
CS 361 Meeting 10 — 3/2/20

Announcements
1. Homework 4 online now, due Friday.

Review

1. Last time I introduced the FAMOUS Pumping Lemma:

Lemma: Suppose L is a regular language. Then there exists
a positive integer p such that any string s ∈ L with length
at least p may be partitioned into s = xyz where

(a) |y| > 0

(b) |xy| ≤ p
(c) xyiz ∈ L, for all i ≥ 0.

2. Today, we will spend some time practicing how to use this result to
prove that languages are not regular. If we have time, we will take a
quick look at how to prove the lemma formally.

3. By way or review, last time we considered proofs that several languages
were not regular:

• LUnaryAdd = {1a + 1b = 1c | a+ b = c}
• LEQ = {1n = 1n | n ≥ 0}
• LEQ−RE = {e = e′ | e & e′ are regular exprs and L(e) = L(e′)}

4. The point of the last example was to show that you can often avoid
using the Pumping Lemma by using closure properties of regular lan-
guages in conjunction with known languages that are not regular.

• Consider LEQ−RE = {e = e′ | e & e′ are regular exprs and L(e) =
L(e′)}
• Remember, that {1n = 1n | n ≥ 0} ⊂ LEQ−RE and we know that

this subset of LEQ−RE is not regular.

• Consider the language 1∗ = 1∗ (which is clearly regular).

Click here to view the slides for this class

• The intersection of LEQ−RE with 1∗ = 1∗ is just LEQ.

• If LEQ−RE was regular, then since regular languages are closed
under intersection, LEQ would have to be regular.

• So, LEQ−RE must not be regular.

Thinking Negative Thoughts

1. In the last class, I also tried to emphasize that since we almost alway
use the Pumping Lemma in proofs by contradiction, our goal is usually
to show that the Lemma is not satisfied rather than showing it is. As
a result, it is often useful to state the negation of the lemma rather
than its positive statement. That is...

2. To show that L is not regular you must show that

• for every sufficiently large p

• there exists a string s ∈ L of length ≥ p such that

• for every possible partition of s = xyz where

(a) |y| > 0

(b) |xy| ≤ p
• there exists i ≥ 0, such that xyiz /∈ L.

Can You Pump?

1. Part of the reason most of the examples we have considered have been
fairly easy is that the languages are fairly sparse. There are many
possible strings that don’t belong to these languages, so it is actually a
bit hard to pump without bumping into something not in the language.
In fact, for a language like {1n = 1n | n ≥ 0} all sufficiently long strings
that belong to the language serve as counter examples.

2. Consider LEQ−01 = {w|w ∈ {0, 1}∗with equal number of 0s and 1s}.

• First, contrast this language with {0n1n|n ≥ 0}.
• Every possible permutation of a string in {0n1n|n ≥ 0} belongs

to LEQ−01. As a result, in some intuitive sense, LEQ−01 is a much
bigger or denser language than {0n1n|n ≥ 0}. Conceptually, this
might make it harder to find a string that cannot be pumped.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect10slides.pdf

• We can prove that LEQ−01 is not regular by first proving that
the simple language {0n1n|n ≥ 0} is not regular and employing
closure properties to conclude that this implies that LEQ−01 must
be regular.

– Consider the intersection of LEQ−01 with 0∗1∗.

– This is just the language {0n1n|n ≥ 0}.
– We can prove that {0n1n|n ≥ 0} is not regular by observing

we can’t pump the 0s in 0p1p in much the same way we have
for strings like 1p = 1p. The boundary between the 0s and 1s
is effectively equivalent to a delimiter like “=”.

– If LEQ−01 were regular, its intersection with 0∗1∗ would have
to be regular since regular languages are closed under inter-
section.

– Thus, LEQ−01 must not be regular.

3. For practice, however, let’s try to show that is not regular directly
using the Pumping Lemma. Letting p be the value specified by the
Pumping Lemma for this language, consider the following strings from
the language:

• (01)p

• 0p1p

• 0k1p0p−k with p > k > p/2

• (10)p(01)p

Which of these strings can or cannot be pumped?

• (01)p can be pumped.

Let x = ε, y = 01, z = (01)p−1 then (01)p = xyz and xyiz =
(01)p+(i−2) ∈ LEQ−01. Therefore, this string does not provide
what we need to show that the language is not regular.

• 0p1p cannot be pumped.

