CS 361 Williams College Homework 11

I hate to admit it, but I have not been able to keep up with the grading
of the individual work problems I have been assigning each week. To increase
the odds that I eventually get you some feedback on that work, there will be
no individual work problem this week. The three problems below should be
completed as group work due on Wednesday or Tuesday depending on your
group meeting time.

1. Complete problem 7.26 in Sipser:

Let ¢ be a 3CNF-fomula. An #-assignment to the variable of ¢ is one
where each clause contains two literals with unequal truth values. In other
words, an #-assignment satisfies ¢ without assigning three true literals in
any clause.

(a) Show that the negation of any #-assignment to ¢ is also an #-
assignment.

(b) Let ASAT be the collection of 3CNF-formulas that have #-assignments.
Show that we obtain a polynomial time reduction from 3SAT to
#SAT by replacing each clause ¢;

(y1Vy2Vys)
with the two clauses
(y1 Vya V 2z;) and (Z; V ys V v)

where z; is a new variable for each clause ¢; and v is a single additional
new variable.

(c) Conclude that #SAT is NP-complete. (Hint: Given parts (a) and
(b) this step should be trivial.)

2. Inllecture 19, I presented an argument that 3-SAT <, SUBSET-SUM and,
in the text (see page 320), Sipser provides a similar argument. The map-
pings described in both arguments take a boolean formula in 3-conjunctive
normal form and map it to an instance of the subset sum problem (a list
of positive integers and a target sum). The goal in defining this mapping
is to show that SUBSET-SUM is NP-complete using the knowledge that
3SAT is NP-complete.

While both of these proofs are based on reductions from 3-SAT, one could
instead show that SUBSET-SUM is NP-complete by demonstrating a re-
duction to SUBSET-SUM from any other language that is known to be
NP-complete. Consider, in particular, the language # SAT defined in
problem 7.26 (page 324) of Sipser’s text which is the preceding problem
on this assignment. Based on the result of this problem, we know that
SAT is NP-complete. So, one could instead show that SUBSET-SUM
is NP by showing that # SAT <, SUBSET-SUM. To do this, you would
need to describe a mapping from boolean formulas to subset sum prob-
lems.

Due: May 13 or 14, 2020 1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d1acc150-2ad1-42b2-9c6f-abb1013a2e97

CS 361 Williams College Homework 11

Wait a miniute!!! You might already have what you need! The mapping
I described in class (along with the one Sipser describes in the text) is al-
ready a mapping from boolean formulas to subset sum problems. Can you
use exactly the same mapping to show that # SAT <, SUBSET-SUM?

For this problem, I want you to either

e explain why either the mapping I described in class or the one Sipser
described (your choice!) is sufficient to show that # SAT <, SUBSET-SUM,
or

e explain why either of these mapping (your choice again!) is not suf-
ficient to show that # SAT <, SUBSET-SUM, and explain how
it could be modified (as little as possible) so that it did show that
SAT <, SUBSET-SUM.

Hints: A) You might find the example I worked in class helpful. B)Even
though I said “your choice” repeatedly, I suspect using the construction
from class will be easier.

3. In the lecture videos, I proved that many of the examples of language in
NP that we considered (SAT, 3-SAT, and SUBSET-SUM) were particu-
larly interesting because they were all examples of NP-complete problems.
Since most computer scientists believe that P is not equivalent to NP,
searching for an example of a problem in NP that is so hard that it can-
not be decided in deterministic polynomial time seems like a reasonable
goal. Therefore, a lot of focus is placed on the hardest problems in NP -
the NP-complete problems. In fact, although I did not included a proof of
this fact, 3-dimensional matching (a.k.a. the problem I described in terms
of a dinner party whose members hated to order the same item as any of
their companions), is also NP-complete. So, in fact, all of the examples of
languages in NP we have considered are NP-complete.

One might worry that the problems in NP that are not NP-complete might
feel unappreciated!

Alternately, one might wonder if there are any examples of languages that
belong to NP but are not NP-Complete. That is, is there any L such that
L € NP but L is not NP-complete? This turns out to be another open
question because...

If there exists a non-trivial L € N P that is not NP-complete then it must
be the case that P # N P. That is, if we could prove that some non-trivial
language L € NP was not NP-complete it would be another way to prove
that P # NP.

Prove that this statement is true.

The “non-trivial” requirement addresses the same issue it addressed in
the statement of Rice’s Theorem. L is “non-trivial” as long as it is any
language other than () and X*.

Due: May 13 or 14, 2020 2

