
CS 361 Williams College Homework 3

1. The word “dermatoglyphics” is one of the longest words in English in
which no letter appears more than once!

For this problem, I would like you to finish describing two families of finite
automata that recognize the languages, RΣ, of strings over an alphabet Σ
that are not like “dermatoglyphics”. That is, the machines you describe
should recognize the languages of all strings over their alphabets that
include at least one symbol that appears repeatedly. You should not
make any assumptions about the size or contents of the alphabet over
which these strings are formed. As a result, it will not be possible to
simply draw diagrams of these machines. Instead, you should give formal
descriptions of the machines.

(a) Last week, you described a family of deterministic finite automata,
DRΣ

, such that DRΣ
recognized the language of all strings over the

alphabet Σ that include at least two copies of some symbol in Σ.

(b) This week, I want you to describe a family of non-deterministic finite
automata, NRΣ , such that NRΣ recognizes the language of all strings
over the alphabet Σ that include at least two copies of some sym-
bol in Σ. In addition to describing the machine, provide a formula
expressing the relationship between the size of the alphabet |Σ| and
the state set Q used by NRΣ

. Try to design your machines so that
its state sets is as small as possible.

You should provide a formal description of the automata (i.e., specify the
members of the tuple (Q,Σ, δ, s, F) that describe the automaton) rather
than a state diagram. This formal description should be accompanied by
a bit of concise prose (and possibly a diagram) that explains the intuition
behind your construction.

2. Produce a DFA equivalent to the NFA shown below using the subset
construction described on pages 55-58 of Sipser. Label the states of your
DFA with the subset of the letters A, B, and C that corresponds to the
subset they represent. Only show the reachable states (including the state
corresponding to the empty set of NFA states), but show edges for all
transitions.

0

C

1

A

1

B

0

0

3. In class I described a transformation

L 1
2

= {x | for some y ∈ Σ∗, xy ∈ L & |x| = |y|}

Due: 12:00. February 28, 2020 1

CS 361 Williams College Homework 3

that can be applied to any language over the alphabet Σ. I stated that
regular languages are closed under this transformation and outlined two
approaches to proving this claim. Like most proofs of this sort, both ap-
proaches involved assuming we were given a DFA D = (Q,Σ, δ, s, F) that
recognized some regular language L and then showing how to construct an
NFA N based on D that recognized L 1

2
. I provided a precise description

of how to construct the desired NFA for the first approach in class.

I described a second approach (which is summarized below) informally,
but I did not show how to formally describe the NFAs imagined in this
second approach. For this problem, I want you to give a formal description
of how to construct NFAs that use the second approach.

In the second approach, I suggested the machine N could initially guess
a final state f which D could reach after processing all the symbols in x
and a guessed string y whose length was equal to x. N , however, would
not attempt to guess the contents of y at the same time that it guesses
f . Instead, as the symbols of x were read one by one, the machine would
guess the symbols of y one by one. While it would read the symbols of x in
forward order it would guess the symbols of y in reverse order. In addition
to guessing the symbols of y, for each letter of y guessed the machine would
also guess the state the machine D would have been in just before reading
that symbol in such a way that its guess was consistent with the state f
and the symbols of y it had already guessed. Basically, the machine would
simulate the execution of M running backward on y at the same time it
simulates the execution of D running forward on x.

To verify that all of its guessing is correct, the machine must be designed
to check that the two simulations of D end up in the same state.

4. For any language L over alphabet Σ, consider the derived languages

L−− 1
3

= {w | for some x, y ∈ Σ∗, |x| = |y| = |w| and xyw ∈ L}
L− 1

3−
= {w | for some x, y ∈ Σ∗, |x| = |y| = |w| and xwy ∈ L}

L 1
3−

1
3

= {w | for some x, y, z ∈ Σ∗, |x| = |y| = |z|, w = xz and xyz ∈ L}

Regular languages are closed under at least one of these three transfor-
mations. At the same time, regular languages are not closed under at
least one of these transformations. Identify one of the transformations
that preserves regularity and justify your claim that regular languages
are closed under this transformation by providing a formal description
of how to transform a DFA, M , such that L = L(M) into a new au-
tomaton (probably a NFA) M ′ that recognized the transformed language
(L−− 1

3
, L− 1

3−
, or L 1

3−
1
3
). Provide a brief but complete explanation of the

intuition behind your construction.

5. (Sipser 1.18 f, i, and l) Give regular expressions generating the languages
described in parts f, i, and l of Sipser’s exercise 1.6. For the second prob-
lem, assume that the first digit of the input is considered an odd position.

Due: 12:00. February 28, 2020 2

CS 361 Williams College Homework 3

f) {w | w does not contain the substring 110 }
i) {w | every odd position of w is a 1 }
l) {w | w contains an even number of 0s, or contains exactly two 1s }

Due: 12:00. February 28, 2020 3

