1. Let b(n) denote the binary representation of n without leading 0s (e.g., b(10) = 1010). Let $b(n)^R$ denote the reversal of such a string.

Show that $A = \{b(n)^R \# b(n+1) \mid n \ge 1\}$ is not a regular language. Provide two proofs of this fact, one using the Myhill-Nerode theorem and one using the Pumping Lemma.

2. Consider the DFA $D = (\{1, ..., 8\}, \{a, b\}, \delta, 1, \{1, 8\})$ with δ described by the following table:

q	$\delta(q,a)$	$\delta(q,b)$
1	4	5
2	5	1
3	4	8
4	5	8
5	1	2
6	8	3
7	1	4
8	2	7

Using the algorithm described in class:

(a) Determine which states of the machine are equivalent. Show your work. That is, produce one or more tables of the form

with increasingly many \neq s marking pairs of states that are known to be non-equivalent and show those tables in your solution.

- (b) Draw the state diagram for the equivalent minimal DFA for L(D).
- 3. Complete exercise 2.13 from Sipser (as modified below):

Let $G = (V, \Sigma, R, S)$ be the following grammar. $V = \{S, T, U\}; \Sigma = \{0, \#\};$ and R is the set of rules:

 $\begin{array}{l} S \rightarrow TT \mid U \\ T \rightarrow 0T \mid T0 \mid \# \\ U \rightarrow 0U00 \mid \# \end{array}$

a. Describe L(G) in English. (Note: A mix of English and extended regular expression notation may be more effective.)

CS 361

- b. Prove that L(G) is not regular using the Myhill-Nerode Theorem.
- 4. Let b(n) denote the binary representation of n without leading 0s (e.g., b(10) = 1010). Let $b(n)^R$ denote the reversal of such a string. Give a context-free grammar for $A = \{b(n)^R \# b(n+1) \mid n \ge 1\}$.