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Abstract of the Dissertation
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by
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Doctor of Philosophy

in

Computer Science

Stony Brook University

2018

Most computation today is not done locally by a client but rather outsourced to third-

party service providers in exchange for money. Trading computation for money brings up

two problems—(a) how can the client guarantee correctness of the outsourced computation

efficiently, and (b) how to design an effective payment scheme. The two problems are closely

related—ideally, we want the payment scheme to incentivize the service providers to perform

the computation correctly.

Interactive proofs (IP) are a fundamental theoretical framework used to study verifiable

computation outsourcing. In an IP, the weak client (or verifier) interacts with powerful

service providers (or provers) to determine the truthfulness of their claim. IPs give strong

guarantees; however they do not admit a non-trivial payment scheme.

This dissertation aims to answer the following question: if computation is being traded for

money in financially-driven marketplaces, how do we use payments to leverage correctness?

Rational proofs are payment-based interactive proofs for computation outsourcing which

incentivize the service provider to do the computation correctly. In a rational proof, the

prover is rational in the economic sense and acts to maximize its payment.

In this dissertation, we introduce and analyze the model of rational proofs with multiple

service providers. Multiple rational agents pose new game-theoretic challenges: how do
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we design and analyze their joint incentive structure? Provers may be cooperative (work

together as a team to maximize their total payment) or non-cooperative (act to maximize

their own individual payment). Using principles from game theory and mechanism design,

we show how the incentives of multiple rational provers can used against each other to design

simple, efficient and extremely powerful proof systems.

Besides the main work on rational proofs, this work also addresses an important algorith-

mic problem faced by memory-constrained devices that store most of their data on external

storage (accessing which is expensive). In particular, we study the following problem: how

do we efficiently test membership and perform updates on a set that is stored remotely? We

present improved variants of a Bloom filter, a data structure that is widely used to speed up

membership queries to a remote set.
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Chapter 1

Introduction

1.1 Motivation and Dissertation Overview

Modern computational devices are getting increasingly small and weak, while they are ex-

pected to perform increasingly complex tasks. As a result, most computation today is not

done locally and instead is outsourced to powerful service providers, usually in exchange for

money. Similarly, most of our data today is not stored in local memory but stored remotely

on external servers or cloud, and accessing it is expensive.

Outsourcing computation and storage bring up several algorithmic challenges.

When computation is outsourced to untrusted external service providers, how can the

weak client guarantee that the outsourced computation is performed correctly (without hav-

ing to redo the computation)? Furthermore, since computation is being performed by a third

party as a service, how should the client design a payment scheme for this service?

On the other hand, if the data is stored on remote servers or cloud, how can a memory-

constrained client query and update this data while minimizing expensive remote accesses?

The main focus of this dissertation is to design and analyze efficient payment-based pro-

tocols for verifying the correctness of outsourced computation. We take a mechanism design

approach and design rational interactive-proof protocols that incentivize multiple financially-

driven service providers to perform the computation correctly.

Apart from the above main line of work, this dissertation also addresses an important

algorithmic problem posed by storage outsourcing: if a set is stored remotely and accessing

it is expensive, how can we efficiently query and update it? We design adaptive variants of

a Bloom filter, a data structure widely used to minimize remote queries.

1.2 Rational Interactive Proofs

How can a weak client verify the correctness of computation that has been outsourced to

powerful service providers without having to reexecute it? Classically this is done by asking

the service providers to return along with the result, a “proof,” a string of symbols certifying

the correctness of the computation that the client can easily verify.
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Interactive proofs (IPs). Interactive proofs are a generalization of this idea, where a

weak client or verifier interacts with powerful service providers or provers to determine the

truthfulness of their claim, represented as the membership of a string x in a language L. At

the end of the interaction, the verifier either accepts or rejects their claim that x ∈ L. This

interaction constitutes a proof with the guarantee that if the provers’ claim is true then the

verifier always accepts, otherwise, the verifier rejects with sufficiently high probability.

Interactive proofs are a fundamental theoretical concept that, once introduced in a se-

curity context [12, 17, 76], have become increasingly widely used as a framework to design

efficient computation outsourcing protocols [23,27,36,37,39,49,50,52,77,82,93,95,124].

Incentives and Payments. Even though provers in interactive proofs are often described

as arbitrary or malicious, they in fact do have a well-defined objective—given input x and

language L, they want to maximize the probability that the verifier accepts the claim that

x ∈ L. Thus, if x ∈ L, they are honest; otherwise they are dishonest or malicious. This

incentive model of IPs originated in a security context where an adversary’s goal is to prove

a false statement, and verifier should reject such attempts. In a computation-outsourcing

setting, where computation is traded for money in a marketplace, the objective of the service

providers is not adversarial, rather it is economic. Furthermore, payments naturally exist in

computation-outsourcing applications and need to be incorporated into the model.

Mechanism design and IPs. A possible approach is to incorporate payments in IPs is

to give the provers $1 if the verifier accepts, else $0. This means that provers who maximize

the verifier’s acceptance probability also end up maximizing their payment. However, given

that service providers are incentivized by the payment they receive, and not the probability

of acceptance, this leads us to the question: can we design more efficient interactive protocols

by using sophisticated payment schemes that directly leverage correctness from the provers?

This is a mechanism-design question—in mechanism design [114, 115], the objective is

to design the rules of a game, played by strategic self-interested agents, so as to achieve a

particular desired outcome. It is sometimes called “reverse game theory.” In the context of

interactive proof systems, the mechanism is the protocol along with the payments, and the

goal is to design it in a way that even strategic provers trying to maximize their payment

end up reporting the answer truthfully to the verifier.

In this dissertation, we answer this mechanism-design question for the case of multiple

provers. For the single-prover case, Azar and Micali [10] introduced the model of payment-

driven proofs called rational interactive proofs (RIP), where the prover is rational—wants to

maximize its payment. An RIP protocol is such that if the prover’s payment is maximized
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then the verifier learns the correct answer. Since its introduction, many simple and efficient

single-prover RIP protocols have been designed for computation outsourcing [10,11,80,81].

Many computation outsourcing applications, such as, Amazon’s Mechanical Turk [1], and

crowdsourcing games [137], however, involve multiple service providers.

Rational proofs with multiple provers. In this dissertation, we introduce the model

of rational proofs with multiple provers. There are two natural ways to generalize the

single-prover RIP model to multiple provers—cooperative rational proofs, where the provers

jointly strategize to maximize their total payment and non-cooperative rational proofs, where

each prover wants to maximize its individual payment given others’ strategies. Cooperative

provers can jointly collude to mislead the verifier; the challenge in this case is to design

protocols that handle such collusion. On the other hand, protocols for non-cooperative

provers are more intuitive and natural; the challenge here lies in analyzing the provers’

strategic interactions in the resulting game using an appropriate solution concept.

We introduce and analyze both the cooperative and non-cooperative model of rational

proofs with multiple provers in this dissertation.

Cooperative rational provers. In a cooperative multi-prover rational proof (MRIP), the

provers can jointly agree on a strategy at the beginning, but similar to classical multi-prover

IPs, they cannot communicate once the protocol begins. Based on the verifier’s randomness

and the messages exchanged, the verifier computes a total payment at the end. In a MRIP

protocol, a strategy of the prover maximizes their total expected payment if and only the

verifier gets the correct answer. Furthermore, if a MRIP protocol has a utility gap of u, then

the provers lose at least 1/u from their expected payment on misreporting the answer.

Non-cooperative rational provers. In a non-cooperative rational interactive proof

(ncRIP), the provers act selfishly to maximize their individual payments, given the strategy

of other provers. The game resulting from their strategic interactions is an extensive-form

game of imperfect information. This is because the protocol proceeds in rounds and the

provers cannot observe the messages exchanged between the verifier and other provers.

To analyze ncRIP protocols, we define a new solution concept, strong sequential equilib-

rium (SSE), which strengthens the requirements of sequential equilibrium (SE), the solution

concept usually used to analyze extensive-form games with imperfect information. Unlike an

SE, not every game will admit an SSE. However, as a mechanism designer, we can use such

a strong solution concept as long as we can design protocols that satisfy its requirements.

We extend the notion of utility gap for non-cooperative provers, which is not as intuitive
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as for cooperative provers. This is because provers may not just deviate and lie on the overall

answer, they may deviate within subgames of the resulting extensive-form game.

1.2.1 Results and Contributions

Next, we summarize the results and contribution of this dissertation, besides the model of

rational interactive proofs with cooperative and non-cooperative provers.

• Exact characterizations. We give exact complexity-theoretic characterizations of the class

of languages decided by the rational cooperative and non-cooperative proof systems with

different utility-gap guarantees. These characterizations are based on the class of languages

decided by oracle Turing machines and show that while non-cooperative rational provers

can be used to simulate adaptive oracle queries (that depend on each other), cooperative

provers can only be used to simulate nonadaptive oracle queries (that can be made in

parallel). Thus, non-cooperative provers are more powerful than cooperative when the

adaptive queries do not reduce to nonadaptive queries. Both MRIP and ncRIP, are more

powerful than all existing interactive proof models, even under constant utility gap.

• Optimal number of provers and rounds. We show that the full power of MRIP and ncRIP

can be captured by constant provers and rounds. Furthermore, we show how to simulate

any MRIP and ncRIP protocol using the optimal the number of provers and rounds.

• Rational proofs with IP guarantees. We formalize the relationship between the utility-gap

guarantee of rational proofs and the completeness and soundness guarantees of interactive

proofs. Furthermore, we show conditions on the expected payment and utility gap, under

which the MRIP protocol gives the same guarantee as an MIP protocol.

• Strong sequential equilibrium. We prove several important properties of our new solu-

tion concept, strong sequential equilibrium, which in turn make it a solution concept of

independent interest for general extensive-form mechanisms with imperfect information.

• Log-time, constant-utility gap ncRIP for NP. We design an ncRIP protocol for any lan-

guage in the class NP with constant utility gap, where the verifier is deterministic and

runs in O(log n) time. This result is surprising because it seems to be hard to achieve in

other IP models, including MRIP. In particular, the well-known results on probabilisti-

cally checkable proofs [6, 8, 9, 83, 131] for NP have a polynomial-time verifier. Even when

the verifier’s running time is improved to O(log n) in probabilistically checkable proofs of

proximity [19,20,82,124], it comes at the cost of weakening the soundness guarantee.1

1The soundness guarantee of probabilistically checkable proofs of proximity is that the verifier rejects a
given x /∈ L with probability that is proportional to the Hamming distance of x from L.
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• Scaled-down rational proofs. We design MRIP and ncRIP protocols that are highly-

efficient—O(log n)-time verifiable—for a large class of optimization problems. Even with

the verifier’s power scaled down, these protocols retain strong utility-gap guarantees.

Figure 1 summarizes our scaled-down rational proofs, their computational costs and their

guarantees, for important complexity classes. These classes are also studied by Wag-

ner [140] from whom we borrow hierarchical structure of the figure.

Figure 1: Rational proofs for bounded-query complexity classes studied by Wagner [140]. All
classes within the black lines are equivalent. The gray dotted lines link the class of languages
to their rational proof. A superscript t is a protocol with O(log n)-time verifier; a superscript
s, r is for a protocol with where the verifier uses O(log n) space and randomness. Utility gap
is represented by the prefix, e.g., γ(n)-ncRIP stands for ncRIP protocols with γ(n) utility
gap. The suffix [C(n), p(n), k(n)] stands for C(n) communication cost, p(n) provers and k(n)
rounds. The complexity classes are log-space (L) and polynomial-time (P) Turing machines
that have access to a non-deterministic polynomial time (NP) oracle. A subscript || denotes
nonadaptive or parallel queries and the function γ(n) next to NP denotes an upper bound on
the number of oracle queries; see Chapter 2 for a formal review of these complexity classes.
When γ(n) is polynomial, we drop it from the utility-gap and number-of-queries notation.
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1.3 Minimizing Remote Accesses: Adaptive Bloom Filters

When the input is too big to fit in a device’s local memory and is stored remotely, we need

algorithms that minimize expensive accesses to remote storage.

In this dissertation, we focus on a fundamental algorithmic problem in this context: the

dictionary problem. In particular, consider a set S of keys, from a universe U , such that S
is stored remotely (e.g., on a cloud or disk). A dictionary data structure for set S supports

membership queries (that is, “is x in S”), inserts and deletes to S.

Bloom filters [24,29]—or, more generally, approximate membership query data structures

(AMQs)—are widely used to speed up dictionaries that are stored remotely [29, 41, 46, 54,

55, 58, 59, 61, 103, 108, 111, 132, 143, 144, 147]. An AMQ maintains a compact, probabilistic

representation of the set S and supports queries, inserts, and sometimes deletes. A query

for an x ∈ S is guaranteed to return “present.” A query for x 6∈ S returns “absent” with

probability at least 1 − ε, where ε is a tunable false-positive probability . If a query returns

“present,” but x 6∈ S, then x is a false positive of the AMQ. Because AMQs have a nonzero

probability of false-positives, they require far less space than explicit set representations.

An AMQ that is stored locally (e.g., in memory) can directly answer most negative

queries to the dictionary. The remote dictionary only needs to be accessed when the AMQ

indicates that the queried item might be present. Thus, the primary performance metric of

an AMQ is how well it enables a dictionary to avoid these expensive remote accesses.

Most AMQs offer weak guarantees on the number of false positives that they will return

on a given query workload. The false-positive probability guarantee of ε holds only for a

single query. A sequence of queries that contain repeated false-positives can immediately

drive the false-positive rate of most AMQs to 1.

In this dissertation, we show the conditions under which a space-efficient AMQ can have

strong false-positives guarantees. We say that an AMQs is adaptive if it guarantees a false-

positive probability of ε for every query, regardless of answers to previous queries.

