
CS 361 Williams College Homework 7

The first three questions on this assignment should be completed as group
work. One copy of the solution to each problem should be submitted by noon on
Wednesday or Thursday 4/15 or 4/16 depending on your group’s meeting time.

The final question on this assignment should be submitted independently
by each student by Tuesday 4/14. You may discuss approaches to the question
with members of your working group, but the final writeup you submit should
represent your own work in the same sense that was expected for all homework
submissions during the first half of the semester.

1. In the lectures, we saw several examples of pushdown automata designed
to recognize the language of strings containing equal numbers of a’s and
b’s. At one extreme, we considered a machine that exploited nondeter-
minism extensively:

a, ε / a

ms f
ε, ε / $

b, a / ε

ε, $ / ε

b, ε / b a, b / ε

At the other extreme we saw an example of a deterministic machine for
the same language.

a, ε / a u

a, ε / A

b, ε / b d

b, a / ε

a, b / ε

b, ε / B

b, A / ε

a, B / ε
starts

1

CS 361 Williams College Homework 7

(The diagrams presented here are identical to those seen in the lecture
notes and slides except the nodes are now labeled with single letter names
to simplify the presentation of your answer to the questions below.)

In the text, as part of a proof that any language recognized by a push-
down automaton must be context-free, Sipser presents an algorithm to
produce a context-free grammar for the language of a given pushdown au-
tomaton (Lemma 2.27 starting on page 121). The grammar produced
by this algorithm has non-terminal symbols of the form Apq for each
pair of states p and q in the PDA being considered. For example, for
the first machine with states s,m and f , the non-terminals would be
Ass, Asm, Asf , Ams, Amm, Amf , Afs, Afm and Aff .

At the top of page 122 in the text, Sipser provides three descriptions of
subsets that together form all of the productions/rules that should be
included in the grammar formed for a given PDA.

(a) Show all the rules required by item 1 of Sipser’s list of rule types for
the first of the two machines shown above (the machine with states
s, f and m). These would be all the rules formed using the template
Apq → aArsb.

(b) Show all the rules required by item 1 of Sipser’s list of rule types
for the second of the two machines shown above (the machine with
states s, u and d).

(c) Since there are three states in each of these machines, the third col-
lection of rules Sipser describes would include 33 = 27 rules. That
is a lot of rules! Most of them are unnecessary! A few of them are
essential.

To see how they are essential, consider the grammar formed from
the first PDA by combining the rules you included in part (a) of
your answer with the rules described in Sipser’s second step (Ass →
ε, Amm → ε and Aff → ε) while not including any of the rules of the
third type. Show an example of a string that belongs to the language
of the PDA that could not be derived using the grammar if only these
rules were included. Justify the claim that the string you identified
cannot be derived using the grammar.

(d) Now, to appreciate how many of the rules of Sipser’s third type are
not essential, consider the second PDA. You already know that a
grammar for this machine’s language can be formed by combining
the rules you listed in your answer to part (b), the rules added by
Sipser’s second step (Ass → ε, Auu → ε and Add → ε) and the 27
rules described in Sipser’s third set. Identify as small a subset as
possible of the 27 third step rules that will correctly complete the
grammar. Briefly justify the claim that these rules are sufficient.

2. We have seen that context-free languages are closed under union and inter-
section but not under complement. We have also observed that the subset

2

CS 361 Williams College Homework 7

of the set of context-free languages recognized by deterministic pushdown
automata is closed under complement since we can simply interchange the
final and non-final states of a deterministic machine to obtain a machine
that recognizes the complement of the original machine’s language. For
this question, I would like you to consider whether the set of languages
accepted by deterministic pushdown automata is closed under union and
intersection. We have not covered most of the material in the text related
to such languages. I don’t expect (or want) you to try to cover this mate-
rial on your own to answer this question. Instead, your argument should
be based on the one fact about deterministic context-free languages stated
above (that they are closed under complement) and general properties of
context-free languages in general.

3. Given an alphabet Σ and a string w ∈ Σ∗ and a symbol x ∈ Σ, let
occurs(x,w) equal the number of times the symbol x appears in w. We
can define an infinite collection of languages

Luni−Σ = {w | for all x, y ∈ Σ, occurs(x,w) = occurs(y, w)}

That is Luni−Σ is the set of strings over a particular alphabet Σ in which
all of the symbols in the alphabet occur equally often.

Consider the special case Luni−{a,b,c} of strings containing equals numbers
of a’s, b’s and c’s. This language is a simple example of a language that
is known not be be context-free. Using JFlap (http://jflap.org), design a
Turing machine that decides this language. Submit a PDF including both
a copy of the machine’s state diagram produced using JFlap and a brief,
informal explanation of how the machine works.

4. Let b(n) denote the binary representation of n without leading 0s (e.g.,
b(10) = 1010). Consider the language A = {b(n)#b(n+ 1) | n ≥ 1}.

(a) Show that this language is not context-free using the pumping lemma.
That is, show that for any value of p there exists a string w of length
p or greater that cannot be pumped.

(b) Just for the fun of it, also show that for any sufficiently large value of
p there exists a string w of length p or greater that can be pumped.

3

