1. Let \(b(n) \) denote the binary representation of \(n \) without leading 0s (e.g., \(b(10) = 1010 \)). Let \(b(n)^R \) denote the reversal of such a string.

Show that \(A = \{ b(n)^R # b(n + 1) \mid n \geq 1 \} \) is not a regular language. Provide two proofs of this fact, one using the Myhill-Nerode theorem and one using the Pumping Lemma.

2. Consider the DFA \(D = (\{1, \ldots, 8\}, \{a, b\}, \delta, 1, \{1, 8\}) \) with \(\delta \) described by the following table:

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\delta(q, a))</th>
<th>(\delta(q, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Using the algorithm described in class:

(a) Determine which states of the machine are equivalent. Show your work. That is, produce one or more tables of the form

```
 1
 ▼ ▼ ▼
 2 ▼ ▼ ▼
 ▼ ▼ ▼ ▼
 3 ▼ ▼ ▼
 ▼ ▼ ▼ ▼ ▼
 4 ▼ ▼ ▼
 ▼ ▼ ▼ ▼ ▼
 5 ▼ ▼ ▼
 ▼ ▼ ▼ ▼ ▼
 6 ▼ ▼ ▼
 ▼ ▼ ▼ ▼ ▼
 7 ▼ ▼ ▼
 ▼ ▼ ▼ ▼ ▼
 8
```

with increasingly many \(\neq \)s marking pairs of states that are known to be non-equivalent and show those tables in your solution.

(b) Draw the state diagram for the equivalent minimal DFA for \(L(D) \).

3. Complete exercise 2.13 from Sipser (as modified below):

Let \(G = (V, \Sigma, R, S) \) be the following grammar. \(V = \{S, T, U\}; \Sigma = \{0, \#\}; \) and \(R \) is the set of rules:

\[
\begin{align*}
S & \rightarrow TT \mid U \\
T & \rightarrow 0T \mid T0 \mid \# \\
U & \rightarrow 0U00 \mid \#
\end{align*}
\]

(a) Describe \(L(G) \) in English. (Note: A mix of English and extended regular expression notation may be more effective.)

(b) Prove that \(L(G) \) is not regular using the Myhill-Nerode Theorem.

Due: 12:00. October 12, 2018