1. (A variation of Sipser’s problem 1.32) Real computers perform exciting operations like addition. Because DFAs can only accept or reject inputs, the closest we can come to this with a DFA is to show that some language encoding correct solutions to addition problems is regular. For example, we might consider the language

\[\{ x + y = z \mid x, y, z \in \{0, 1\}^* \& \text{the sum of the numbers represented by } x \text{ and } y \text{ in binary notation is the number represented by } z \} \]

Unfortunately, this very natural language is not regular. On the other hand, if we interleave the digits of \(x\), \(y\), and \(z\) appropriately we can describe a regular language that encodes correct binary addition. In particular, consider the language

\[\{ w \mid w \in \{0, 1\}^* \& \begin{align*}
 w &= x_0 \ 0 \ y_0 \ 0 \ z_0 \ 0 \ x_1 \ 1 \ y_1 \ 1 \ z_1 \ 1 \ \ldots \ x_k \ k \ y_k \ k \ z_k \ k \\
 \text{the sum of the numbers represented by the sequences } x_k \ldots x_1 x_0 \text{ and } y_k \ldots y_1 y_0 \text{ is the number represented by } z_k \ldots z_1 z_0
\end{align*} \} \]

Here we have encoded the addition problem with the digits of \(x\), \(y\), and \(z\) interleaved. We have also presented the digits in reverse order (the ones place comes first, then the twos, then the fours, etc.) and we have ensured that the same number of digits are used to represent all three numbers.

Show that this language is regular.

You may answer this question either by drawing a state diagram or giving a more formal description by specifying \((Q, \Sigma, \delta, s, F)\). In either case, provide text explaining the intuition behind your approach.

2. In the text, the notion that a FSA may accept a string \(s \in \Sigma\) is defined in terms of a sequence of symbols from the alphabet and an associated sequence of states. On the other hand, in class, we gave a recursive definition for a function \(\hat{\delta}\) that extends \(\delta\) from individual symbols of \(\Sigma\) to string of symbols and then stated that \(M\) accepts \(w\) if \(\hat{\delta}(q_0, w) \in F\).

In class, I claimed that these two approaches to defining acceptance by an FSA were equivalent. The key to this equivalence is the following lemma:

Lemma: Given a finite automaton \(M = (Q, \Sigma, \delta, q_0, F)\) and a string \(w = w_1 w_2 \ldots w_n\) where \(0 \leq n\) and for \(1 \leq i \leq n, w_i \in \Sigma\), if we define \(\hat{\delta} : Q \times \Sigma^* \rightarrow Q\) recursively as:

- \(\hat{\delta}(q, \epsilon) = q\) for all \(q \in Q\), and
- \(\hat{\delta}(q, wx) = \delta(\hat{\delta}(q, w), x)\) for all \(q \in Q, w \in \Sigma^*, \) and \(x \in \Sigma\).

then for any \(q_i, q_f \in Q, \hat{\delta}(q_i, w) = q_f\) if and only if a sequence of states \(r_0, r_1, \ldots, r_n \in Q\) exists such that:

- \(r_0 = q_i\),
• \(r_n = q_f \), and
• \(\delta(r_i, w_{i+1}) = r_{i+1} \), for all \(i \) with \(0 \leq i < n \).

Prove this lemma. Your argument should be based on induction over the length of \(w \).

3. The word “dermatoglyphics” is one of the longest words in English in which no letter appears more than once!

For this problem, I would like you to describe two families of finite automata that recognize the languages, \(R_\Sigma \), of strings over an alphabet \(\Sigma \) that are not like “dermatoglyphics”. That is, the machines you describe should recognize the languages of all strings over their alphabets that include at least one symbol that appears repeatedly. You should not make any assumptions about the size or contents of the alphabet over which these strings are formed. As a result, it will not be possible to simply draw diagrams of these machines. Instead, you should give formal descriptions of the machines.

(a) Describe a family of deterministic finite automata, \(D_{R_\Sigma} \), such that \(D_{R_\Sigma} \) recognizes the language of all strings over the alphabet \(\Sigma \) that include at least two copies of some symbol in \(\Sigma \). In addition, provide a formula expressing the relationship between the size of the alphabet \(|\Sigma| \) and the state set \(Q \) used by \(D_{R_\Sigma} \). Try to design your machines so that their state sets are as small as possible.

(b) Describe a family of non-deterministic finite automata, \(N_{R_\Sigma} \), such that \(N_{R_\Sigma} \) recognizes the language of all strings over the alphabet \(\Sigma \) that include at least two copies of some symbol in \(\Sigma \). Again, provide a formula expressing the relationship between the size of the alphabet \(|\Sigma| \) and the state set \(Q \) used by \(N_{R_\Sigma} \). Try to design your machines so that their state sets are as small as possible.

For both parts of this question you should provide a formal description of the automata (i.e., specify the members of the tuple \((Q, \Sigma, \delta, s, F) \) that describe the automaton) rather than a state diagram. This formal description should be accompanied by a bit of concise prose (and possibly a diagram) that explains the intuition behind your construction.

4. Produce a DFA equivalent to the NFA shown below using the subset construction described on pages 55-58 of Sipser. Label the states of your DFA with the subset of the letters A, B, and C that corresponds to the subset they represent. Only show the reachable states (including the state corresponding to the empty set of NFA states), but show edges for all transitions.

Due: 12:00. September 21, 2018
5. This problem is inspired by a mistake many students make in one of the early labs used in CS 134 that results in missing every other line of a program input (and failing completely if the number of input lines is odd).

If \(L \) is a language over alphabet \(\Sigma \), let \(L_{\text{EEO}} \) (EEO is short for “even every other”) be the set of strings obtained by deleting every other character in each string of even length in \(L \). That is,

\[
L_{\text{EEO}} = \{ w_2 w_4 w_6 \ldots w_{2n} \mid w_1 w_2 w_3 \ldots w_{2n} \in L \text{ with } 0 \leq n, w_i \in \Sigma \}
\]

Show that if \(R \) is a regular language then \(R_{\text{EEO}} \) is also regular. To do this, you should show how to construct a NFA \(N \) such that \(L(N) = R_{\text{EEO}} \) given a DFA \(D \) with \(L(D) = R \). You must provide a formal description of \(N \). That is you must precisely describe all the elements of a 5-tuple such that \(N = (Q_N, \Sigma, \delta_N, s_N, F_N) \). You do not, however have to provide a formal proof that the language accepted by \(N \) is \(R_{\text{EEO}} \). Instead, you should simply provide a clear intuitive explanation/justification for the correctness of machine \(N \) that your formal construction describes.