CS 361 Williams College Homework 8

The first three questions on this assignment should be completed as group
work. One copy of the solution to each problem should be submitted by noon on
Wednesday or Thursday 4/22 or 4/23 depending on your group’s meeting time.

The final question on this assignment should be submitted independently
by each student by Tuesday 4/21. You may discuss approaches to the question
with members of your working group, but the final writeup you submit should
represent your own work in the same sense that was expected for all homework
submissions during the first half of the semester.

1. Given an alphabet ¥ and a string w € ¥* and a symbol x € X, let
occurs(z, w) equal the number of times the symbol = appears in w. We
can define an infinite collection of languages

Lyni—x = {w | for all z,y € X, occurs(z, w) = occurs(y, w)}
That is Lyy;—x is the set of strings over a particular alphabet ¥ in which

all of the symbols in the alphabet occur equally often.

Give a formal description of a family of Turing machines that decides
Lyyni—x for an arbitrary alphabet ¥. Your formal description should in-
clude a precise description of the machine’s state set and ¢ function written
in terms of ¥. The formal description should be accompanied by a brief
explanation of the intuition behind the machine (which may be very sim-
ilar to the explanation given for the JFlap-based machine for Ly, (a,b.c}
you submitted last week).

2. An unrestricted grammar is a quadruple G = (V, X, R, S) where

e V is a finite set of non-terminal symbols;

e ¥ is a finite set of terminal symbols disjoint from V/;

e S €V is the unique start symbol.

RCc(VUX)*(V)(VUX)* x (VUX)* is a finite set of rules .

The only difference between an unrestricted grammar and a context-free
grammar is in the rules. Rules in context-free grammars have a single non-
terminal on the left hand side, whereas rules in an unrestricted grammar
may have any string of terminals and non-terminals on the left side, but
must include at least one non-terminal. As with context-free grammars,
although rules are formally tuples, they are conventionally written with
an arrow separating the right and left sides.

Derivations are similar to context-free grammars except the definition of
“yields” is slightly different: we may substitute the right hand side of any
rule into a derivation if the derivation has a substring matching the left
hand side of the rule. More formally:

Due: 12:00. April 22 or 23, 2020 1

CS 361 Williams College Homework 8

Yields Given an unrestricted grammar, G = (V, X, S, R), and two strings
xz and y in (VUX)* such that z = acf and y = ay8 where a, 0,7, 5 €
(VUX)* and (0,v) € R we say that x yields (or directly derives) y.
In this case we write

r=y

For example, here’s a grammar that generates the language {a™b"c" |n >

1}

S — ABCS | T.
CA — AC

BA — AB

CB — BC

cr. — T.c | Ty
BT, — Tbb | Tab
AT, — Ty,a

T, — €

Let L C ¥* be a language accepted by a Turing machine M. Show that
L can be generated by an unrestricted grammar G.

To solve this problem, you should explain how to construct an unrestricted
grammar G given a description of a Turing machine M in such a way that
L(G) = L(M). A good first step in this process is to build a grammar that
generates all sentential forms of the form w#Qo w! where w is any string
over the input alphabet of the machine, # and ! are markers, and Qg is
a non-terminal corresponding to the start state of the Turing Machine.
Then, you should add rules to the grammar that are structured so that
the steps that can be taken using the rules of the grammar modify the part
of the sentential form after the # in a way that each step in a derivation
reflects one move that might be made by the Turing machine. Finally, the
grammar should be defined so that if the non-terminal representing the
accept state of the Turing machine ever appears on the right hand side of
the #, the productions of the grammar allow derivation steps that erase
all symbols to the right of and including the # ending with a derivation
of w.

As both a hint to get you started and an example of the degree of detail
I would like to see in your answers, the following fragment of a grammar
generates all sentential forms w#Q w! for a given X.

Let G = (V, TV, S, R) where:
o V = {Start,Gen, Ret} U{Dup, | x € £} U{Qo}
o V=3 U{#,1}
e The set of rules R, includes:
— S — Gen #!

Due: 12:00. April 22 or 23, 2020 2

CS 361 Williams College Homework 8

— Gen # — x # Dup,, forall z € X
Gen # — # Qo

Dup, y =y Dup,, for all z,y €
— Dup, ! > Ret x!

— = Ret — Ret x, for all z € &

Ret — Gen#t

Intuitively, The non-terminal Gen allows the grammar to add any symbol,
x to the right end of the first copy of w. Doing so introduces a copy of the
non-terminal Dup, which forces the grammar to add a copy of x to the
end of the second copy of w. Once this second copy is added, Ret makes
it possible to add another Gen right before the # that separates the two
copies of w so that this process can be repeated. Eventually, when all
the symbols of w are in place, Gen also makes it possible to complete the
process by placing Qg after the central #. Note, as defined, Qg is a non-
terminal rather than a terminal. Therefore, none of the sentential forms
this grammar generates are actually sentences. In other words, L(G) = 0.
Your job is to add non-terminals and rules to the grammar so that the
sentential form w#Qo w ! derives w iff w € L(M).

