
CS 361 Meeting 11 — 3/4/20

Announcements
1. Homework 4 is due Friday.

Distinguishable Prefixes

1. Consider the relation “distinguishable” that exists between strings over
an alphabet relative to some language L.

Definition: We say that w, v ∈ Σ∗ are distinguishable by a
language L if for some z ∈ Σ∗, exactly one of wz and vz is a
member of L.

• It may help to first think about what it would mean for two strings
to be “distinguishable” in a human language. Interestingly, hu-
man languages are so rich with nuance that I found it hard to
think of examples that were not distinguishable.

– One simple example is our definite and indefinite articles.
The set of strings that can validly follow “A” is different from
those that can follow “An”.

– One might think words we think of as synonyms would serve
as counter examples, but the pair “big” an “large” don’t quite
work because “big bird met ernie” just isn’t the same as “large
bird met ernie”.

• We, of course, will be interested in how the term “distinguishable”
applies to more exciting, formal languages like:

LDiv5 = {w | w ∈ {0, 1}∗, value of w is divisible by 5 }

– For this language, the strings

10110

10000

are distinguishable by LDiv5 because

101101 is 45 which is divisible by 5
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100001 is 33 which is not divisible by 5

while

10110 = 32

10001 = 27

are indistinguishable by LDiv5 because they are both equal to
2 mod 5 so any digits that one could add to 10110 to make
it divisible by 5 would also extend 10001 into a number that
was divisible by 5.

Equivalence Relations

1. Three of the “prerequisites” that you were supposed to review when
you read Chapter 0 of the text are relations (in general), binary rela-
tions and equivalence relations (in particular).

• A binary relation is a subset of the set A×A of all pairs of elements
of some set A. Familiar examples include those induced on sets
of numbers by relational operators

– The “less than” relation is the set {(x, y) | x < y}
– The “equals” relation is the set {(x, y) | x = y}

• In general, if R ⊂ A×A we write xRy ⇐⇒ (x, y) ∈ R.

• An equivalence relation is a binary relation the satisfies three
properties that seem to be key to the notion of equality:

reflexive ∀x ∈ A, xRx.

symmetric ∀x, y ∈ A, xRy ⇐⇒ yRx.

transitive ∀x, y, z ∈ A, xRy and yRz ⇒ xRz.

• If R is an equivalence relation we often write x ≡R y.

• Some familiar examples of equivalence relations include simple
equality of number, equality mod n, has the same birthday as (
which is sort of equality mod 365).

• With our interest in strings, we can also consider some equivalence
relationships on strings. To keep things simple, let’s consider
strings of 0s and 1s.

– equality
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– same length as

– same number of 1s

– represents the same binary number (considering leading 0s
insignificant)

2. Given an equivalence relation, we can define the notion of an equiva-
lence class:

[x]R = {y | y ≡R x}

• If xRy then [x] = [y].

• Note that if x is not equivalent to x, then [x] ∩ [y] = ∅.
• Every element belongs to some equivalence class.

• The equivalence classes therefore form a partition of the set of all
values.

Equivalence Relations and Languages

1. The relation “indistinguishable by L” defined by

Definition: We say that w, v ∈ Σ∗ are indistinguishable by
language L if for all z ∈ Σ∗, wz ∈ L ⇐⇒ vz ∈ L and we
write w ≡L v.

is an equivalence relation on strings.

• This claim is fairly obvious, but Sipser thought it was non-obvious
enough to make a homework problem out of it (1.51) so...

– It must be reflexive since wz ∈ L ⇐⇒ wz ∈ L.

– It must be symmetric since if w ≡L v then for all z, wz ∈
L ⇐⇒ vz ∈ L which is equivalent to saying vz ∈ L ⇐⇒
wz ∈ L so v ≡L w.

– Similarly, if w ≡L v and v ≡L x then for all z, wz ∈ L ⇐⇒
vz ∈ L ⇐⇒ xz ∈ L so w ≡L x.

