalence classes:
values. x [e] = [a¥].
. ) x [a*b] = [a*bb*]
Equivalence Relations and Languages + [(a Ub)*ba]

1. The relation “indistinguishable by L.” defined by Therefore, a*b" must be of index 3.
— Interestingly, the index of a*b* corresponds to the number of
Definition: We say that w,v € 3* are indistinguishable by states in the “obvious” DFA for the language.

language L if for all z € ¥*,wz € L <= wvz € L and we

b
write w =, v. V a g\ a,b‘>
is an equivalence relation on strings. b a T~
. . . . . . . . >
e This claim is fairly obvious, but Sipser thought it was non-obvious

enough to make a homework problem out of it (1.51) so...

— It must be reflexive since wz € L <= wz € L.
— It must be symmetric since if w =, v then for all z, wz € The Myhill-Nerode Theorem
L <= vz € L which is equivalent to saying vz € L <=

_ 1. This bring us to the big Theorem (introduced through problem 1.52 in
wz € L sov = w.

o ) Sipser):
— Similarly, if w =, v and v =, x then for all z, wz € L <=
vzE€L < zz€ Lsow=Lx. Theorem (Myhill-Nerode): A language L is regular iff it
has finite index and each regular language is accepted by a
2. The number of distinct equivalence classes of strings under the indis- DFA whose description includes as many states as the index
tinguishable relationship has an interesting relationship to regularity. of the language.



2. First, I want you to understand how this theorem can serve as a substi-
tute for the pumping lemma when you goal is to show that a language
is not regular.

The theorem shows that a regular language must have finite in-
dex. So, if you can show that there exists some infinite set of
mutually distinguishable strings (relative to the language), then
the language cannot be regular.

As a simple example, we earlier observed that if L is {a™b" | n > 0}
then all the strings in the set X = {a" | n > 0} are pairwise
distinguishable from one another by L. This is true because for
any i # j, a’ is distinguished from a’ by b’ since a’b’ € L but
a’bi ¢ L.

This implies the index of L is infinite so L cannot be regular.

You may recall that the example Lygg = {1" # 1™ | n # m} is
not regular but showing this with the pumping lemma required a
tricky proof involving p!.

Consider the set X = {1™ # | n > 1}. Any two elements w =
1™ = and v = 1™ # of this set such that m # n are distinguishable
relative to Lypg by the string z = 1" because wz = 1" # 1" ¢
Lnpg while vz = 1" # 1™ ¢ Lygg. Thus X is an infinite set
of mutually distinguishable strings. This implies that Lygg has
infinite index and must not be regular.

3. Now consider how we can prove one direction of the Myhill-Nerode
theorem, namely that regularity implies finite index.

Proof:

(a) Suppose that L is regular.

e Then there is some DFA D = (Q,%,6,s, F) such
that L = L(D).

e Suppose that X is a set of strings that is pairwise
distinguishable by L with w,v € X.

e Consider 4(s,w) and d(s, v).

- 1If 5(s,w) = &(s,v) then for all z € ¥, 5(s,wz) =

i(s,vz). But wz € L <= J(s,wz) € F <=

d(s,vz) € F <= wvz € L which would imply that
w and z were indistinguishable by L.

— Since the members of X are pairwise distinguish-
able, this cannot be the case so for all w, v it must
be the case that d(s,w) # 6(s,v).

e This implies that the number of elements in X can-
not exceed the number of elements in () since oth-
erwise there would have to be at least two strings
in X such that (s, w) = d(s,v). Therefore, if L is
regular it is of finite index.