3. Let C C X be a language. Prove that C' is Turing-recognizable if and
only if a Turing-decidable language D C X7, exists such that

C = {z | there exists n such that b(n)#x € D }.

where b(n) represents a string encoding the number n in binary with no
leading zeroes and # is a delimiter symbol such that # ¢ 3¢.

You should think of n as acting as a measure of the work required to show
that x is accepted by C.

4. Alan Turing clearly never used any word processing software! Imagine
if when you typed a character in your favorite editor, the new character
replaced the character after the cursor rather than being added to the
document between the characters before and after the cursor position.
To add a single character to the middle of a document you would have to
retype every symbol from the insertion point to the end of your document.
This is exactly how standard Turing machines work. Inserting an extra
symbol in the middle of the tape requires copying every single character
that follows on the tape.

On the other hand, when using a modern text editor, you can either insert
a new character, delete a character by pressing the delete key or move the
cursor left or right using arrow keys without replacing any characters. So,
imagine a variant of the Turing machine where at each step, the machine
could either insert any symbol from the tape alphabet, delete the symbol
under the tape head, or move one position left or right along the symbols
on the tape without actually changing the contents of the tape (where,

Due: 12:00. April 22 or 23, 2020 3

CS 361 Williams College Homework 8

like Sipser, we assume an attempt to move left past the leftmost symbol
on the tape will leave the head on the same symbol).

For this problem, I would like you to provide a formal description of
“Editor-like” Turing machines that behave as described above. Your an-
swer should begin with a sentence like “An Editor-like Turing machine
is a 7-tuple ...” It should include appropriate modifications of the four
definitions of “Turing machine”, “configuration”, “yields” and “accepts”
provided in class. If any of these definitions requires no change, just say
so rather than repeating them.

Think carefully about how the head should be positioned after a character
is inserted or deleted. There are many options here. When you insert a
symbol, the new symbol could be inserted before or after the symbol at
which the tape head is positioned. Similarly, while it seems obvious that
when a symbol is deleted it should be the symbol that is currently under
the tape head, there is a question of whether after the delete is completed,
the head should move to the symbol that had been before or after the
deleted symbol.

For insertions, your formalism should insert the new symbol before the
symbol at the tape head and leave the tape head on the symbol that
caused the insertion (that is, on the symbol that is now immediately to
the right of the inserted symbol). For deletion, the machine should delete
the symbol under the tape head. The tape head should then move to
the symbol that had preceded the deleted symbol unless the machine just
deleted the leftmost symbol on the tape. In that case, the head should
move to the new first symbol on the tape.

To make it easy for you to copy any of the LaTeX source needed to explain
your modifications, I have included the versions of my definitions from the
lecture notes below:

Definition: A Turing machine is a 7-tuple (Q, X, T, 6, g0, Gaccept Greject),
where

Q is a finite set of states,

Y is a finite input alphabet (not containing the blank symbol),

I' is a finite tape alphabet which is a superset of ¥ including
the blank symbol,

0:QxT — Q xT x{Left, Right} is the transition function,
qo is the start state,

Gaccept 15 the accept state, and

Qreject 7 Qaccept 18 the reject state.

Definition: A configuration of a Turing machine is a triple
(u,q,v) where ¢ € @ is the current state, uv is the contents of
the non-blank portion of the tape with u being the portion to
the left of the current head position and u being the portion

Due: 12:00. April 22 or 23, 2020 4

CS 361 Williams College Homework 8

from the symbol currently under the head to the end of the
non-blank tape.

Definition: We say the configuration (u, ¢, av) yields configu-
ration (u',¢’,v’) for q,¢' € Q,a € T, and u,v,u’,v’ € T'* if for
some b and c € I:

5(g,a) = (¢, ¢, Left),u = u'b, and v/ = bew, or

e §(q,a) = (¢, ¢, Right), v =ucand v = v , or
e 0(q,a) = (¢, ¢, Left),u=u" =¢, and v = cv, or
e 0(q,a) = (¢, ¢, Right), v = uc, v =¢, and v' = _.

Definition: A TM accepts a string w € X* if there is a se-
quence of configurations that begins with (e, go, w) and ends in
(w', gaccept, w”) for some w’, w” € T'* where each configuration
yields the following configuration in the series.

Due: 12:00. April 22 or 23, 2020)