First, we prove that it is impossible to build a space-efficient adaptive AMQ, even when

the AMQ is immediately told whenever it returns a false positive.

We then show how to build an adaptive AMQ that partitions its state into a small local

and a larger remote component. The local component is itself an AMQ, and the remote

component serves as an oracle to help correct false positives. The AMQ accesses its remote

state only when the remote dictionary is accessed and thus these accesses are essentially free.

Finally, the local component of our AMQ dominates existing AMQs in all regards. It

uses optimal space up to lower-order terms and supports queries and updates in worst-case

constant time, with high probability. Thus, we show that adaptivity has no cost.
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1.4 Dissertation Outline

We present background on interactive proofs, game theory and other relevant complexity

theoretic concepts in Chapter 2. Related work on classical and game-theoretic interactive

proofs is also covered in Chapter 2.

In Chapter 3, we introduce the model of multi-prover prover rational proofs (MRIP) with

cooperative prover and characterize the power of MRIP protocols with constant, polynomial

and negligible utility gap. This chapter is an extended version of [43].

In Chapter 4, we scale down the power of the MRIP verifier to O(log n) time and fully

characterize the power of such proofs under different communication costs. We also de-

sign and characterize the power MRIP protocols where the verifier uses O(log n) space and

randomness with different utility gap, for example, constant, and logarithmic.

In Chapter 5, we closely compare the utility-gap guarantee of rational proofs to com-

pleteness and soundness conditions of IPs. Furthermore, we show when and how an MRIP

protocol can be converted to an MIP protocol.

In Chapter 6, we introduce and formalize the model of non-cooperative rational interac-

tive proofs (ncRIP). As part of the model, we define strong sequential equilibrium (SSE) and

prove several important properties about it. Finally, we define a recursive-maximum SSE,

the solution concept for ncRIP, and define utility gap. This chapter is based on [44]

In Chapter 7, we exactly characterize the power of ncRIP protocols under constant,

polynomial and negligible utility gap. This chapter is also based on [44].

We scale down the verifier’s running time in ncRIP protocols to O(log n) in Chapter 8

and design a protocol for NP with constant utility gap. We give a lower and upper bound

for O(log n)-time ncRIP protocols but there is communication-cost gap between them.

In Chapter 9, we shift our focus to storage outsourcing and design adaptive approximate

membership query data structures to minimize expensive accesses to a remotely stored set.

This chapter is a revised version of [21].
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Chapter 2

Rational Proofs: Background and Related Work

2.1 Interactive Proofs

First introduced by Goldwasser, Micali and Rackoff [76] and in a different form by Babai and

Moran [12], interactive proofs (IP) are the now most well-studied and widely-used theoretical

framework to verify correctness of outsourced computation. In an interactive proof, a weak

client (or verifier) interacts with powerful service providers (or provers) to determine the

correctness of their claim. At the end, the verifier probabilistically accepts or rejects the

claim. Interactive proofs guarantee that, roughly speaking, the verifier accepts a truthful

claim with probability at least 2/3 (completeness) and no strategy of the provers can make

the verifier accept a false claim with probability more than 1/3 (soundness).

Interactive proofs (IP) have been extensively studied (see, e.g., [13,14,17,68,69,75,78,79])

and precisely characterized as IP = PSPACE [105, 129]. Ben-Or et al. [17] introduced multi-

prover interactive Proofs (MIP), which were later proved by Babai et al. [13] to be exactly

equal to NEXP, the class of languages that can be decided by non-deterministic exponential-

time Turing machines. Feige and Lovasz [64] showed that two provers and one round are

sufficient to capture the full power of MIP.

The MIP characterization later led to the important area of probabilistic checkable proofs;

see e.g. [6, 8, 9, 83, 131]. More recently, the study of IPs has resulted in extremely efficient

(e.g., near linear or even logarithmic time) protocols for delegation of computation [23, 27,

36,37,39,49,50,52,77,82,93,95,124]. Such super-efficient IPs have brought theory closer to

practice, resulting in “nearly-practical” systems [26,35,120,126–128,133,134,138,141].

Thus interactive proofs are not only a fundamental theoretical concept but an indispens-

able framework to design efficient computation outsourcing protocols.

Model of interactive proofs. Let L be a language, x a string whose membership in L is

to be decided, and n = |x|. An interactive protocol is a pair (V, ~P ), where V is the verifier

and ~P = (P1, . . . , Pp(n)) is the vector of provers, and p(n) a polynomial in n. The verifier

runs in polynomial time and flips private coins, whereas each prover Pi is computationally

unbounded. The verifier and provers know x. The verifier can communicate with each prover

privately, but no two provers can communicate with each other. A round in the classical
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model of interactive proofs consists of pair of messages, that is, messages sent by the verifier

to all or some of the provers and the provers’ response to those messages. Furthermore, in

classical proofs the verifier always sends the first message.

In our model of rational interactive proofs, we count each round of messages (from verifier

to provers or vice versa) separately and the first message is always by the provers reporting

whether or not x is in the language L; see Chapter 3.2 for more details.

The length of each message and the number of rounds are polynomial in n. Each prover

Pi chooses a strategy sij : {0, 1}∗ → {0, 1}∗ for each round j, which maps the messages it

has seen up until the beginning of round j to the message it sends in round j. Given any

input x, randomness r and strategy profile s, let the transcript of messages exchanged in the

protocol be denoted as (V, ~P )(x, r, s).

At the end of the communication, the verifier either accepts or rejects.

This interaction constitutes an interactive proof if it satisfies the following definition.

Definition 2.1 (Single and Multi-prover Interactive Proofs [7]). A language L has an in-

teractive proof (IP) protocol if there exists a Turning machine V such that, on any input x

of length n, V runs in time polynomial in n and,

• (Completeness) If x ∈ L, then there exists provers ~P and strategy s such that Pr(V

accepts (V, ~P )(x, r, s)) ≥ 2/3.

• (Soundness) If x /∈ L, then for all ~P and strategy s, Pr(V accepts (V, ~P )(x, r, s)) ≤ 1/3.

We denote by IP the set of languages that have single-prover IP protocols. We denote by MIP

the set of languages that have multi-prover IP protocols.

Note that it is possible to define define the classes IP and MIP with perfect completeness:

that is, V accepts with probability 1 when x ∈ L.

IP protocols used as building blocks. We now review the classic IP protocols and

concepts that we will use in this dissertation.

We use the MIP protocols for the class NEXP (e.g., [13, 64]) as a blackbox in Chapter 3

and Chapter 6. These protocols proceed by first reducing a language L ∈ NEXP to the

NEXP-complete problem Oracle-3SAT, and then run an MIP protocol for Oracle-3SAT. We

recall the definition of Oracle-3SAT below.

Definition 2.2 (Oracle-3SAT [13]). Let B be a 3-CNF of r + 3s + 3 variables. A Boolean

function A : {0, 1}s → {0, 1} is a 3-satisfying oracle for B if B(w,A(b1), A(b2), A(b3)) is

satisfied for all binary strings w of length r + 3s, where b1b2b3 are the last 3s bits of w. The

Oracle-3SAT problem is to decide, for a given B, whether there is a 3-satisfying oracle for it.
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In Chapter 4, we use the interactive protocol for NP where the verifier only uses loga-

rithmic space and randomness given by Condon and Ladner [47] as a blackbox

While there exist rational protocols for NEXP and NP that do not need to use classi-

cal protocols as blackbox, the main purpose of using classical protocols when it comes to

cooperative rational proofs is that they lead to strong (constant) utility-gap guarantees.

2.2 Review of Game Theoretic Concepts

We review game-theoretic concepts that we will build upon in this dissertation. We refer the

readers to [117] for a more detailed overview.

A game is a formal description of strategic interaction between a set of self-interested

players. A players’ strategy is a complete plan of action that player will take at any point in

the game. In a cooperative game the players work together and jointly choose their strategy.

Single-prover rational proof protocols and cooperative multi-prover rational proof protocols

(in Chapter 3 and Chapter 4) result in a cooperative game.

In a non-cooperative game, each player individually chooses its strategy, based on other

players’ strategies. Rational proof protocols with non-cooperative provers (in Chapter 6 and

Chapter 8) result in a non-cooperative game.

In a strategic game, each player chooses its complete strategy before the game starts

and the decisions of all players are simultaneous. In an extensive-form game or an extensive

game, the game proceeds in rounds and each player can make a decision on what action to

take at every turn in the game, based on the actions the other players have taken as far.

Since interactive protocols proceed in rounds, all the protocols studied in this work result in

an extensive-form game.

An extensive-form game is said to have perfect information, if at each turn the players

are fully informed of other players’ moves and the history of the game that led to their turn.

If the players are not fully informed of the actions of other players and the history that led

to their turn, then the game is said to imperfect information. Classical interactive proof

and rational proof protocols form extensive-form games of imperfect information because

the provers do not see the messages exchanged between the verifier and the other provers.

Finally, the players in a game have perfect recall if they remember the previous actions

they took and imperfect recall otherwise. The provers in this work remember the history of

messages they send and thus have perfect recall.

Equilibrium concepts for extensive-form games. To analyze non-cooperative rational

proofs in Chapter 6, we need a meaningful equilibrium concept (from the mechanism de-

signer’s point of view) for extensive form games with imperfect information that result from
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the interactive protocols. We introduce a new solution for such protocols in Chapter 6. Here,

we review existing solution concepts such as Nash equilibrium, subgame perfect equilibrium,

and sequential equilibrium and discuss why they are not suitable for our purpose.

Equilibrium selection through maximization. Given a specific equilibrium concept,

there can be many equilibria such that some players’ utilities are higher under an equilibrium

s than under another equilibrium s′, while some other players’ utilities are higher under s′.

Due to the players’ non-cooperative nature and their lack of coordination, different players

may hold different beliefs about which equilibrium will be played out by the others, and

their actual strategies may mismatch—possibly failing to reach an equilibrium at all.

This is the well-known equilibrium-selection problem and can be resolved by requiring a

maximum equilibrium, an equilibrium simultaneously maximizes all players’ utilities among

all equilibria. If a game enjoys a maximum equilibrium, it is likely that rational players

will agree to play it. There are other remedies to the equilibrium-selection problem in

mechanism design, such as requiring a dominant-strategy equilibrium. However, we need to

balance meaningfulness and feasibility when designing complex extensive-form games such

as multi-prover interactive proofs. And while many normal-form mechanisms have been

successfully designed under dominant-strategy equilibrium, requiring such an equilibrium

for extensive-form games in general seems difficult.

Nash equilibrium. A strategy profile s is a Nash equilibrium if for each player i and

strategy s′i of i, ui(si, s−i) ≥ ui(s
′
i, s−i), where s−i denotes the strategy of all players except

i and ui(s) denotes the utility of player i under strategy s.

Nash equilibrium is not a suitable solution concept for extensive-form games in general

because it is widely known to be susceptible to empty threats or non-credible threats [85].

An empty threat constitutes a situation where a player threatens to play a suboptimal or

irrational strategy in a part of the game so as to obtain a higher utility when the game is

actually played. Nash equilibria cannot rule out the occurrence of empty threats, which may

lead the players to counter-intuitive or undesirable equilibria. This problem occurs even if

we require a maximum Nash equilibrium.

Subgame perfect equilibrium. Subgame perfect equilibrium is used in classical game

theory to overcome empty threats. A subgame in an extensive-form game is a subtree of

the game tree starting at a particular decision node d, such that all successors of d cannot

be reached from any other decision node outside of their subtree. Thus, a subgame can be

isolated and played as a separate game, and a strategy profile of the original game naturally
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induces a strategy profile in a subgame. A strategy profile s is a subgame perfect equilibrium

(SPE) if it induces a Nash equilibrium in every subgame of the original game. In extensive-

form games of perfect information, SPE is a powerful solution concept. Thus, under such

an equilibrium, each player best-responds to the other players’ strategies in every subgame,

whether or not the subgame is reached.

In extensive-form games of imperfect information, however, SPE is not powerful enough,

as there may be too few subgames in the game tree. At an extreme, the only subgame is the

original game tree and SPE is just Nash equilibrium.

Sequential equilibrium. Sequential equilibrium is a solution concept used to analyze

extensive-form games with imperfect information. At a high level, sequential equilibrium

imposes the condition that provers should act rationally on every turn, however since the

provers have imperfect information, it requires a belief system and consistency conditions.

A strategy profile s and belief system µ together form an assessment. We give the formal

definition of consistency below.

Definition 2.3 (Consistency [117]). As assessment (s, µ) is consistent if there is a sequence

((st, µt))∞t=1 of assessments that converges to (s, µ) such that st is completely mixed and that

each belief system µt is derived from st using Bayes’ rule.

The main argument against sequential equilibrium is the artificiality of the above con-

sistency condition which requires computing the limit of sequences. In fact, to quote

Kreps [100], “rather a lot of bodies are buried in this definition”.

2.3 Previous Work on Game-theoretic Interactive Proofs

Next, we review game-theoretic models of interactive proofs that have been studied prior to

the work presented in this dissertation.

2.3.1 Refereed Games

The model of refereed games [40, 63, 65–67, 98, 123] is a multi-prover game-theoretic model

of interactive proofs, that has been used to characterize several complexity classes. Refereed

games consist of a verifier interacting with two competing provers, one claiming that x ∈ L
and the other claiming x /∈ L. Thus refereed games require at least one prover to be honest.

The objective of the provers is to maximize the probability that the verifier accepts their

claim, and thus the provers are involved in a zero-sum game.

The model of refereed games was first introduced by Fiege, Shamir and Tennenholtz [66].

In Chandra and Stockmeyer [40] prove that any language in PSPACE is refereeable, by a
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game of perfect information. Feige and Kilian [63] show that the class of languages with

single-round refereed games is exactly PSPACE, and the class of languages with polynomial-

round refereed games is exactly EXP. Feigenbaum, Koller and Shor [67] study the effect of

varying game theoretic properties on the class of languages recognized by two player games.