2. The number of distinct equivalence classes of strings under the indis-
tinguishable relationship has an interesting relationship to regularity.

• Given a language L and a set X of strings over L’s alphabet, we
say that the X is pairwise distinguishable by L if every pair of
strings in X is distinguishable by L.

• The index of a language L is the size of the largest set of strings
X that is pairwise distinguishable by L. Equivalently, the index
of a language is the size of the set of equivalence classes induced
by the “indistinguishable” relation relative to the language.

– Note: The index of a language can be infinite.

– If L is {anbn | n ≥ 0} then X = {an | n ≥ 0} is pairwise
distinguishable by L since for any i 6= j, ai is distinguished
from aj by bi since aibi ∈ L but ajbi /∈ L.

– Consider the index of a∗b∗:
Every string in Σ∗ falls in one of three equivalence classes:

∗ [ε] = [a∗].

∗ [a∗b] = [a∗bb∗]

∗ [(a ∪ b)∗ba]

Therefore, a∗b∗ must be of index 3.

– Interestingly, the index of a∗b∗ corresponds to the number of
states in the “obvious” DFA for the language.

a,ba

b a

b

The Myhill-Nerode Theorem

1. This bring us to the big Theorem (introduced through problem 1.52 in
Sipser):

Theorem (Myhill-Nerode): A language L is regular iff it
has finite index and each regular language is accepted by a
DFA whose description includes as many states as the index
of the language.
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2. First, I want you to understand how this theorem can serve as a substi-
tute for the pumping lemma when you goal is to show that a language
is not regular.

• The theorem shows that a regular language must have finite in-
dex. So, if you can show that there exists some infinite set of
mutually distinguishable strings (relative to the language), then
the language cannot be regular.

• As a simple example, we earlier observed that if L is {anbn | n ≥ 0}
then all the strings in the set X = {an | n ≥ 0} are pairwise
distinguishable from one another by L. This is true because for
any i 6= j, ai is distinguished from aj by bi since aibi ∈ L but
ajbi /∈ L.

• This implies the index of L is infinite so L cannot be regular.

• You may recall that the example LNEQ = {1n 6= 1m | n 6= m} is
not regular but showing this with the pumping lemma required a
tricky proof involving p!.

• Consider the set X = {1n 6= | n ≥ 1}. Any two elements w =
1n 6= and v = 1m 6= of this set such that m 6= n are distinguishable
relative to LNEQ by the string z = 1n because wz = 1n 6= 1n /∈
LNEQ while vz = 1n 6= 1m /∈ LNEQ. Thus X is an infinite set
of mutually distinguishable strings. This implies that LNEQ has
infinite index and must not be regular.

3. Now consider how we can prove one direction of the Myhill-Nerode
theorem, namely that regularity implies finite index.

Proof:

(a) Suppose that L is regular.

• Then there is some DFA D = (Q,Σ, δ, s, F ) such
that L = L(D).

• Suppose that X is a set of strings that is pairwise
distinguishable by L with w, v ∈ X.

• Consider δ̂(s, w) and δ̂(s, v).

– If δ̂(s, w) = δ̂(s, v) then for all z ∈ Σ∗, δ̂(s, wz) =
δ̂(s, vz). But wz ∈ L ⇐⇒ δ̂(s, wz) ∈ F ⇐⇒

δ̂(s, vz) ∈ F ⇐⇒ vz ∈ L which would imply that
w and z were indistinguishable by L.

– Since the members of X are pairwise distinguish-
able, this cannot be the case so for all w, v it must
be the case that δ̂(s, w) 6= δ̂(s, v).

• This implies that the number of elements in X can-
not exceed the number of elements in Q since oth-
erwise there would have to be at least two strings
in X such that δ̂(s, w) = δ̂(s, v). Therefore, if L is
regular it is of finite index.
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