Given that the string starts with p 0s, if for some x, y, z we have
0p1p = xyz and |xy| ≤ p then x and y must consist only of 0s and
given |y| > 0, we know that xy2z must contain more 0s than 1s so

it does not belong in the language. This violates the conditions
of the Pumping lemma and therefore shows that the language is
not regular.

• 0k1p0p−k with p > k > p/2 can be pumped.

If we let x = 0k−1, y = 01 and z = 1p−10p−k then for all i,
xyiz = 0k−1(01)i1p−10p−k will have exactly p + I − 1 0s and 1s
so it does belong to the language. Again, this does not provide
evidence that the language is non-regular.

• (10)p(01)p can be pumped.

As with the first example, just let x be empty and y be the first
0101. This example is include to remind you that when you pick a
pattern for a string to pump, pumping does not have to preserve
the pattern, it just has to stay within the original language. Here,
the pattern requires an even number of 01 pairs. When we pump,
we may end up with an odd number of 01 pairs, but the number
of 0s and 1s will still be equal so the pumped strings will still
belong to the language.

4. So, if you wanted to prove this language was not regular, you could
use 0p1p as a counter example in your argument, but you could not
use the other three examples we just considered.

5. This example illustrates an important fact. Not all strings in a lan-
guage will violate the Pumping lemma if the language is non-regular.
One has to carefully search for an appropriate string.

A Needle in a Haystack

1. An example that gets even harder because the language is not at all
sparse is LNOTEQUAL = {1n 6= 1m | m 6= n}.

• If you think about some examples we have considered like
LEQUAL = {1n = 1m | m = n}, it isn’t hard to find an ex-
ample that ends up outside the language no matter how you try
to pump because there are very few strings in the langauge.

– For odd length l, there is exactly 1 out of 2l possible strings
over the alphabet that fall in the language and 1 out of about
l − 2 strings that have the right form.

2

– There are no strings of even length in the language.

• LNOTEQUAL is comparatively dense:

– As suggested above, there are roughly l − 2 strings of length
l that fall within the language.

2. Let’s assume that the pumping length for LNOTEQUAL is p and try to
see if we can find ways to pump a few strings in the language.

1p 6= 1p+1

For this example, almost any partition you can think of will work.
Basically, we can set x = 1l, y = 1m, z = 1p−(l+m) 6= 1p+1 as long
as we make sure that l + m ≤ p, m > 0 and for all i ≥ 0,
l + im+ p− (l +m) = (i− 1)m+ p 6= p+ 1.

This will be satisfied as long as (i− 1)m 6= 1 which we can ensure
by making m > 1. That is, the only form of pumping that will
get us into trouble is if we tried having y = 1.

1p 6= 1p+p2

Showing that we can pump one type of string is not sufficient. We
have to show that we can pump any string of sufficient length. So,
until we can think of an argument that covers all possibilities, we
have to keep looking.

As above, we can say that no matter how we partition this string
we will have x = 1k, y = 1m, z = 1p−(l+m) 6= 1p+p2 and that
therefore, all we need to ensure is that it is not possible to find
an i such that (i− 1)m+ p 6= p+ p2.

• That is, we have to make sure that we cannot set

i =
p2

m
+ 1

• We can accomplish this by letting x = 1 and y = 1p−1 so that
m = p− 1 which cannot divide p evenly.

1p 6= 1p+p!

Obviously, we saved the best for last.

• Again, we have to choose k and m so that x = 1k, y = 1m,
z = 1p−(l+m) 6= 1p+p2 in such a way that k+im+p−(l+m) =
(i− 1)m+ p 6= p+ p!.

• This means we need to choose m so that we cannot set i =
p!
m + 1. Alas, since m ≤ p, any value of m we choose will
divide p!, so no matter what m we choose, there will be a
value of i for which the Pumping Lemma fails.

• Of course, the good news is that if our job was to show that
LNOTEQUAL is not regular, this is just what we were looking
for.

Note: The remainder of the material in these notes have not been covered
in class, but I wanted to provide you with the details of the following proof
based on δ̂ to complement the one you will find in Sipser’s text.

Proving the Pumping Lemma

1. The proof of this Lemma is just a generalization of the argument I
used in the last class to show that

LUnaryAdd = {1a + 1b = 1c|1k refers to a string of k 1s and a+ b = c}

was not regular.

2. We need two technical lemmas I have put in a figure so that they don’t
separate the Pumping Lemma from its proof on the page.

• The first lemma enables us to assume that if we break a string up
into subparts, we will get the same final state by applying δ̂ to
the whole string that we get if we apply δ̂ to the subparts in the
appropriate order.