They consider games of imperfect information and imperfect recall, and show that every

language in EXPNP has a polynomially definable game in which both players have imperfect

recall. The question whether the bound is tight is left as an open problem.

We note that imperfect recall is a very strong assumption and makes the computationally

unbounded provers essentially act as oracles. By contrast, the provers in this dissertation

have imperfect information and perfect recall. Notice that imperfect information is necessary

for multi-prover protocols: if all provers can see all messages exchanged in the protocol, then

the model degenerates to a single-prover case. Moreover, perfect recall gives the provers the

ability to cheat adaptively across messages.

In Chapter 6, we show that non-cooperative rational proofs are more powerful than

refereed games with competing provers (under imperfect information and perfect recall).

Non-zero sum games have also been studied in the context of complexity classes. In

particular, Peterson and Reif [121] show that NEXP can be described as a game between

three players, where two of them make existential moves and cannot communicate with each

other, and a third makes universal moves and can communicate with the others. Simon [130]

and Orponen [116] consider games between an existential oracle and a universal player, and

prove their equivalence to NEXP.

2.3.2 Single-Prover Rational Proofs

Azar and Micali [10] introduced the model of single-prover rational interactive proofs, a

payment-based interactive proof system. In a rational proof protocol, the verifier computes

a payment for the prover at the end of the interaction. The prover is neither dishonest nor

malicious, only rational—that is, the prover only acts in ways that maximize its payment.

Azar and Micali showed that adding rationality resulted in simpler, faster and more effi-

cient proofs. In particular they give a single-round rational proof for #P. They characterize

constant-round rational proofs as CH, the counting hierarchy [139], and polynomial-round

rational proofs as PSPACE. They posed the problem of whether multiple rational provers

are more powerful than one as an open problem. In Chapter 3, we resolve this open problem

and show that multiple provers are indeed more power than one in rational proofs.

In a follow up paper [11], the authors consider the notion of super efficient rational proofs

where the verifier runs in logarithmic time. They construct such proofs for the complexity

classes Uniform TC0 and P||NP. Their characterization of PNP
|| requires polynomial commu-
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nication, which we improve to logarithmic using a second prover. We also note that all

protocols in [11] have a polynomial utility gap (under a constant budget). We improve and

extend their results on logarithmic-time verifiable multi-prover rational proofs in Chapter 4.

Guo, Hubáček, Rosen and Vald [80] extend the notion of super efficient rational proofs to

rational arguments where the prover is computationally bounded, and give efficient rational

arguments for the class of search problems computable by threshold circuits of o(n) depth.

We stick to the original model of [10] where the provers are computationally unbounded.

Campanelli and Rosario [34] study sequentially composable rational proofs. Zhang and

Blanton [145] design protocols to outsource matrix multiplications to a rational cloud.

Different variants of the rational-proof models have also been studied. Inasawa and

Kenji [91] consider rational proofs where the verifier is also rational and wants to minimize

the payment to the provers.

In this dissertation, we introduce and analyze the following generalizations and variations

of the model of rational proofs.

• Rational proofs with multiple cooperative provers [43], where the provers work together

to maximize their total expected payment; see Chapter 3.

• Scaled-down cooperative rational proofs, where the verifier is highly efficient: runs in

logarithmic time or uses logarithmic space; see Chapter 4.

• Rational proofs with multiple non-cooperative provers [44], where the provers want to

selfishly maximize their own payment given others’ strategies; see Chapter 6.

• Scaled-down non-cooperative rational proofs, where the verifier is highly efficient and

runs in logarithmic time; see Chapter 8.

Model of single-prover rational proofs. In rational interactive proof (RIP) protocols,

a single computationally unbounded prover P interacts with a polynomial-time randomized

verifier. P can choose a strategy sj : {0, 1}∗ → {0, 1}∗ in each round j of the protocol,

based on the transcript of messages it has seen so far. Let s = (s1, . . . , sk) be the vector of

strategies P uses in rounds 1, . . . , k, where k : N→ N is polynomial in the length of input x.

At the end of the protocol, the verifier computes an output and a payment function

R(x, r, (V, P )(x, r, s)), based on the input x, its own randomness r, and the transcript

(V, P )(x, r, s). P is rational and chooses a strategy that maximizes its utility,

u(V,P )(s, x) , E
r
R(x, r, (V, P )(x, r, s)).

The class RIP is defined below.
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Definition 2.4 (Rational Interactive Proofs (RIP)). For any language L, an interactive

protocol (V, P ) is a rational interactive proof (RIP) protocol for L if, for any x ∈ {0, 1}∗ and

any strategy s̃ of P such that u(s̃) = maxs̃′ u(s̃′), then V outputs 1 if and only if x ∈ L.

We denote by RIP the set of languages that have RIP protocols.

Proper scoring rules. Scoring rules are an important tool used to design rational inter-

active proofs. Scoring rules let us assess the quality of a probabilistic forecast by assigning

a numerical score (that is, a reward to the forecaster) to it based on the predicted distri-

bution and the sample that materializes. More precisely, given any probability space Σ,

letting ∆(Σ) be the set of probability distributions over Σ, a scoring rule is a function from

∆(Σ)× Σ to R, the set of reals. A scoring rule S is proper if, for any distribution D over Σ

and distribution D′ 6= D, we have∑
ω∈Σ

D(ω)S(D,ω) ≥
∑
ω∈Σ

D(ω)S(D′, ω),

where D(ω) is the probability that ω is drawn from D. A scoring rule S is strictly proper

if the above inequality is strict. Notice that, when the true distribution is D, the forecaster

maximizes its expected reward under a strictly proper scoring rule by reporting D′ = D. For

a comprehensive survey on scoring rules, see [73].

Brier’s scoring rule. The Brier’s scoring rule [28], denoted by BSR, is defined as follows:

for any distribution D and ω ∈ Σ,

BSR(D, ω) = 2D(ω)−
∑
ω∈Σ

D(ω)2 − 1.

It is well known that BSR is strictly proper.

Notice that BSR requires the computation of
∑

ω∈ΣD(ω)2, which can be hard when |Σ|
is large. However, similar to [10, 80], in this dissertation we shall only evaluate BSR for

D ∈ ∆({0, 1}). Also notice that BSR has range [−2, 0] and can be shifted and scaled so that

the range is non-negative and bounded. In particular, we shall add 2 to the function.

In Chapter 3, we show how to design an efficient protocol for NEXP using scoring rules.

In the analysis of our scoring-rule based protocol we use a property of Brier’s scoring rule

that, to the best of our knowledge, has not been used before. All existing uses of proper

scoring rules are with respect to a fixed distribution and have the expert report the truth

about that distribution. In contrast, we show how to compare the expected scores of experts

across different distributions; see Chapter 3.3 for more details.
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2.4 Review of Uniform Circuits and Complexity Classes

Next we review complexity theoretic concepts that we use in this dissertation.

A circuit family {Cn}∞n=1 is a sequence of boolean circuits such that Cn : {0, 1}n → {0, 1}.
The size of a circuit C is the number of gates in C.

DC uniform circuits. Next we define DC uniform and DLOGTIME uniform circuits.

Definition 2.5 (DC uniform circuits). Let {Cn}∞n=1 be a circuit family with gates of type

AND, OR, and NOT, whose indegrees are 2, 2, and 1 respectively. We say this family is

a Direct Connect uniform (DC uniform) family if the following queries can be answered in

polynomial time in the size of the input:

1. SIZE(n): what is the size of Cn?

2. INPUT(n, h, i): is wire h an input to gate i in Cn?

3. OUTPUT(n, h, i): is wire h the output of gate i in Cn?

4. TYPE(n, i, t): is t the type of gate i in Cn?

DLOGTIME uniform circuits are defined analogously for which the above queries can be

answered in logarithmic time in the size of the input.

We use the following characterization of EXP and P in our protocols and analyses.

Lemma 2.6 ( [7]). The set of languages decidable by exponential-time Turing machines,

EXP, is exactly the set of languages with DC uniform circuit families of size 2n
k
, where k

is a constant that may depend on the language. Similarly, the set of languages decidable by

polynomial-time Turing machines, P, is exactly the set of languages with DC uniform circuit

families of size nk, where k is a constant that may depend on the language.

Oracle Turing machines. We frequently use oracle Turing machine which are Turing

machines that have a blackbox, called the oracle, such that with the help of the oracle the

Turing machine can solve certain problems in a single step.

Definition 2.7. An oracle Turing machine M is a multi-tape Turing machine with access to

an oracle O for a language L and special states O?, Oy, and On. It runs as a normal Turing

machine and whenever the head moves to state O?, oracle O is consulted with a query y (on

a separate query tape) and if x ∈ L, then restarted at state Oy, otherwise at state On.
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Queries to an oracle in an oracle Turing machine can be adaptive or non adaptive.

A set of queries are non adaptive if they can be issued by the Turing machine in paral-

lel, that is, all queries must be decided before any one query is made. On the other hand,

adaptive queries are queries where the answer to some queries may depend on the others.

In this dissertation, we study the power of adaptive vs nonadaptive in the context of ratio-

nal provers. In particular, we show that rational proofs with non-cooperative provers can

simulate adaptive oracle queries, while those with cooperative provers cannot (unless the

adaptive queries can be reduced to nonadaptive ones).

We also study complexity classes with bounded-query complexity. In particular, com-

plexity classes where the number of oracle queries that can be issues are restricted. We

prove tight characterizations of complexity classes using rational proofs, relating the query

complexity of the former to the utility gap of the latter.

In this dissertation, we provide characterizations of various complexity classes defined by

oracle Turing machines. We list them here.

1. Nonadaptive complexity classes2

(a) EXPNP
|| : the class of languages decidable by an exponential-time Turing machine

that can make nonadaptive queries to an NP oracle.

(b) P
NEXP[γ(n)]
|| : the class of languages decidable by a polynomial-time Turing machine

that can make O(γ(n)) nonadaptive queries to an NEXP oracle. When γ(n) is

polynomial in n, P
NEXP[γ(n)]
|| = PNEXP

|| .

(c) P
NP[γ(n)]
|| : the class of languages decidable by a polynomial-time Turing machine

that can make O(γ(n)) nonadaptive queries to an NP oracle. When γ(n) is polyno-

mial in n, P
NP[γ(n)]
|| = PNP

|| . This is a well-studied class (e.g., [31,45,92,99,106,140])

and includes important optimization problems such as maximum clique, longest

paths, and variants of the traveling salesman problem even when γ(n) = O(1).

(d) L
NP[γ(n)]
|| : the class of languages decidable by a logarithmic space Turing machine

that can make O(γ(n)) nonadaptive queries to an NP oracle. When γ(n) is poly-

nomial in n, L
NP[γ(n)]
|| = LNP

|| . (Wagner [140] showed that L
NP[γ(n)]
|| = P

NP[γ(n)]
|| .)

2. Adaptive complexity classes

(a) EXPpoly−NP: the class of languages decidable by an exponential-time Turing ma-

chine that can make polynomial length adaptive queries to an NEXP oracle. (We

2For parallel oracle queries, notations with || as subscript and as superscript are used in literature, for
example PNP

|| [140] and P||NP [11]. We follow the subscript notation in this dissertation.
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note that EXPpoly−NP = EXPNP
|| ). A related complexity class EXPNP is important

in the the study of circuit lower bounds [142].

(b) PNEXP[γ(n)]: the class of languages decidable by a polynomial-time Turing ma-

chine that can make O(γ(n)) adaptive queries to an NEXP oracle. When γ(n) is

polynomial in n, PNEXP[γ(n)] = PNEXP.

(c) PNP[γ(n)]: the class of languages decidable by a polynomial-time Turing machine

that can make O(γ(n)) adaptive queries to an NP oracle. When γ(n) is polynomial

in n, PNP[γ(n)] = PNP. This is a well-studied class (e.g., [31, 45, 92, 99, 106, 140])

and includes important optimization problems such as maximum clique, longest

paths, and variants of the traveling salesman problem even when γ(n) = O(1).

(d) LNP[γ(n)]: the class of languages decidable by a logarithmic space Turing machine

that can make O(γ(n)) adaptive queries to an NP oracle. When γ(n) is polynomial

in n, LNP[γ(n)] = LNP. (Wagner [140] showed that L
NP[O(log n)]
|| = P

NP[O(log n)]
|| .)

The query complexity of oracle Turing machines has been widely studied in the litera-

ture [15,32,140]. We also study UniformTC0, which is the class of constant depth, polynomial

size uniform threshold circuits. It is important complexity class that includes problems such

as integer division, iterated multiplication and radical summations [3, 4, 84,89,90].
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Chapter 3

Rational Proofs with Cooperative Provers

3.1 Introduction

In Chapter 2, we reviewed the model of single-prover interactive rational proofs, introduced

by Azar and Micali [10].

In this chapter, we present an extended version of our paper [43], and introduce the

model of multi-prover rational interactive proofs (MRIP), an extension of classical multi-

prover interactive proofs (MIP) and single-prover rational interactive proofs (RIP).

Many computation-outsourcing applications have ingredients of both of MIP and RIP

models: the verifier pays a team of provers based on their responses. For example, in

internet marketplaces such as Amazon’s Mechanical Turk [1], the requesters (verifiers) post

labor-intensive tasks on the website along with a monetary compensation they are willing

to pay. The providers (provers) accept these offers and perform the job. In these internet

marketplaces and crowdsourcing games [137] correctness is often ensured by verifying one

provider’s answers against another [2,136]. Thus, the providers collaborate as a team—their

answers need to match, even though they are likely to not know each other and cannot

communicate with each other [96].

