CS 361 Williams College Homework 2

1. (A variation of Sipser’s problem 1.32) Real computers perform exciting
operations like addition. Because DFAs can only accept or reject inputs,
the closest we can come to this with a DFA is to show that some language
encoding correct solutions to addition problems is regular. For example,
we might consider the language

{z+y=2]z9,2€{0,1}* & the sum of the numbers represented by z
and y in binary notation is the number represented by z }

Unfortunately, this very natural language is not regular. On the other
hand, if we interleave the digits of z, y, and z appropriately we can describe
a regular language that encodes correct binary addition. In particular,
consider the language

{w|we{0,1}* &
W= 2To Yo 20 T1 Y1 21 -.- Tk Yk 2k Where x;,y;,2; € {0,1} &
the sum of the numbers represented by the sequences
Z...x120 and yg...y1Yo is the number represented by zj...z120 }

Here we have encoded the addition problem with the digits of =, y, and z
interleaved. We have also presented the digits in reverse order (the ones
place comes first, then the twos, then the fours, etc.) and we have ensured
that the same number of digits are used to represent all three numbers.

Show that this language is regular.

You may answer this question either by drawing a state diagram or giving
a more formal description by specifying (Q,X,d,s, F). In either case,
provide text explaining the intuition behind your approach.

2. In class last week, I asked you to work on designing finite state automata
that could recognize binary numbers that were divisible by 3. As you
were all working on this task, I was asked one question several times. The
question was whether the input bits would be processed from left to right
or right to left (or, to put it another way whether the machine would start
with the most significant digits or the least significant digits).

In class that day, I encouraged anyone who asked to assume the digits
were processed starting with the most significant digit and ending with
the least significant. For this question, I want you to assume the bits
arrive in the opposite order. That is, I want you to describe a finite state
automaton that reads the digits of a binary number from right to left and
accepts exactly those binary sequences that represent numbers that are
evenly divisible by three.

I suspect most of you will find that reversing the digits makes it a bit more
difficult to see how to construct such a machine. I ask you to examine
whether this really is a harder problem or not in a very simple way. In
class, we saw that we could recognize binary numbers divisible by 3 with

Due: 12:00. February 21, 2020 1

CS 361 Williams College Homework 2

a machine containing just four states when the digits were processed left
to right. While constructing your machine for the version of this problem
where the digits are reversed, look for a machine with as few states as
possible to see if a machine with the same number of states can still solve
this seemingly more difficult problem.

3. In the text, the notion that a FSA may accept a string s € X is defined
in terms of a sequence of symbols from the alphabet and an associated
sequence of states. On the other hand, in class, we gave a recursive defini-
tion for a function & that extends & from individual symbols of ¥ to string
of symbols and then stated that M accepts w if 6(qo, w) € F.

In class, I claimed that these two approaches to defining acceptance by an
FSA were equivalent. The key to this equivalence is the following lemma:

Lemma: Given a finite automaton M = (Q, %, 4, qo, F) and a
string w = wiws ... wy where 0 < n and for 1 <i <n, w; € %,
if we define § : @ x X* — @ recursively as:

. S(q, €) = ¢ for all ¢ € @, and

° S(q,wa:) = (5(5(q,w),x) forallge Q,w e X*, and z € X.

then for any ¢;,q; € Q, 6(q;,w) = gy if and only if a sequence
of states rg,r1,...,7m, € @ exists such that:

® 7o = qi

e 7, =qy, and

o §(ri, wiy1) = riq1, for all i with 0 <4 <n.

Prove this lemma. Your argument should be based on induction over the
length of w.

4. The word “dermatoglyphics” is one of the longest words in English in
which no letter appears more than once!

For this problem, I would like you to describe two families of finite au-
tomata that recognize the languages, Ry, of strings over an alphabet X
that are not like “dermatoglyphics”. That is, the machines you describe
should recognize the languages of all strings over their alphabets that in-
clude at least one symbol that appears repeatedly. You should not make
any assumptions about the size or contents of the alphabet over which
these strings are formed. As a result, it will not be possible to simply
draw diagrams of these machines. Instead, you should give formal de-
scriptions of the machines.

(a) Describe a family of deterministic finite automata, Dg,., such that
Dp,, recognizes the language of all strings over the alphabet ¥ that
include at least two copies of some symbol in X. In addition, provide
a formula expressing the relationship between the size of the alphabet
|2| and the state set Q used by Dg,. Try to design your machines
so that their state sets are as small as possible.

Due: 12:00. February 21, 2020 2

CS 361 Williams College Homework 2

(b) Describe a family of non-deterministic finite automata, Ng,, such
that Npg,, recognizes the language of all strings over the alphabet X
that include at least two copies of some symbol in 3. Again, provide
a formula expressing the relationship between the size of the alphabet
|X] and the state set @ used by Ng.. Try to design your machines
so that their state sets are as small as possible.

For both parts of this question you should provide a formal description
of the automata (i.e., specify the members of the tuple (Q, %, d, s, F') that
describe the automaton) rather than a state diagram. This formal de-
scription should be accompanied by a bit of concise prose (and possibly a
diagram) that explains the intuition behind your construction.

Hint: For the deterministic version of the machine, you might want to
include the power set of the alphabet ¥ as part (or all) of the machine’s
set of states.

5. Consider the family of languages F,, where FE, contains all strings over
the alphabet {a,b} that have a b at the digit position that is n symbols
from the end of the string. That is, Fy would be the set of all strings that
end with a b. F; would be the set of all strings that have a b in the next
to last position. Eo would consist of strings with a b followed by any two
symbols at the end and so on.

(a) Describe a deterministic finite automaton that recognizes E,, for a
given n using as few states as possible. What is the relationship
between the number of states in your automaton and n?

(b) Describe a non-deterministic finite automaton that recognizes E,
again trying to minimize the number of states. What is the relation-
ship between the number of states in your automaton and n?

For both parts of this question you should provide a formal description
of the automata (i.e., specify the members of the tuple (Q, X, d, s, F') that
describe the automaton) rather than a state diagram. This formal de-
scription should be accompanied by a bit of concise prose (and possibly a
diagram) that explains the intuition behind your construction.

Due: 12:00. February 21, 2020 3

