1. (Sipser 1.18 f, i, and l) Give regular expressions generating the languages described in parts f, i, and l of Sipser’s exercise 1.6. For the second problem, assume that the first digit of the input is considered an odd position.

 f) \(\{ w \mid w \text{ does not contain the substring } 110 \} \)
 i) \(\{ w \mid \text{ every odd position of } w \text{ is a } 1 \} \)
 l) \(\{ w \mid w \text{ contains an even number of } 0s, \text{ or contains exactly two } 1s \} \)

2. Produce a regular expression describing the language accepted by the NFA shown below using the algorithm based on generalized nondeterministic finite automata presented in Sipser (but without showing transitions labeled by the regular expression \(\emptyset \)). As you execute the algorithm, remove states from the original machine in the following order: first C, then A, and finally B. Show each of the steps by drawing a diagram for each of the GNFAs produced until only 2 states remain. Remember that you should start by adding distinct start and final states to the machine. Show the final regular expression you obtain.

3. At this point, we have seen three notations for describing regular languages: deterministic finite automata, nondeterministic finite automata, and regular expressions. Before you learned about regular expressions, we used finite automata to prove in class that if \(L \) was a regular language, then the language \(L^R \) formed by reversing all the strings in \(L \) must also be a regular language.

 Imagine for a moment that instead of presenting automata first and then introducing regular expressions, we had instead first presented regular expressions and then described finite automata. If we had taken this approach then at some point all you would know is that regular languages are the languages described by regular expressions. Suppose that in this situation, you still wanted to prove that for all regular languages \(L, L^R \) must be regular.

 Show how you could prove this result by providing an algorithm that given any regular expression \(e \) produces a new regular expression \(e' \) in such a way that if \(L = L(e) \), then \(L^R = L(e') \). The structure of your presentation of this algorithm should follow the structure of the recursive definition of regular expressions (Definition 1.52 in the text).

 You should provide a strong justification for the correctness of your transformation, but you do not need to provide a formal proof.
4. In class I described a transformation
\[L_\downarrow = \{ x \mid \text{for some } y \in \Sigma^*, xy \in L \text{ and } |x| = |y| \} \]
that can be applied to any language over the alphabet \(\Sigma \). I stated that
regular languages are closed under this transformation and outlined two
approaches to proving this claim. Like most proofs of this sort, both ap-
proaches involved assuming we were given a DFA \(D = (Q, \Sigma, \delta, s, F) \) that
recognized some regular language \(L \) and then showing how to construct an
NFA \(N \) based on \(D \) that recognized \(L_\downarrow \). I provided a precise description
of how to construct the desired NFA for the first approach in class.

I described a second approach (which is summarized below) informally,
but I did not show how to formally describe the NFAs imagined in this
second approach. For this problem, I want you to give a formal description
of how to construct NFAs that use the second approach.

In the second approach, I suggested the machine \(N \) could initially guess
a final state \(f \) which \(D \) could reach after processing all the symbols in \(x \)
and a guessed string \(y \) whose length was equal to \(x \). \(N \), however, would
not attempt to guess the contents of \(y \) at the same time that it guesses \(f \). Instead, as the symbols of \(x \) were read one by one, the machine would
guess the symbols of \(y \) one by one. While it would read the symbols of \(x \) in
forward order it would guess the symbols of \(y \) in reverse order. In addition
to guessing the symbols of \(y \), for each letter of \(y \) guessed the machine would
also guess the state the machine \(D \) would have been in just before reading
that symbol in such a way that its guess was consistent with the state \(f \)
and the symbols of \(y \) it had already guessed. Basically, the machine would
simulate the execution of \(M \) running backward on \(y \) at the same time it
simulates the execution of \(D \) running forward on \(x \).

To verify that all of its guessing is correct, the machine must be designed
to check that the two simulations of \(D \) end up in the same state.

5. For any language \(L \) over alphabet \(\Sigma \), consider the derived languages
\[L_{\downarrow - \downarrow} = \{ w \mid \text{for some } x, y \in \Sigma^*, |x| = |y| = |w| \text{ and } xyw \in L \} \]
\[L_{\downarrow - \downarrow} = \{ w \mid \text{for some } x, y \in \Sigma^*, |x| = |y| = |w| \text{ and } xwy \in L \} \]
\[L_{\downarrow - \downarrow} = \{ w \mid \text{for some } x, y, z \in \Sigma^*, |x| = |y| = |z|, w = xz \text{ and } xyz \in L \} \]
Regular languages are closed under at least one of these three transfor-
mations. At the same time, regular languages are not closed under at
least one of these transformations. Identify one of the transformations
that preserves regularity and justify your claim that regular languages
are closed under this transformation by providing a formal description
of how to transform a DFA, \(M \), such that \(L = L(M) \) into a new au-
tomaton (probably a NFA) \(M' \) that recognized the transformed language
(\(L_{\downarrow - \downarrow}, L_{\downarrow - \downarrow}, \text{ or } L_{\downarrow - \downarrow} \)). Provide a brief but complete explanation of the
intuition behind your construction.