Inspired by these applications and previous theoretical work, we study rational proofs

with multiple cooperative provers. This model aims to answer the following question: what

problems can be solved by a team of rational workers who cannot communicate with each other

and get paid based on the joint-correctness of their answers? One of our main contributions

is to completely characterize the power of this model.

Previous discussions of multiple provers in rational proofs. The notion of rational

proofs with multiple provers has appeared several times in previous work [10,11,80]. However,

the authors only use multiple provers to simplify the analysis of single-prover protocols,

without formalizing the model. They show that multiple provers in their protocols can be

simulated by a single prover by scaling the payments appropriately. Azar and Micali [10]

discuss one of the fundamental challenges of using multiple rational provers: in a cooperative

setting, one prover may lie to give subsequent provers the opportunity to obtain a larger

payment. They pose the following open problem: are multiple provers more powerful than
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one in rational proofs? We show that in general a protocol with multiple rational provers

cannot be simulated by a single prover under standard complexity-theoretic assumptions.

Cooperative multi-prover rational proofs. In a cooperative multi-prover rational in-

teractive proof, polynomially-many computationally-unbounded provers communicate with

a polynomial-time randomized verifier, where the verifier wants to decide the membership of

an input string in a language. The provers can pre-agree on how they plan to respond to the

verifier’s messages, but they cannot communicate with each other once the protocol begins.

At the end of the protocol, the verifier outputs the answer and computes a total payment

for the provers, based on the input, its own randomness, and the messages exchanged.

A protocol is an MRIP protocol if any strategy of the provers that maximizes their

expected payment leads the verifier to the correct answer. The class of languages having

such protocols is denoted by MRIP.

Distribution of payments. In classical MIP protocols, the provers work cooperatively to

convince the verifier of the truth of a proposition, and their goal is to maximize the verifier’s

acceptance probability. Similarly, the rational provers in MRIP protocols work cooperatively

to maximize the total payment received from the verifier.

Any pre-specified way of distributing this payment among them is allowed, as long as it

does not depend on the transcript of the protocol (i.e., the messages exchanged, the coins

flipped, and the amount of the payment). For instance, the division of the payment can be

pre-determined by the provers themselves based on the amount of work each prover must

perform, or it can be pre-determined by the verifier based on the reputation of each prover

in a marketplace. Unbalanced divisions are allowed: for example, one prover may receive

half of the total payment, while the others split the remaining evenly. We ignore the choice

of division in our model, as it does not affect the provers’ decisions.

Utility gap. Rational proofs assume that the provers always act to maximize their pay-

ment. However, how much do they lose by lying? If the payment loss is small, a prover may

very well “get lazy” and simply return a default answer without performing any computa-

tion. Although the classic notion of rationality in game theory requires a player to always

choose the best strategy to maximize its utility, the notion of bounded rationality has also

been studied [48,125].

The notion of utility gap measures the payment or utility loss incurred by a deviating

prover. A deviating prover may (a) deviate slightly from the truthful protocol but still lead

the verifier to the correct answer or (b) deviate and mislead the verifier to an incorrect

20



answer. Azar and Micali [11] introduce utility gaps by demanding their protocols be robust

against provers of type (a)—any deviation from the prescribed strategy results in a significant

decrease in the payment. This ideal requirement on utility gaps is too strong: even the

protocol in [11] fails to satisfy it [80].

We consider multi-prover rational proofs robust against provers of type (b), i.e., the

provers may send some incorrect messages and only incur a small payment loss, but if they

mislead the verifier to the wrong answer to the membership question of the input string,

then the provers must suffer a significant loss in the payment.

We strengthen our model by considering MRIP protocols with constant as well as no-

ticeable (i.e. polynomial) utility gaps, where the payment loss suffered by the provers on

reporting the incorrect answer is at least 1/k and 1/nk respectively, where k is a constant

and n is the length of the input string. We say an MRIP protocol has a negligible (or expo-

nential) utility gap if the payment loss is at least 1/2n
k
. Any MRIP protocol has at least a

negligible utility gap, because the rewards are generated by a polynomial-time verifier.

3.1.1 Overview of Results and Contributions

We now present our main results and discuss several interesting aspects of our model. Our

characterizations of MRIP protocols are closely related to complexity classes with oracle

queries. We reviewed these classes in Chapter 2.

We denote the classes of MRIP protocols with constant, polynomial and exponential

utility gap as O(1)-MRIP, poly(n)-MRIP and MRIP respectively. In this work, we fully char-

acterize the computational power of all three MRIP classes exactly.

First, we show that a language has an MRIP protocol with constant utility gap if and

only if it can be decided by a polynomial-time Turing machine that makes a constant number

of nonadaptive queries to an NEXP oracle. That is, we prove the following.

Theorem 3.1. O(1)-MRIP = P
NEXP[O(1)]
|| .

Thus, O(1)-MRIP contains both NEXP and coNEXP. That is, multi-prover rational proofs

with even constant utility gaps are strictly more powerful than single-prover rational proofs,

assuming PSPACE 6= NEXP. Furthermore, multi-prover rational proofs (even with constant

utility gaps) are strictly more powerful than classical multi-prover interactive proofs, as-

suming NEXP 6= coNEXP. The relationship between rational and classical interactive proof

systems is illustrated in Figure 2.

Next, we show that a language has an MRIP protocol with polynomial utility gap if and

only if it can be decided by a polynomial-time Turing machine with nonadaptive access to

an NEXP oracle. That is, we prove the following.

21



Figure 2: The computation power of MRIP vs. classical interactive proof systems. It is
widely believed that PSPACE 6= EXP, EXP 6= NEXP, and NEXP 6= coNEXP.

Theorem 3.2. poly(n)-MRIP = P||NEXP.

Finally, we characterize the full power of MRIP, and show that a language has an MRIP

protocol (with exponential utility gap) if and only if it can be decided by an exponential-time

Turing machine with nonadaptive access to an NP oracle. That is, we prove the following.

Theorem 3.3. MRIP = EXP||NP.

We give MRIP protocols for NEXP, which are used as a building block in our proofs. To

prove Theorem 3.1 and Theorem 3.2, we establish a general reduction between the utility

gap of MRIP protocols and the query complexity of oracle Turing machines.

Finally, to prove Theorem 3.3, we introduce another complexity class as an intermediate

step, and use its circuit characterization to construct the corresponding MRIP protocol.

Similar circuit based characterization is also used by Azar and Micali in [11], but their

technique results in an exponential blow-up in the number of messages when applied directly

to our case. We use multiple provers to avoid this communication blow up; see Chapter 3.5.

Optimal number of provers and rounds. While we allow polynomially-many provers

and rounds in MRIP, how many provers and rounds are really needed to capture the full

power of the system? In computation outsourcing applications, protocols requiring few

provers and rounds are desirable, as it may be hard for the verifier to recruit a large number

of provers or to retain the provers for a long period of time to execute many rounds.
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Under the classic model of interactive proofs, it is well known that any MIP protocol can

be simulated using only two provers and one round of communication between the provers

and the verifier [64]. In this chapter, we prove analogous results for all three of our MRIP

classes—we show that two provers and three rounds are sufficient to capture their full power.

Specifically, any MRIP protocol using polynomially-many provers and polynomially-many

rounds that has a constant, polynomial, or exponential utility gap can be simulated by a

2-prover 3-round MRIP protocol that retains their respective utility gap.

It is worth pointing out that we count the number of rounds in a protocol differently

from classic IP and MIP protocols. In the classic protocols, the number of rounds is the

number of pairs of back-and-forth interactions (see, e.g., [64]); while in our protocols it is the

total number of interactions—that is, the provers’ messages and the verifier’s messages are

considered as different rounds. An odd number of rounds is an intrinsic property of multi-

prover rational proofs, as an MRIP protocol by default starts with the provers reporting

the answer bit to the verifier. Thus, the 3-round protocols consist of the first “answer bit

round”, followed by a single back-and-forth exchange corresponding to a single round in IP

or MIP. Indeed, any non-trivial MRIP protocol—that is, any MRIP protocol that cannot be

simulated by a single prover—requires at least three rounds. Thus, three rounds are optimal.

Finally, we note that the power of MRIP protocols remains the same even when it is

restricted to constant number of rounds, while the power of RIP protocols decreases. In

particular, Azar and Micali [10] show that the class of languages having constant-round

single-prover rational proofs is exactly the counting hierarchy, while RIP = PSPACE. This

difference between MRIP and RIP is analogous to the difference between MIP and IP.

3.2 Multi-Prover Rational Interactive Proofs (MRIP)

In this section, we first define multi-prover rational interactive proofs (MRIP) in general,

and then strengthen the model by imposing proper utility gap.

Notation and definitions. The interactive model of multi-prover rational interactive

proofs is similar to interactive proofs described in Chapter 2, except for the following differ-

ences. In our model of rational interactive proofs, a round of interaction consists of either

messages sent in parallel by all or some provers to the verifier or messages sent by the verifier

to all or some provers, and these two cases alternate. Without loss of generality, we assume

the first round of messages are sent by the provers, and the first bit sent by P1, denoted by

c, indicates whether x ∈ L (corresponding to c = 1) or not (corresponding to c = 0).

In general, the length of each message and the number of rounds are polynomial in

n. Let k(n) be the number of rounds and r be the random string used by V . For each

23



j ∈ {1, 2, . . . , k(n)}, let mij be the message exchanged between V and Pi in round j. In

particular, the first bit of m11 is c. The transcript that each prover Pi has seen at the

beginning of each round j is (mi1,mi2, . . . ,mi(j−1)). Let ~m be the vector of all messages

exchanged in the protocol. By definition, ~m is a random variable depending on r.

At the end of the communication, the verifier does not accept or reject, but instead

computes the total payment of the provers, denoted by a payment function R on x, r, and

~m. We restrict R(x, r, ~m) ∈ [−1, 1] for convenience. Of course, the payment can be shifted

so that it is non-negative—that is, the provers do not lose money. We use both positive

and negative payments to better reflect the intuition behind our protocols: the former are

rewards while the latter are punishments. The protocol followed by V , including the payment

function R, is public knowledge.

The verifier outputs c as the answer for the membership of x in L—that is, V does

not check the provers’ answer. This requirement for the verifier does not change the set

of languages that have multi-prover rational interactive proofs; however, it simplifies our

analysis of utility gap (the payment loss incurred by provers that report the wrong answer).

Each prover Pi can choose a strategy sij : {0, 1}∗ → {0, 1}∗ for each round j, which

maps the transcript it has seen up until the beginning of round j to the message it sends

in round j. Note that Pi does not send any message when j is even; in this case sij can

be treated as a constant function. Let si = (si1, . . . , sik(n)) be the strategy vector of Pi and

s = (s1, . . . , sp(n)) be the strategy profile of the provers. Given any input x, randomness r

and strategy profile s, we may write the vector ~m of messages exchanged in the protocol

more explicitly as (V, ~P )(x, r, s).

The provers are cooperative and jointly act to maximize the total expected payment

received from the verifier. Note that this is equivalent to each prover maximizing its own

expected payment when each Pi receives a pre-specified fraction fi of the payment, where∑p(n)
i=1 fi = 1 and fi may depend on x but not on r and ~m.

Before the protocol starts, the provers pre-agree on a strategy profile s that maximizes

u(V, ~P )(s, x) , E
r

[
R
(
x, r, (V, ~P )(x, r, s)

)]
.

When (V, ~P ) and x are clear from the context, we write u(s) for u(V, ~P )(s, x). We define

multi-prover rational interactive proofs as follows.

Definition 3.4 (MRIP). For any language L, an interactive protocol (V, ~P ) is a multi-prover

rational interactive proof (MRIP) protocol for L if, for any x ∈ {0, 1}∗ and any strategy

profile s of the provers such that u(s) = maxs′ u(s′), c = 1 if and only if x ∈ L. We denote

the class of languages that have MRIP protocols by MRIP.
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This definition immediately leads to the following property.

Lemma 3.5. MRIP is closed under complement.

Proof. Consider a language L ∈ MRIP. Let (V, ~P ) be the MRIP protocol for L, and R the

payment function used by V . We construct an MRIP protocol (V ′, ~P ) for L as follows.

For any input string x of length n, the protocol (V, ~P ) works as follows. Initially Rn = 0.

1. P1 sends m′11. V ′ flips the first bit. Denote the new message by m11.

2. V ′ runs V to compute the messages it should send in each round, except that m′11

is replaced by m11 in the input to V . Let ~m′ be the vector of messages exchanged
between V ′ and ~P .

3. V ′ computes a payment function R′: for any x, r, and ~m′, R′(x, r, ~m′) = R(x, r, ~m),
where ~m is ~m′ with m′11 replaced by m11.

4. V ′ outputs the first bit sent by P1.

Figure 3: An MRIP protocol for L using MRIP protocol for L.

We now show that the protocol in Figure 3 is an MRIP protocol for L. For each strategy

profile s of the provers in (V, ~P ), consider the following strategy profile s′ in (V ′, ~P ).

1. s′i = si for each i 6= 1.

2. In round 1, s′1 outputs the same message as s1, except that the first bit is flipped.

3. For any odd j > 1 and any transcript m′1 for P1 at the beginning of round j, s′1(m′1) is

the same as s1(m1), where m1 is m′1 with the first bit flipped.

By induction, for any x and r, (V ′, ~P )(x, r, s′) is the same as (V, ~P )(x, r, s) except the

first bit. Thus R′(x, r, (V ′, ~P )(x, r, s′)) = R(x, r, (V, ~P )(x, r, s)), which implies u(V ′, ~P )(s
′, x) =

u(V, ~P )(s, x). Since the mapping from s to s′ is a bijection, if we arbitrarily fix a strategy profile

s′ that maximizes u(V ′, ~P )(s
′, x), the corresponding strategy profile s maximizes u(V, ~P )(s, x).

