1. (A variation of Sipser’s problem 1.32) Real computers perform exciting operations like addition. Because DFAs can only accept or reject inputs, the closest we can come to this with a DFA is to show that some language encoding correct solutions to addition problems is regular. For example, we might consider the language
\[
\{ x + y = z \mid x, y, z \in \{0, 1\}^* \text{ & the sum of the numbers represented by } x \text{ and } y \text{ in binary notation is the number represented by } z \}
\]
Unfortunately, this very natural language is not regular. On the other hand, if we interleave the digits of \(x, y, \) and \(z \) appropriately we can describe a regular language that encodes correct binary addition. In particular, consider the language
\[
\{ w \mid w \in \{0, 1\}^* \text{ & } w = x_0 y_0 z_0 x_1 y_1 z_1 \ldots x_k y_k z_k \text{ where } x_i, y_i, z_i \in \{0, 1\} \text{ & the sum of the numbers represented by the sequences } x_k \ldots x_1 x_0 \text{ and } y_k \ldots y_1 y_0 \text{ is the number represented by } z_k \ldots z_1 z_0 \}
\]
Here we have encoded the addition problem with the digits of \(x, y, \) and \(z \) interleaved. We have also presented the digits in reverse order (the ones place comes first, then the twos, then the fours, etc.) and we have ensured that the same number of digits are used to represent all three numbers.

Show that this language is regular.

You may answer this question either by drawing a state diagram or giving a more formal description by specifying \((Q, \Sigma, \delta, s, F)\). In either case, provide text explaining the intuition behind your approach.

2. Consider the alphabet consisting of the 26 capital letters of the Roman alphabet plus the space character. Relative to this alphabet, the string

\[
\text{THE QUICK RED FOX JUMPED OVER THE LAZY BROWN DOG}
\]

is quite special in that it contains at least one copy of every single symbol in the alphabet. For any given alphabet, consider the language consisting of all strings over that alphabet that are not special in this way. That is, consider the language of all strings over a given alphabet \(\Sigma \) that do not include at least one of the symbols in the alphabet.

(a) Describe a non-deterministic finite automaton that recognizes this language using as few states as possible. What is the relationship between the number of states in your automaton and \(|\Sigma| \), the size of \(\Sigma \)?

(b) Describe a deterministic finite automaton that recognizes the same language. What is the relationship between the number of states in your automaton and \(|\Sigma| \), the size of \(\Sigma \)?
For both parts of this question you should provide a formal description of the automaton (i.e., specify the members of the tuple \((Q, \Sigma, \delta, s, F)\) that describe the automaton) rather than a state diagram. This formal description should be accompanied by a bit of concise prose that explains the intuition behind your construction.

3. Produce a DFA equivalent to the NFA shown below using the subset construction described on pages 55-58 of Sipser. Label the states of your DFA with the subset of the letters A, B, and C that corresponds to the subset they represent. Only show the reachable states (including the state corresponding to the empty set of NFA states), but show edges for all transitions.

![NFA Diagram](image)

4. This problem is inspired by a mistake many students make in one of the early labs used in CS 134 that result in missing every other line of the program’s correct output.

If \(L\) is a language over alphabet \(\Sigma\), let \(L_{EO}\) (EO is short for “every other”) be the set of strings obtained by deleting every other character in each string in \(L\). That is

\[
L_{EO} = \{w_1w_3w_5 \ldots w_k \mid w_1w_2w_3 \ldots w_n \in L \text{ with } 0 \leq n, n - 1 \leq k \leq n, w_i \in \Sigma\}
\]

Similarly, let \(L_{EEO}\) (EEO is short for even every other) be the set of strings obtained by deleting every other character in each string of even length in \(L\). That is,

\[
L_{EEO} = \{w_1w_3w_5 \ldots w_{2n-1} \mid w_1w_2w_3 \ldots w_{2n} \in L \text{ with } 0 \leq n, w_i \in \Sigma\}
\]

(a) The definitions of \(L_{EO}\) and \(L_{EEO}\) are different but confusingly similar. To clarify the difference, give an example of a regular language \(R\) such that \(R_{EO}\) and \(R_{EEO}\) are different languages and give at least one example of a string that falls in one but not the other.

(b) Show that if \(R\) is a regular language then \(R_{EEO}\) is also regular. To do this, you should show how to construct a NFA \(N\) such that \(L(N) = R_{EEO}\) given a DFA \(D\) with \(L(D) = R\). Rather than providing a formal proof, you should just clearly and briefly explain the logic behind your construction.
5. In the text, the notion that a FSA may accept a string \(s \in \Sigma \) is defined in terms of a sequence of symbols from the alphabet and an associated sequence of states. On the other hand, in class, we gave a recursive definition for a function \(\hat{\delta} \) that extends \(\delta \) from individual symbols of \(\Sigma \) to string of symbols and then stated that \(M \) accepts \(w \) if \(\hat{\delta}(q_0, w) \in F \).

In class, I claimed that these two approaches to defining acceptance by an FSA were equivalent. The key to this equivalence is the following lemma:

Lemma: Given a finite automaton \(M = (Q, \Sigma, \delta, q_0, F) \) and a string \(w = w_1w_2\ldots w_n \) where \(0 \leq n \) and for \(1 \leq i \leq n, \ w_i \in \Sigma \), if we define \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q \) recursively as:

- \(\hat{\delta}(q, \epsilon) = q \) for all \(q \in Q \), and
- \(\hat{\delta}(q, wx) = \delta(\hat{\delta}(q, w), x) \) for all \(q \in Q, w \in \Sigma^*, \) and \(x \in \Sigma \).

then for any \(q_i, q_f \in Q, \ \hat{\delta}(q_i, w) = q_f \) if and only if a sequence of states \(r_0, r_1, \ldots, r_n \in Q \) exists such that:

- \(r_0 = q_i \),
- \(r_n = q_f \), and
- \(\delta(r_i, w_{i+1}) = r_{i+1} \), for all \(i \) with \(0 \leq i < n \).

Prove this lemma. Your argument should be based on induction over the length of \(w \).