• The second lemma formalizes the idea that if a given string leads
a DFA through a loop, the repeating that string an arbitrary
number of times starting in the first state of the loop will always
bring the machine back to that state.

3. Given these lemmas, the proof of THE LEMMA is straightforward.

(Pumping) Lemma : Suppose L is a regular language.
Then there exists a positive integer p such that any string
s ∈ L with length at least p may be partitioned into s = xyz
where

3

—————————————-

Lemma 1: Given δ : Q× Σ→ Q, if we define δ̂ : Q× Σ∗ → Q as:

δ̂(q, ε) = q (q ∈ Q)

δ̂(q, wx) = δ(δ̂(q, w), x) (q ∈ Q, x ∈ Σ, w ∈ Σ∗)

then δ̂(q, wv) = δ̂(δ̂(q, w), v) for all w, v ∈ Σ∗.

Proof: The proof is by induction on the length of v. The basis is essentially
the definition of δ̂. Namely that

δ̂(q, wε) =

δ̂(q, w) by definition of concatenation

δ̂(δ̂(q, w), ε) by definition of δ̂

For the induction step, we assume the result is true for |v| ≤ k and try
to show that δ̂(q, w(vx)) = δ̂(δ̂(q, w), vx) for any x ∈ Σ. We know that
δ̂(q, wvx) = δ(δ̂(q, wv), x). By our inductive assumption, we can there-
fore say that δ̂(q, wvx) = δ(δ̂(δ̂(q, w), v), x). By the definition of δ̂ we can
conclude that δ̂(q, wvx) = δ̂(δ̂(q, w), vx) as desired.

—————————————-

Lemma 2: Given δ : Q× Σ→ Q, if we define δ̂ : Q× Σ∗ → Q as:

δ̂(q, ε) = q (q ∈ Q)

δ̂(q, wx) = δ(δ̂(q, w), x) (q ∈ Q, x ∈ Σ, w ∈ Σ∗)

and for some w ∈ Σ∗ and q ∈ Q, δ̂(q, w) = w then δ̂(q, wi) = q for all i ≥ 0.

Proof: The proof is by induction on i. For i = 0, we know that δ̂(q, w0) =
δ̂(q, ε) = q by the definition of δ̂.
Now, assume that the result holds for all values less than or equal to i and
consider the case of i + 1. δ̂(q, wi+1) = δ̂(δ̂(q, wi), w) by Lemma 1. Thus,
given our inductive assumption it is clear that δ̂(q, wi+1) = δ̂(δ̂(q, wi), w) =
δ̂(q, w) = q as required.

Figure 1: Lemmas related to the Pumping Lemma

—————————————-

(a) |y| > 0

(b) |xy| ≤ p
(c) xyiz ∈ L, for all i ≥ 0.

Proof of Pumping Lemma: Suppose L is a regular lan-
guage. If L is finite, then choose p to be longer than any
string in L and the conditions of the lemma are satisfied
trivially. Otherwise, let M = (Q,Σ, δ, s, F) be a DFA such
that L = L(M). Let p be the number of states in M .

Suppose w = w1w2w3...wn ∈ L with n ≥ p. When M pro-
cesses w, it must pass through a sequence of states q0q1...qn
such that

• q0 = s

• qi = δ̂(s, w1...wi), 1 ≤ i ≤ n
Since there are p+1 states in the sequence q0q1...qp, we know
that some state must appear twice in this sequence. Let l
and k be two positions where such a repeated state occurs
in q0q1...qp with 0 ≤ k < l ≤ p. Let x = w1...wk, y =
wk+1...wl, and z = wl+1...wn.

Clearly, the x and y we have selected satisfy conditions (a)
and (b) in the statement of the Pumping Lemma. All we
need to show is condition (c).

If we call the repeated state q̂ then δ̂(s, xy) = δ̂(s, x) = q̂
and q̂ = δ̂(s, xy) = δ̂(δ̂(s, x), y) = δ̂(q̂, y). Lemma 2 therefore
allows us to conclude that for all i ≥ 0, q̂ = δ̂(q̂, yi). Lemma
1 then implies that δ̂(q̂, yi) = δ̂(δ̂(s, x), yi) = δ̂(s, xyi) = q̂.

Using Lemma 1, we can write δ̂(q̂, z) = δ̂(δ̂(s, xy), z) =
δ̂(s, xyz) ∈ F .

Therfore, we can conclude that δ̂(δ̂(s, xyi), z)) = δ̂(s, xyiz) ∈
F for all i ≥ 0 as required by condition (c), completing the
proof of the Lemma.

4