By definition, x ∈ L if and only if the first bit sent by s1 is 1; thus, x ∈ L if and only if the

first bit sent by s′1 is 1. Therefore (V ′, ~P ) is an MRIP protocol for L.

Note that the MRIP protocols for L and L have the same number of provers and the same

number of rounds. Moreover, the class of languages having classical multi-prover interactive

proofs is not closed under complement (assuming NEXP 6= coNEXP). This is a key distinction

between multi-prover rational proofs and multi-prover interactive proofs.
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3.2.1 MRIP with Utility Gap

The model of rational proofs and the MRIP model so far assumes the provers are sensitive to

arbitrarily small losses in the payment. That is, the provers choose s to just maximize their

expected payment—the amount they lose if they use a suboptimal strategy is irrelevant.

However, if the payment loss is small, a prover may very well “get lazy” and simply

return a default answer without performing any computation. Although the classic notion

of rationality in game theory requires a player to always choose the best strategy to maximize

its utility, the notion of bounded rationality has also been studied [48,125].

The notion of utility gap measures the payment or utility loss incurred by a deviating

prover. A deviating prover may (a) deviate slightly from the honest protocol but still lead the

verifier to the correct answer or (b) deviate and mislead the verifier to an incorrect answer.

In [11], Azar and Micali introduce utility gap by demanding their protocols be robust

against provers of type (a)—any deviation from the prescribed strategy results in a non-

negligible loss in the payment. Formally, let s be an optimal strategy and s′ a suboptimal

strategy of the prover P . Then the ideal utility gap requires that u(s) − u(s′) > 1/γ(n),

where γ(n) is constant or polynomial in n. Although an ideal utility gap strongly guarantees

that the prover uses its optimal strategy, such a utility gap appears to be too strong to hold

for many meaningful protocols, even the ones in [11].

In [80], Guo et al. define a weaker notion of utility gap and impose it on rational

arguments rather than rational proofs. They require that a noticeable deviation leads to a

noticeable loss: if under a strategy s′ of the prover, the probability for the verifier to output

the correct answer is noticeably smaller than 1, then the expected payment to the prover

under s′ is also noticeably smaller than the optimal expected payment.

Our notion of utility gap is slightly different and we require our protocols to be robust

against provers of type (b), i.e., the provers may send some incorrect messages and only incur

a small payment loss, but if they mislead the verifier to the wrong answer to the membership

question of the input string, then the provers must suffer a significant loss in the payment.

Definition 3.6 (Utility Gap). Let L be a language in MRIP, (V, ~P ) an MRIP protocol for L,

and γ(n) ≥ 0. We say that (V, ~P ) has an γ(n)-utility gap if for any input x with |x| = n, any

strategy profile s of ~P that maximizes the expected payment, and any other strategy profile s′,

where the answer bit c′ under s′ does not match the answer bit c under s, i.e., c′ 6= c, then

u(s)− u(s′) >
1

γ(n)
.

We denote the class of languages that have an MRIP protocol with constant utility gap
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by O(1)-MRIP, and the class of languages that have an MRIP protocol with polynomial (or

noticeable) utility gap by poly(n)-MRIP. Specifically, poly(n)-MRIP is the union of MRIP

classes with γ(n) utility gap, where γ(n) is a polynomial in n. O(1)-MRIP is defined anal-

ogously. We also use the notation γ(n)-MRIP to denote the class of languages which have

ncRIP protocol with utility gap 1/O(γ), where γ(n) is any polynomial-time computable

function (given 1n) that is polynomially bounded, e.g., γ(n) can be a constant, log n, or
√
n.

Relationship between utility gap and budget. The budget is the total expected pay-

ment that a verifier can give in a protocol.

Utility gap and budget are closely related. To study utility gap consistently, we maintain

a fixed O(1) budget.3 This is because utility gap scales naturally with the payment—a

polynomial utility gap under a constant budget is the same as a constant utility gap under

a sufficiently-large polynomial budget.

Following Definition 3.6, it is not hard to see that the MRIP protocol for L in the proof

of Lemma 3.5 has the same utility gap as the one for L. Thus, we have the following.

Corollary 3.7. O(1)-MRIP and poly(n)-MRIP are both closed under complement.

3.3 MRIP Protocols for NEXP

To demonstrate the power of multi-prover rational proofs, we start by constructing two

different MRIP protocols for NEXP, the class of languages decidable by exponential-time

non-deterministic Turing machines.

Constant utility gap MRIP protocol for NEXP using MIP. First, we show that

O(1)-MRIP contains NEXP. We construct the desired MRIP protocol using a MIP protocol

as a blackbox. Existing MIP protocols (see, e.g., [13, 64]) for a language L ∈ NEXP first

reduce L to the NEXP-complete problem Oracle-3SAT, and then run a MIP protocol for

Oracle-3SAT. See Chapter 2 for the definition of Oracle-3SAT.

Lemma 3.8. Any language L ∈ NEXP has an MRIP protocol that uses two provers, three

rounds and has with constant utility gap.

Proof. The desired MRIP protocol (V, ~P ) is defined in Figure 4.

The 2-prover 3-round MRIP protocol is obtained by running the MIP protocol in [64].

Without loss of generality, let the MIP protocol have completeness 1 and soundness 1/3. That

3In contrast, Azar and Micali [11] maintain a polynomial-size budget.
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For any input string x, (V, ~P ) works as follows:

1. P1 sends a bit c ∈ {0, 1} to V . V outputs c at the end of the protocol.

2. If c = 0, then the protocol ends and the payment given to the provers is R = 1/2;

3. Otherwise, V and ~P run a MIP protocol for proving x ∈ L. If the verifier accepts
then R = 1; else, R = 0.

Figure 4: A simple MRIP protocol for NEXP.

is, the verifier accepts every x ∈ L with probability 1, and every x /∈ L with probability at

most 1/3. We show that V outputs 1 if and only if x ∈ L.

For any x ∈ L, if the provers send c = 1 and execute the MIP protocol with V , then

the payment is R = 1 because V accepts with probability 1.4 If they send c = 0, then the

payment is R = 1/2 < 1.

For any x 6∈ L, if the provers send c = 1 and run the MIP protocol, then the probability

that V accepts is at most 1/3 and the expected payment is at most 1/3. If they send c = 0,

then the payment is 1/2 > 1/3.

Thus, V outputs 1 iff x ∈ L, and (V, ~P ) is an MRIP protocol for L. Since the provers’

payment loss when sending the wrong answer bit is at least 1/6, the utility gap is O(1).

Combining Corollary 3.7 and Lemma 3.8, we have the following.

Corollary 3.9. Any language L ∈ coNEXP has an MRIP protocol that uses two provers,

three rounds and has with constant utility gap.

Remarks. Three rounds of interaction is the best possible for any non-trivial MRIP pro-

tocol with at least two provers, because P1 always sends the answer c in the first round. In

particular, if the protocol has only two rounds, then the last round consists of the verifier

sending messages to the provers and can be eliminated. A single-round MRIP protocol de-

generates into a single-prover rational protocol, as the provers can pre-agree on the messages.

The constant utility gap in our MRIP protocol comes from the constant soundness gap

of classical MIP protocols—that is, the gap between the accepting probability for x ∈ L and

x /∈ L. Using the same construction, any classical interactive proof protocol can be converted

into an MRIP protocol where the utility gap is a constant fraction of the soundness gap.

4If the MIP protocol does not have perfect completeness and accepts x with probability at least 2/3, then
the expected payment is at least 2/3. This does not affect the correctness of our MRIP protocol.
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MRIP protocol for NEXP using scoring rules. We now construct an MRIP protocol

for any language in NEXP without relying on MIP protocols. Instead, we use a proper scoring

rule to compute the payment for the provers, so as to incentivize them to report the correct

answer. However, the way we use the scoring rule is highly non-standard and differs from

previous uses of scoring rules (including those in rational proofs [10,11,80]). For a review of

proper scoring rules, see Chapter 2.3.2.

We construct a simple and efficient MRIP protocol for Oracle-3SAT. As in classical MIP

protocols, an MRIP protocol for any language L ∈ NEXP can be obtained by first reducing

L to Oracle-3SAT and then using our protocol. As our protocol is highly efficiently, the

complexity of the overall protocol for L is the same as the reduction. Our protocol for

Oracle-3SAT is defined in Figure 5, and we have the following lemma.

For any instance B, the protocol (V, ~P ) works as follows:

1. P1 sends c ∈ {0, 1} and a ∈ {0, 1, . . . , 2r+3s} to V . V outputs c at the end.

2. If c = 1 and a < 2r+3s, or if c = 0 and a = 2r+3s, the protocol ends, and R = −1.

3. Otherwise, V uniformly and randomly chooses two binary strings of length r + 3s,
w = (z, b1, b2, b3) and w′ = (z′, b4, b5, b6), as well as a number k ∈ {1, 2, . . . , 6}.
V sends b1, b2, b3, b4, b5, b6 to P1 and bk to P2.

4. P1 sends to V six bits, A(bi) with i ∈ {1, 2, . . . , 6}, and P2 sends one bit, A′(bk).

5. The protocol ends and V computes the payment R as follows.

(a) If A(bk) 6= A′(bk) then R = −1.

(b) Otherwise, if B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0 then R = 0.

(c) Else, let b = B(z′, b4, b5, b6, A(b4), A(b5), A(b6)), p1 = a/2r+3s, and p0 = 1− p1.

V computes R using BSR. If b = 1, R =
2p1−(p21+p20)+1

11
, else R =

2p0−(p21+p20)+1

11
.

Figure 5: A simple and efficient MRIP protocol for Oracle-3SAT.

Lemma 3.10. Oracle-3SAT has a 2-prover 3-round MRIP protocol where, for any instance

B of length n, the randomness used by the verifier, the computation complexity, and the com-

munication complexity of the protocol are all O(n). Moreover, the evaluation of the payment

function consists of constant number of arithmetic operations over O(n)-bit numbers.

Proof. For any instance B with r + 3s+ 3 variables (thus n ≥ r + 3s+ 3), the provers can,

with their unbounded computation power, find an oracle A∗ that maximizes the number of

29



satisfying (r + 3s)-bit strings for B. Denote this number by a∗. If B ∈ Oracle-3SAT then

a∗ = 2r+3s, otherwise a∗ < 2r+3s.

Roughly speaking, in our MRIP protocol in Figure 5, the verifier incentivizes the provers

to report the correct value of a∗, so that the membership of B can be decided. To see why

this is the case, let s∗ be one of the best strategy profiles of the provers. Then s∗ must satisfy

either c = 1 and a = 2r+3s, or c = 0 and a < 2r+3s. (1)

Otherwise, the provers’ expected payment is −1. Meanwhile, by sending c = 0 and a = 0 in

Step 1 and all 0’s in Step 4, their expected payment is 0.

We consider which of the two cases in Equation 1 the provers will report. Note that P2

only answers one query of the verifier (in Step 4). Thus under any strategy s̃2 and given

any c and a, P2 de facto commits to an oracle A′ : {0, 1}s → {0, 1}. Assume that P1, using

a strategy s̃1 and seeing (b1, ..., b6), sends V six bits in Step 4 that are not consistent with

A′ —that is, there exists i ∈ {1, . . . , 6} such that A(bi) 6= A′(bi). Let q be the probability

that, conditioned on (b1, ..., b6), the verifier chooses a k that catches the provers in Step

5a; we have q ≥ 1/6. Let R be the payment to the provers conditioned on (b1, ..., b6) and

on the event that they are not caught in Step 5a. Note that R ≤ 2
11

by the definition of

Brier’s scoring rule. Thus the expected payment to the provers conditioned on (b1, ..., b6) is

−q + (1− q)R < 0. However, if P1 answers the verifier’s queries consistently with A′, their

expected payment conditioned on (b1, ..., b6) is nonnegative. Thus, the best strategy profile

s∗ is such that, for any c, a and the oracle committed by P2, P1’s answers for any (b1, ..., b6)

is consistent with A′. Thus, under s∗, the payment is never computed in Step 5a.

Whether or not B evaluates to 0 in Step 5b is determined solely by b1, b2, b3 and A′. If

B evaluates to 0, then it does not matter what a or c is, and the provers’ received payment

is 0. If B does not evaluate to 0 in Step 5b, then the expected payment to the provers

in Step 5c is defined by Brier’s scoring rule: the true distribution of b, denoted by D, is

such that D(1) = a′/2r+3s, with a′ being the number of satisfying (r + 3s)-bit strings for B

under oracle A′; the realized value is b = B(z′, b4, b5, b6, A(b4), A(b5), A(b6)); and the reported

distribution is (p1, p0). Indeed, since b4, b5, b6 are independent from b1, b2, b3, we have that w′

is a uniformly random input to B, and the probability for b to be 1 is exactly a′/2r+3s. Since

Brier’s scoring rule is strictly proper, conditioned on A′, the provers maximize the expected

payment by reporting a = a′, which implies (p1, p0) = (D(1), D(0)).

If B 6∈ Oracle-3SAT, then no matter which oracle A′ is committed under s∗, we have

a′ < 2r+3s. By Equations 1 and the fact that a = a′, a < 2r+3s and c = 0 as desired.

If B ∈ Oracle-3SAT, which is the more interesting part, we show that under s∗ prover P2
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commits to the desired 3-satisfying oracle A∗ (so that a′ = 2r+3s and D(1) = 1). Let BSR(D)

denote the expected score for reporting D under BSR, when D is the true distribution.

BSR(D) = D(1)[2D(1)−D(1)2 − (1−D(1))2 − 1] (2)

+(1−D(1))[2(1−D(1))−D(1)2 − (1−D(1))2 − 1]

= 2(D(1)2 −D(1)).

Thus BSR(D) is symmetric at D(1) = 1/2, strictly decreasing on D(1) ∈ [0, 1/2], strictly

increasing on D(1) ∈ [1/2, 1], and maximized when D(1) = 1 or D(1) = 0. Note that

the shifting and scaling of BSR in Step 5c do not change these properties, but make BSR(D)

strictly positive when D(1) = 1 or D(1) = 0. Therefore, to maximize their expected payment

conditioned on the event that Step 5c is reached, P2 should commit to either an oracle A′ such

that D(1) is as small as possible, or an A′ such that D(1) is as large as possible, whichever

makes D(1) further from 1/2.

If there is no oracle A′ such that a′ = 0, then the provers can only maximize their expected

payment by committing to the 3-satisfying oracle A∗ (thus a′ = 1), under which Step 5c is

reached with probability 1. By Equations 1 and a′ = a, we have c = 1 and a = 2r+3s.

If there are both a 3-satisfying oracle A∗ and an oracle A′ such that a′ = 0, we need

to make sure that P2 does not commit to A′. To do so, we use w along with Step 5b. In

particular, committing to any oracle other than A∗ or A′ results in an expected payment

strictly smaller than that by committing to A∗, since it increases the probability that the

protocol ends at Step 5b withR = 0, and strictly decreases the expected payment conditioned

on Step 5c being reached. Moreover, if P2 commits to A′, then B always evaluates to 0 in

Step 5b, and Step 5c is actually never reached. Thus, even though by committing to A′

the provers maximize their expected payment in Step 5c, their actual expected payment is

0. Instead, by committing to A∗, Step 5c is reached with probability 1 and the provers get

positive payment. The strategy profile s∗ must be such that P2 commits to A∗ and P1 sends

a = 2r+3s and c = 1, as desired. If there are multiple 3-satisfying oracles for B, then the

provers can pre-agree on any one of them (e.g., the lexicographically first one).

Thus, (V, ~P ) is an MRIP protocol for Oracle-3SAT. Since n ≥ r + 3s+ 3, the number of

coins flipped by V for sampling w, w′, and k is O(n), and so the number of bits exchanged

is also O(n). Moreover, given an input w = (z, b1, b2, b3) for B and the 3-bit answers of the

oracle for b1, b2, b3, B can be evaluated in O(n) time. Thus V ’s running time is O(n) plus a

constant number of arithmetic operations to compute the payment in Step 5c.
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Remarks. There is a tradeoff between the utility gap and the computational efficiency

in the two MRIP protocols we have constructed for NEXP. The protocol in Figure 4 has

constant utility gap but relies on the MIP protocol, which has high (even though polynomial)

communication and computation overheads beyond the reduction to Oracle-3SAT. On the

other hand, the protocol in Figure 5 is very efficient, with just linear computation and

communication overheads beyond the reduction to Oracle-3SAT, but has exponential utility

gap. It would be interesting to see if there exists an MRIP protocol for NEXP that has

constant or noticeable utility gap and is highly efficient (e.g., with linear overhead beyond

the reduction to Oracle-3SAT).

To the best of our knowledge, our use of the property of BSR in Equation 2 is new.

Existing uses of proper scoring rules have the expert report the truth about a fixed distri-

bution. In contrast, our use of scoring rules compares the expected scores across different

distributions: by committing to different oracles, the expert can choose which distribution

is the true distribution, and can tell the truth about that distribution to maximize its cor-

responding score. The correctness of our protocol depends on the expert committing to the

distribution with the highest score under truth-telling.

3.4 Constant and Noticeable Utility Gap

We have shown in Chapter 3.3 that the class of MRIP protocols with constant utility gaps

contains both NEXP and coNEXP, making them more powerful than classic MIP protocols.

In this section, we prove Theorem 3.1 and Theorem 3.2.

To do so, recall that γ(n) is a function of n, which (1) only takes positive integral values,

(2) is upper-bounded by a polynomial in n, and (3) is polynomial-time computable.5 We

refer to the class of languages that have an MRIP protocol with O(γ(n)) utility gaps as

γ(n)-MRIP. Recall that P
NEXP[γ(n)]
|| is the class of languages decidable by polynomial-time

Turing machines making O(γ(n)) nonadaptive queries to an NEXP oracle. We prove tight

upper- and lower-bounds on the power of the class γ(n)-MRIP.

Lemma 3.11. P
NEXP[γ(n)]
|| ⊆ γ(n)-MRIP.

Proof. Consider any language L ∈ P||NEXP[γ(n)]. Let M be a polynomial-time Turing machine

deciding L, with access to an oracle O for an NEXP language. Without loss of generality, M

makes exactly γ(n) ≥ 1 nonadaptive queries to O. The MRIP protocol for L uses our MRIP

protocol for NEXP to simulate the oracle, as in Figure 6.

5For Theorem 3.1 and Theorem 3.2, we only need γ(n) to be constant or polynomial in n. However, the
lemmas in this section hold for all γ(n)’s that are polynomial-time computable (given 1n) and polynomially
bounded. That is, γ(n) can be log n,

√
n, etc.
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For any input string x of length n, the protocol (V, ~P ) works as follows. Initially Rn = 0.

1. P1 sends a bit c ∈ {0, 1} to V . V outputs c at the end of the protocol.

2. V simulates M on x till M outputs γ(n) queries for O, denoted by q1, . . . , qγ(n).

3. To answer M ’s oracle queries, for each i ∈ {1, 2, . . . , γ(n)}, V does the following:

(a) V first reduces qi to an Oracle-3SAT instance φi.

(b) V sends φi to P1 and P2 and executes the MRIP protocol for NEXP in Figure 4.
Let c∗i and R∗i be the answer bit and the payment in that protocol respectively.
V returns c∗i as the oracle’s answer for qi, and updates the sum Rn ← Rn +R∗i .

4. V continues simulating M till the end. If c does not match M ’s output, then the
protocol ends with reward R = −1; otherwise the protocol ends with R = Rn/γ(n).

Figure 6: An MRIP protocol for P||NEXP[γ(n)].

To see why this protocol works, first note that reporting the correct answer bit c and

answering all γ(n) NEXP queries q1, . . . , qγ(n) correctly leads to a reward R ≥ 1/2 for the

provers. In particular, according to our protocol in Figure 4 and the proof of Lemma 7.7, if

the provers use the optimal strategy for each query qi (which includes sending the correct

answer bit c∗i ), the provers get R∗i = 1 if φi ∈ Oracle-3SAT and R∗i = 1/2 if φi /∈ Oracle-3SAT.

Now, suppose the provers report an incorrect answer bit c′ 6= c at the beginning. Then,

either (a) the output of M in Step 4 does not match c′, and thus R = −1; or (b) there exists

an NEXP query qi such that the answer bit c∗i in Step 3b is incorrect.

In case (a), the provers’ expected payment loss is at least 1/2 + 1 = 3/2 > 1/γ(n), as

γ(n) ≥ 1. In case (b), since the protocol in Figure 4 has O(1) utility gap, the provers’

expected payment loss in the overall protocol is 1/O(γ(n)). Thus, the provers’ optimal

strategy is to report the correct answer bit c.

Next, we prove a tight upper-bound for γ(n)-MRIP.

Lemma 3.12. γ(n)-MRIP ⊆ P
NEXP[γ(n)]
|| .

Proof. Given any L ∈ γ(n)-MRIP, let (V, ~P ) be the MRIP protocol with O(γ(n)) utility gap

for L. Again without loss of generality, assume the utility gap is exactly γ(n). To prove

Lemma 3.12, we simulate (V, ~P ) using a P||NEXP[γ(n)] Turing machine.

Consider the following deterministic oracle Turing machine M . Given an input x of

length n, M divides [−1, 1] into 4γ(n) intervals, each of length 1/(2γ(n)). That is, the ith

interval is [i/2γ(n), (i + 1)/2γ(n)) for each i ∈ {−2γ(n), . . . , 2γ(n) − 1}.6 For each interval

6To include 1, interval 2γ(n)− 1 should be closed on both sides; we ignore this for simplicity.
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i, that is, [i/2γ(n), (i+ 1)/2γ(n)), M makes the following queries to an NEXP oracle:

1. Does there exist a strategy profile s with expected payment u(V, ~P )(s, x) in interval i?

2. Does there exist a strategy profile s with expected payment u(V, ~P )(s, x) in interval i

and corresponding answer bit c = 1?

Note that M makes O(γ(n)) nonadaptive queries, each of polynomial size: indeed, M

only needs to specify x, the value i and the query index. Some of these queries may turn out

to be unnecessary in the end, but they are made anyway so as to preserve non-adaptivity.

We now show that the queries made by M can be answered by an NEXP oracle. Recall

that in an MRIP protocol, a strategy sjk of each prover Pj for each round k is a function

mapping the transcript Pj has seen at the beginning of round k to the message it sends

in that round. Since the protocol has polynomially many provers and polynomially many

rounds, a strategy profile s consists of polynomially many functions from {0, 1}∗ to {0, 1}∗,
and for each function, both the input length and the output length are polynomial in n. Thus

it takes at most exponentially many bits to specify a strategy profile: if the input length

is at most p(n) and the output length is at most q(n), then 2p(n)q(n) bits are sufficient to

specify the truth table of a function.

Thus, an NEXP machine can non-deterministically choose a strategy profile s. It then

goes through all possible realizations of V ’s random string and, for each realization, simulates

(V, ~P ) on input x using s, to compute the reward R. Finally, the NEXP machine computes

the expected payment u(s, x), checks if u(s, x) is in interval i (and if c = 1 for query 2), and

accepts or rejects accordingly. It is easy to see that if the desired strategy profile s exists

then this machine accepts s; otherwise it always rejects.

Since V runs in polynomial time and flips polynomial coins, this machine runs in non-

deterministic exponential time, and M ’s queries can be answered by an NEXP oracle.

Finally, given the oracle’s answers to its queries, M finds the highest index i∗ such that

interval i∗ is “non-empty”: that is, the oracle has answered 1 for query 1 for this interval.

M accepts if the oracle’s answer to query 2 for this interval is 1, and rejects otherwise. It is

clear that M runs in polynomial time.

The only thing left to show is that M decides L given correct answers to its oracle queries.

By definition, for the best strategy profile s∗ of the provers in (V, ~P ) for x, u(s∗, x) falls into

interval i∗. Because (V, ~P ) has γ(n) utility gap and each interval is of length 1/(2γ(n)), by

Definition 3.6, all strategy profiles whose expected payments are in interval i∗ must have the

same answer bit c as that in s∗. By the definition of MRIP protocols, x ∈ L if and only if

c = 1, which occurs if and only if the oracle’s answer to query 2 for interval i∗ is 1. Thus M

decides L and Lemma 3.12 holds.
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Theorem 3.1 and Theorem 3.2 follow from Lemma 3.11 and Lemma 3.12.

3.5 Characterizing the Full Power of MRIP

In this section, we prove Theorem 3.3, that is, we show that a language has an MRIP protocol

(with exponential utility gap) if and only if it can be decided by an exponential-time Turing

machine with nonadaptive access to an NP oracle.

We first show that MRIP is the same as another complexity class, EXPpoly−NEXP
|| , which

we define below. We complete the proof of Theorem 3.3 by showing EXPNP
|| = EXPpoly−NEXP

|| .

Definition 3.13. EXPpoly−NEXP
|| is the class of languages decidable by an exponential-time

Turing machine with nonadaptive access to an NEXP oracle, such that the length of each

oracle query is polynomial in the length of the input of the Turing machine.

We start by proving the following lower bound.

Lemma 3.14. EXPpoly−NEXP
|| ⊆ MRIP.

Proof. By Lemma 2.6, there exists a DC uniform circuit family {Cn}∞n=1 that computes L.

Let g = 2n
k

be the size of each Cn, where k is a constant that may depend on L. We call

a gate i′ ∈ {1, 2, ..., g} of Cn an input gate of gate i if there is a directed wire from i′ to i.

For any input string x of length n and any gate i in Cn, let vi(x) ∈ {0, 1} be the value of i’s

output on input x. In particular, vi(x) = xi for any i ∈ {1, 2, ..., n}. The 2-prover 5-round

MRIP protocol (V, ~P ) for L is given in Figure 7.

To see why it is an MRIP protocol, notice that if P1 and P2 send the correct c and always

answer V ’s queries correctly according to Cn, then the payment to them is always R = 1,

irrespective of V ’s coin flips. Thus the expected payment is 1. Below we show that any other

strategy profile makes the expected payment strictly less than 1.

First of all, when the gate i chosen by the verifier in Step 2 is not an input gate, if any of

P1’s answers in Step 3 to queries 2a and 2b (namely, about i’s type, input gates and input

wires) is incorrect, then by DC uniformity the verification in Step 6a will fail, giving the

provers a payment R = 0. Indeed, to verify whether i1 and i2 are the input gates of i, it

suffices to verify whether h1 and h2 are both the input wires of i and the output wires of i1

and i2: this is why V queries P1 about i’s input wires. Accordingly, if such a gate i exists

then the expected payment to the provers will be at most 1− 1/g < 1.

Similarly, if there exists a non-input gate i such that P1 answers queries 2a and 2b

correctly but the values vi(x), vi1(x), vi2(x) are inconsistent with i’s type, then Step 6d will

fail conditioned on gate i being chosen, and the expected payment to the provers is at most
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For any input string x of length n, the protocol (V, ~P ) works as follows:

1. P1 sends one bit c ∈ {0, 1} to V . V outputs c at the end of the protocol.

2. V computes g =SIZE(n), picks a gate i ∈ {1, 2, ..., g} uniformly at random, and sends
i to P1. That is, V queries P1 for:

(a) the type of gate i,

(b) the input gates and input wires of i, and

(c) the values of gate i and its input gates.

3. P1 sends to V : type ti ∈ {AND, OR, NOT, INPUT}; gates i1, i2 ∈ {1, 2, ..., g}; wires
h1, h2 ∈ {1, 2, ..., 2g}; and values vi(x), vi1(x), vi2(x) ∈ {0, 1}.

4. V picks a gate i′ ∈ {i, i1, i2} uniformly at random and sends i′ to P2.

5. P2 sends v′i′(x) ∈ {0, 1} to V .

6. V computes the payment R by verifying the following statements:

(a) ti is the correct type of i and the set of input gates of i is correct using DC
uniformity;

(b) if i ∈ {1, 2, ..., n} (that is, an input gate of the circuit), then vi(x) = xi;

(c) if i = g (that is, the output gate of the circuit), then vi(x) = c;

(d) if ti ∈ {AND, OR, NOT}, vi(x) follows the logic based on ti and i’s inputs.

(e) The answers of P1 and P2 on the value of gate i′ are consistent.

If any of these verifications fails then R = 0; otherwise R = 1.

Figure 7: An MRIP protocol for EXP.
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1 − 1/g < 1. Moreover, if there exists an input gate i such that vi(x) 6= xi, or if vg(x) 6= c,

then conditioned on gate i being chosen, the expected payment is again at most 1−1/g < 1.

Next, as in the proof of Lemma 3.10, P2 is only queried once (in Step 5). Thus P2 de facto

commits to an oracle A : {1, . . . , g} → {0, 1}, which maps each gate to its value under input

x. If there exists a gate i such that the values vi(x), vi1(x), vi2(x) in Step 3 are not consistent

with A, then, conditioned on i being chosen in Step 2, Step 6e will fail with probability 1/3.

Since i is chosen with probability 1/g, the expected payment will be at most 1− 1
3g
< 1.

Thus, the only strategy profile s̃ with an expected payment equal to 1 is the following:

1. P1 and P2 report values of gates using the same oracle A : {1, . . . , g} → {0, 1},
2. A(i) = xi for any input gate i,

3. A(g) = c for the output gate, and

4. for any other gate i, A(i) is computed correctly based on i’s type and input gates in Cn.

Thus, A(g) is computed according to Cn with input x, and A(g) = 1 if and only if x ∈ L.

Since c = A(g), we have that c = 1 if and only if x ∈ L.

Lower bound for MRIP. Using the protocol in Figure 7 as a building block, we are now

ready to prove Lemma 3.14.

We start by creating some circuit structures for the class EXPpoly−NEXP
|| . For any language

L ∈ EXPpoly−NEXP
|| , let M be an exponential-time oracle Turing machine that decides L using

an oracle O. Without loss of generality, assume O is for Oracle-3SAT. Let q(n) be the

number of oracle queries made by M on any input x of length n, and p(n) be the length

of each query. By the definition of EXPpoly−NEXP
|| , q(n) can be exponential in n, while p(n)

is polynomial. Without loss of generality, p(n) ≥ 5. Let `(n) = p(n)q(n). When n is clear

from context, we refer to `(n), p(n) and q(n) as `, p and q respectively.

Since the oracle queries are nonadaptive, there exists an exponential-time-computable

function f : {0, 1}∗ → {0, 1}∗ such that, for any x ∈ {0, 1}n, f(x) ∈ {0, 1}` and f(x) is the

vector of oracle queries made by M given x. As in Lemma 2.6, there exists a DC uniform

circuit family {Cn}∞n=0 of size 2n
O(1)

that computes f , where for any n, Cn has n-bit input and

`-bit output. Without loss of generality, the gates of Cn can be partitioned into q sets, one for

each oracle query, such that the output of a gate only affects the value of the corresponding

query. This can be done by duplicating each gate at most exponential times. The resulting

circuit family is still DC uniform. Also without loss of generality, the oracle queries are all

different. This can be done by including the index i ∈ {1, . . . , q} in the ith query.

Given the vector of oracle answers corresponding to the q queries of M , b ∈ {0, 1}q, the

membership of x can be decided in time exponential in n. Let f ′ : {0, 1}∗ → {0, 1} be a

function such that, given any (n + q)-bit input (x, b) where |x| = n and b is the vector of

37



oracle answers M gets with input x, f ′(x, b) is the output of M . Again, f ′ is computable by

a DC-uniform circuit family {C ′n}∞n=1 of size 2n
O(1)

, where each C ′n has (n+ q)-bit input and

1-bit output. The size of C ′n is exponential in n but may not be exponential in its own input

length, since q may be exponential in n. That is, the Turing machine that answers questions

SIZE, INPUT, OUTPUT, TYPE for C ′n runs in time polynomial in n rather than n+ q.

Given the two circuit families defined above, the membership of x in L can be computed

by the following three-level “circuit:” besides the usual AND, OR, NOT gates, it has q

“NEXP” gates, which have a p-bit input and 1-bit output, simulating the Oracle-3SAT oracle.

• Level 1: The circuit Cn for computing f . We denote its output by (φ1, φ2, ..., φq), where

each φi is of p bits and is an instance of Oracle-3SAT. Let g = 2n
k

be the size of Cn, where

k is a constant. Similar to our naming convention before, the set of gates is {1, 2, ..., g},
the set of input gates is {1, 2, ..., n}, and the set of output gates is {n+ 1, n+ 2, ..., n+ `}.
The input and the output gates correspond to x and (φ1, φ2, ..., φq) in the natural order.

• Level 2: We have q NEXP gates, without loss of generality denoted by g+1, g+2, ..., g+q.

For each i ∈ {1, 2, ..., q}, gate g + i takes input φi and outputs 1 iff φi ∈ Oracle-3SAT.

• Level 3: The circuit C ′n for computing f ′. Let g′ = 2n
k′

be the size of C ′n, where k′ is a

constant. The set of gates is {g + q + 1, g + q + 2, ..., g + q + g′}, the set of input gates

is {g + q + 1, ..., g + q + n, g + q + n + 1, ..., g + q + n + q}, and the output gate is gate

g + q + g′. The first n input gates connect to x, and the remaining ones connect to the

NEXP gates of Level 2. The output of C ′n is the final output of the whole circuit.

For the three-level circuit, we can compute each output gate of Level 1 and Level 3 using

the protocol in Figure 7, and each NEXP gate in Level 2 using the protocol in Figure 4. Now

we show that there exists an MRIP protocol (V, ~P ) such that the provers cannot lie in Cn in

order to change the input to the NEXP queries to gain a higher overall expected payment.

Our protocol is specified in Figure 8. It uses four provers. In this protocol the verifier

needs to compute q(n) and p(n). Without loss of generality, we assume q(n) = 2n
d

for some

constant d, so its binary representation can be computed in time polynomial in n. Since

p(n) is a polynomial in n, it can be computed by a polynomial-time verifier.

To prove the correctness of the protocol in Figure 8, first note that for any input string

x, no matter which gate i is chosen by V in Step 2, if the provers always give correct

answers according to the computation of Cn, the NEXP gates and C ′n, the payment to them

is R ≥ 1
p+1

> 0. The first inequality is tight when either (a) i is not an NEXP gate, or (b)

i is an NEXP gate and the corresponding query φi is not in Oracle-3SAT (since R∗ = 1/2 in

this case). If i is an NEXP gate and φi ∈ Oracle-3SAT, then R = 2
p+1

as R∗ = 1.

Let s be the strategy profile where the provers always send correct answers as described

above. Thus we have u(s) ≥ 1
p+1

.
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For any input string x of length n,

1. P1 sends one bit c ∈ {0, 1} to V . V outputs c at the end of the protocol.

2. V computes g = SIZE(Cn), q(n), and g′ = SIZE(C ′n).
V picks a gate i ∈ {1, 2, ..., g + q + g′} uniformly at random and sends i to P1.
By doing so, V queries P1 for:

(a) the type ti of gate i,
(b) the input gates and input wires of i, and
(c) the values of gate i and its input gates.

3. P1 sends to V the following:

(a) type ti ∈ {AND, OR, NOT, INPUT,NEXP};
(b) input gates i1, i2, . . . , if(i) and input wires h1, h2, . . . , hf(i), where f(i) is the number of

input gates of type ti; and
(c) values of gate i and its input gates: vi(x), vi1(x), vi2(x), . . . , vif(i)(x).

4. V verifies the following using DC uniformity or the naming convention:

(a) ti is the correct type of i (in particular, if i ∈ {g + 1, ..., g + q} then ti = NEXP) and f(i)
is correct for ti; and

(b) the set of input gates of i is correct.

If any of the verifications fails, the protocol ends and R = −1.

5. V picks gate i′ uniformly at random from {i} ∪ {i1 . . . , if(i)} and sends it to P2.

6. P2 sends v′i′(x) ∈ {0, 1} to V .

7. Consistency. V verifies vi′(x) = v′i′(x): that is, the answers of P1 and P2 on the value of gate i′

are consistent. If not, the protocol ends and R = −1.

8. Correctness (Non-NEXP gates). If ti 6= NEXP, then V checks if vi(x) is computed correctly
from vi1(x), vi2(x), . . . , vif(i)(x) as follows:

(a) if ti = INPUT then vi(x) = vi1(x), and if i is one of the first n gates in Cn or C ′n, then
vi(x) equals the corresponding bit of x;

(b) if ti ∈ {AND, OR, NOT}, vi(x) follows the logic between i and its inputs.
(c) if i = g + q + g′ (i.e., the output gate of the whole circuit), then vi(x) = c.

The protocol ends with the following reward: if any of the verifications fails then R = − 1
p+1 ,

otherwise R = 1
p+1 , where p is the length of each NEXP query.

9. Correctness (NEXP gates). If ti = NEXP, then V first checks if φi = (vi1(x), ..., vip(x))
forms a valid Oracle-3SAT instance.a If not, the protocol ends with R = − 2

p+1 . If φi is a valid
Oracle-3SAT instance, then V sends φi to P3 and P4 and runs the MRIP protocol for NEXP in
Figure 4. Let c∗ and R∗ respectively be the output and the reward of the NEXP protocol. If
c∗ = vi(x) then R = 2R∗

p+1 ; otherwise R = − 2
p+1 .

aWLOG, we assume that the instances of Oracle-3SAT have a canonical form.

Figure 8: An MRIP protocol for EXPpoly−NEXP
|| .
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The correctness of our protocol. Arbitrarily fix a best strategy profile s∗ of the provers,

we show that under s∗, c = 1 if and only if x ∈ L.

Since P2 is queried only once (Step 6), as in the proof of Lemma 3.10, any strategy of P2

commits to an oracle A : {1, 2, ..., g + q + g′} → {0, 1}, mapping each gate in the three-level

circuit to its value under input x. First, we show that for non-NEXP gates, P1 answers all

queries consistently with A.

Claim 3.15. Under s∗, for any gate i that is not an NEXP gate and is chosen in Step 2, P1

reports the correct type and input gates of i in Step 3, and reports the values of gate i and

its input gates consistently with A.

Proof. Suppose there exists a non-NEXP gate i such that P1 does not report its type and

input gates correctly. Conditioned on i being chosen by the verifier, some verification in

Step 4 is guaranteed to fail, and the payment is −1. Consider the following alternative

strategy s′1 of P1: if i is not chosen by V , then P1’s strategy remains the same; if i is chosen,

then P1 acts “correctly” as specified in Claim 3.15. Under this strategy, when i is chosen

the payment is at least − 1
p+1

> −1, and when i is not chosen the payment stays the same.

Thus the expected payment gets larger, contradicting the fact that s∗ is the provers’ best

strategy profile.

Similarly, consider the case where P1 reports i’s type and input gates correctly, but the

reported values do not match A on some gate i′ ∈ {i} ∪ {i1, . . . , if(i)}. Conditioned on gate

i being chosen, with probability at least 1
f(i)+1

≥ 1
3
, V picks i′ in Step 5 and the consistency

check in Step 7 fails, leading to a payment of −1. If i′ is not chosen in Step 5, the payment

to the provers is at most 1
p+1

(in Step 8). Thus the expected payment conditioned on i being

chosen is at most

−1

3
+

2

3
· 1

p+ 1
< − 1

p+ 1
,

where the inequality holds since p ≥ 5. Again, consider the alternative strategy s′1 of P1.

Under this strategy, conditioned on i being chosen the expected payment is at least − 1
p+1

;

and conditioned on i not being chosen it stays the same. Thus the expected payment gets

larger, again a contradiction.

Below we only need to consider cases where P1 acts according to Claim 3.15. We argue

about the correctness of A on non-NEXP gates, and we have the following.

Claim 3.16. Under s∗, for every gate i that is not an NEXP gate, A(i) and the values

A(i1), . . . , A(if(i)) are such that the verifications in Step 8 succeed.
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Proof. By contradiction, assume this is not the case and compare s∗ with the “always correct”

strategy profile s previously defined. Recall that, conditioned on i being chosen, for any non-

NEXP gate i the payment under s is exactly 1
p+1

, and for any NEXP gate i the payment under

s is at least 1
p+1

.

Under s∗, by Claim 3.15, P1’s answers for vi(x), vi1(x), . . . , vif(i)(x) are consistent with A.

If A makes some verification in Step 8 fail, then conditioned on i being chosen, the payment

under s∗ is − 1
p+1

. That is, the payment under s∗ drops by 2
p+1

compared with that under s.

However, s and s∗ may not have the same oracle queries to Oracle-3SAT. For each NEXP

gate j where the two queries differ, conditioned on j being chosen, the best case for s∗ (and

the worst case for the analysis) is that its query φ∗j is in Oracle-3SAT, resulting in payment
2
p+1

, while the query φj of s is not in Oracle-3SAT, resulting in payment 1
p+1

. That is, the

payment under s∗ increases by 1
p+1

compared with that under s.

Fortunately, for each NEXP gate j, in order for the two queries to differ, there exists at

least one non-NEXP gate i in the part of the circuit Cn for computing the input to j, where

the computation of A (and thus s∗) is incorrect, and A(i) and A(i1), . . . , A(if(i)) make some

verification in Step 8 fail. Otherwise the queries made by A are computed correctly from

the input x and are the same as those under s. Since gate j and the corresponding gate i

are chosen with the same probability 1
g+q+g′

, we have

u(s)− u(s∗) ≥ 1

g + q + g′
· 2

p+ 1
− 1

g + q + g′
· 1

p+ 1
> 0.

If there is more than one such j, their corresponding gates i are all different from each other,

because the circuits for computing different oracle queries are disjoint from each other—so

the gap between u(s) and u(s∗) becomes even larger. This contradicts that s∗ is the provers’

best strategy, and thus Claim 3.16 holds.

Now we only need to consider cases where P1 acts according to Claims 3.15 and 3.16.

We prove the correctness of A on NEXP gates.

Claim 3.17. Under s∗, for every NEXP gate i, P1 reports the correct type and input gates

of i in Step 3, and reports the values of gate i and its input gates consistently with A.

Moreover, φi = (A(i1), . . . , A(ip)) forms a valid Oracle-3SAT instance and A(i) = 1 iff

φi ∈ Oracle-3SAT.

Proof. The fact that φi forms a valid Oracle-3SAT instance follows from Claims 3.15 and 3.16,

because each bit of φi is the output of a logic gate and thus computed correctly from the

input x according to Cn. We again compare s∗ with the always-correct strategy profile s.
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Note that A and s are both correct on Cn, thus form the same Oracle-3SAT queries.

They both evaluate C ′n correctly as well, but it is possible that A has incorrect outputs of

the NEXP gates and thus incorrect inputs to C ′n. Nevertheless, for each non-NEXP gate i′,

conditioned on i′ being chosen, s∗ makes the verifications in Step 8 succeed, and the payment

is 1
p+1

under both s and s∗.

If P1 reports i’s type and input gates incorrectly under s∗, then the payment is −1 (Step

4) conditioned on i being chosen. However, by reporting the required information correctly

and reporting vi(x), vi1(x), . . . , vip(x) consistently with A, the corresponding payment is at

least − 2
p+1

> −1 and the expected payment increases, contradicting with the fact that s∗ is

the provers’ best strategy profile.

Suppose P1 reports i’s type and input gates correctly, but reports vi′(x) inconsistently

with A for some i′ ∈ {i}∪{i1, . . . , ip}. In this case, with probability at least 1
p+1

the payment

is −1 (Step 7), and with probability at most 1 − 1
p+1

the payment is at most 2
p+1

(Step 9).

Thus the expected payment is

R ≤ − 1

p+ 1
+ (1− 1

p+ 1
) · 2

p+ 1
=

1

p+ 1
− 2

(p+ 1)2
<

1

p+ 1
.

The corresponding expected payment under s is at least 1
p+1

. As the two strategy profiles

have the same payment 1
p+1

conditioned on every non-NEXP gate i′ being chosen, we have

u(s) > u(s∗), a contradiction.

Finally, assume P1 is consistent with A, but A(i) is not the correct answer of φi. If

the answer bit c∗ given by P3 and P4 is different from A(i) (i.e., vi(x)), then the payment

is − 2
p+1

< 1
p+1

, less than the payment received under the always-correct strategy profile s.

If c∗ = vi(x), then c∗ is the wrong answer bit in the MRIP protocol for NEXP, and the

resulting payment R∗ is strictly less than the payment under s. Thus, again we have that

u(s) > u(s∗), which is a contradiction, and Claim 3.17 holds.

Claims 3.15, 3.16, and 3.17 together imply that the always-correct strategy profile s is

the only possibility for the provers’ best response; that is, s∗ = s. Under s, for any gate i,

A(i) is the correct value of i under input x, and c = A(g + q + g′). Thus c = 1 iff x ∈ L.

Upper bound for MRIP. We now give a tight upper-bound on MRIP.

Lemma 3.18. MRIP ⊆ EXPpoly−NEXP
|| .

Proof. The proof is similar to that of Lemma 3.12. Let L be a language with an MRIP

protocol (V, ~P ). Since V runs in polynomial time, there exists a constant k such that, for

any two payments R and R′ generated by V on the same input of length n and different

42



random coins: R 6= R′ ⇒ |R − R′| ≥ 1

2nk
. For example, nk can be an upper bound on

V ’s running time. Moreover, since V uses polynomially many random coins, there exists a

constant k′ such that any payment that appears with positive probability under an input of

length n must appear with probability at least 1

2nk
′ . Thus, for an input x of length n, and

any two strategy profiles s and s′, we have, |u(s, x)− u(s′, x)| ≥ 1

2nk+k
′ .

Consider the following deterministic oracle Turing machine M : given any input x of

length n, M divides the interval [−1, 1] into 4 ·2nk+k
′

sub-intervals of length 1

2·2nk+k
′ . For any

i ∈ {−2 · 2nk+k
′
+ 1, . . . , 2 · 2nk+k

′
}, the ith interval is

[
(i−1)

2·2nk+k
′ , i

2·2nk+k
′

]
. For each interval i,

M makes the following two queries to an NEXP oracle:

1. Does there exist a strategy profile s with expected payment u(V, ~P )(s, x) in interval i?

2. Does there exist a strategy profile s with expected payment u(V, ~P )(s, x) in interval i

and the corresponding answer bit c = 1?

Notice that M makes exponentially many nonadaptive queries, and each query has length

polynomial in n. Each query can be answered by an NEXP oracle; see the proof

of Lemma 3.12.

Given the oracle’s answers, M finds the highest index i∗ such that interval i∗ is non-

empty, that is, the oracle’s answer to the first query for interval i∗ is 1. M accepts if the

answer to the second query for interval i∗ is 1, and rejects otherwise.

M clearly runs in exponential time. We now show that M decides L. Similar

to Lemma 3.12, by Definition 3.4, the best strategy profile s∗ has the highest expected

payment u(s∗;x), which falls into interval i∗. Any strategy profile s′ with u(s′, x) < u(s∗, x)

has u(s′, x) not in interval i∗, since the difference between u(s′, x) and u(s∗, x) is larger than

the length of the interval. Thus, any strategy profile s′ with u(s′, x) in interval i∗ satisfies

u(s′, x) = u(s∗, x), i.e, they are all the best strategy profiles of the provers. In particular,

the answer bit c is the same under all these strategy profiles, and c = 1 if and only if x ∈ L.

So the second query for interval i∗ is 1 if and only if x ∈ L, and M decides L.

Final characterization. So far we have established that MRIP = EXPpoly−NEXP
|| . To finish

the proof of Theorem 3.3, we show EXPpoly−NEXP
|| equals EXPNP

|| .

Lemma 3.19. EXPpoly−NEXP
|| = EXPNP

|| .

Proof. First, we show EXPpoly−NEXP
|| ⊆ EXPNP

|| using a padding argument. Let M1 be an

exponential-time oracle Turing machine with nonadaptive access to an oracle O1 for an

NEXP language, where the lengths of the oracle queries are polynomial in the input length.
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Let O1 be decided by a non-deterministic Turing machine M ′
1 with time complexity 2|q|

k1 ,

where k1 is a constant and q is the query to the oracle (the input to M ′
1). We simulate MO1

1

using exponential-time oracle Turing machine M2 and another oracle O2, as follows.

Given any input x of length n, M2 runs M1 to generate all the oracle queries. For each

query q, M2 generates a query q′ which is q followed by 2|q|
k1 bits of 1. It then gives all

the new queries to its own oracle O2. Given the oracle’s answers, M2 continues running

M1 to the end, and accepts if and only if M1 does. Since |q| is polynomial in n, 2|q|
k1 is

exponential in n. Furthermore, since there are exponentially many queries and M1 runs in

exponential time, we have that M2 runs in exponential time as well. It is clear that (1) M2

makes nonadaptive oracle queries, and (2) MO2
2 decides the same language as MO1

1 , as long

as O2’s answer to each query q′ is the same as O1’s answer to the corresponding query q.

We define O2 by constructing a non-deterministic Turing machine M ′
2 that simulates M ′

1.

That is, O2 will be the language decided by M ′
2. More specifically, given a query q′ (q followed

by 2|q|
k1 1s), M ′

2 runs M ′
1 on q, makes the same non-deterministic choices as M ′

1, and outputs

whatever M ′
1 outputs. Since M ′

1 runs in time 2|q|
k1 , M2′ runs in time polynomial in its own

input size. Thus, the language O2 decided by M ′
2 is in NP, and q′ ∈ O2 if and only if q ∈ O1.

Accordingly, MO2
2 decides the same language as MO1

1 , and we have EXPpoly−NEXP
|| ⊆ EXPNP

|| .

Now, we show EXPNP
|| ⊆ EXPpoly−NEXP

|| . The proof is similar to the above. Let M2 be an

exponential-time oracle Turing machine with nonadaptive access to an oracle O2 for an NP

language. Note that the queries made by M2 can be exponentially long. Let O2 be decided

by a non-deterministic Turing machine M ′
2 that runs in time |q|k2 , where k2 is a constant

and q is the query to O2 (the input to M ′
2). We simulate MO2

2 using an exponential-time

oracle Turing machine M1 and an oracle O1, as follows.

Given any input x of length n, M1 runs M2 to compute the number of oracle queries made

by M2, denoted by Q. M1 generates Q oracle queries, with the ith query being x followed

by the binary representation of i. Since M2 makes at most exponentially many queries, the

length of each query made by M1 is (at most) polynomial in n.

Query i of M1 is to the following question: is the ith query made by M2 given input x in

the NP language O2? M1 then gives all its queries to its own oracle O1. Given O1’s answers,

M1 uses them to continue running M2, and accepts if and only if M2 does. Since M2 runs

in exponential time, M1 runs in exponential time as well. It is clear that (1) M1 makes

nonadaptive oracle queries, and (2) MO1
1 decides the same language as MO2

2 as long as O1

answers each query correctly.

We define O1 by constructing a non-deterministic Turing machine M ′
1 that simulates M ′

2.

That is, O1 will be the language decided by M ′
1. More specifically, given an input string

of the form (x, y), M ′
1 interprets the second part as the binary representation of an integer
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i. It runs M2 on x to compute its ith query, denoted by q. It then runs M ′
2 on q, makes

the same non-deterministic choices as M ′
2, and outputs whatever M ′

2 outputs. Since q is

at most exponentially long in |x| and M ′
2 runs in time |q|k2 , the running time of M ′

1 is (at

most) exponential in its input length. Thus, the language O1 decided by MO1 is in NEXP.

Moreover, if q ∈ O2, then there exist non-deterministic choices that cause M ′
2 and thus M ′

1

to accept; otherwise both reject. That is, O1’s answers to the queries by M1 on input x are

the same as O2’s answers to the queries by M2 on the same input.

Thus, MO1
1 decides the same language as MO2

2 , and we have EXPNP
|| ⊆ EXPpoly−NEXP

|| .

Theorem 3.3 follows immediately from Lemmas 3.14, 3.18, and 3.19.

3.6 Optimal Number of Provers and Rounds

In this section, we prove that MRIP protocols with constant, polynomial or exponential

utility gap can be simulated using the optimal number of provers and rounds.

First, we prove that any MRIP protocol with a constant or polynomial utility gap can

be simulated by a 2-prover, 3-round MRIP protocol with the respective utility gap.

Theorem 3.20. Let γ(n)-MRIP(p, k) denote the class of languages decided by an MRIP

protocol with O(γ(n)) utility gap using p(n) provers and k(n) rounds. Then,

O(1)-MRIP(p(n), k(n)) = O(1)-MRIP(2, 3) and

poly(n)-MRIP(p(n), k(n)) = poly(n)-MRIP(2, 3).

Proof. Recall from Lemma 3.11 and Lemma 3.12 that γ(n)-MRIP = P
NEXP[γ(n)]
|| , for any pos-

itive integral function γ(n) that is polynomially bounded and polynomial-time computable.

We show that 2 provers and 3 rounds are enough to simulate the protocol in Figure 6. Setting

γ(n) to be a constant or a polynomial in n proves Theorem 3.20.

More precisely, for any language L ∈ γ(n)-MRIP, we have L ∈ P
NEXP[γ(n)]
|| . By defini-

tion, there exists a polynomial-time oracle Turing machine M that decides L using O(γ(n))

nonadaptive queries to an NEXP oracle. Assume without loss of generality that the oracle

is Oracle-3SAT and M makes exactly γ(n) oracle queries. For any input x of length n, let

φ1, . . . , φγ(n) denote the γ(n) queries made by M . Consider the following 2-prover 3-round

variant of the MRIP protocol in Figure 6 for L.:

1. P1 sends to V the answer bit c to the membership of x in L, as well as the answer

bits to all queries, c∗1, c
∗
2, . . . , c

∗
γ(n), where c∗i is the answer to φi. As P1 can compute all

oracle queries by running M on x, there is no need for V to send φ1, . . . , φγ(n) to P1.
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2. V computes φ1, . . . , φγ(n) and distinguishes the following two cases. For each i ∈
{1, . . . , γ(n)} with c∗i = 0, V sets R∗i = 1/2. For all i’s such that c∗i = 1, V runs the

2-prover 3-round MRIP protocol in Figure 4 for the φi’s simultaneously. That is, for

each such i, V uses fresh randomness to compute its messages to P1 and P2 in the

second round of the MRIP protocol for φi, denoted by mi
12 and mi

22 respectively, which

are by definition its first messages in the corresponding MIP protocol. In the second

round of the overall protocol, V sends the concatenation of the mi
12’s to P1 and the

concatenation of the mi
22’s to P2.

3. For each i such that c∗i = 1, P1 computes its response mi
13 to mi

12, and P2 computes its

response mi
23 to mi

22. They send the concatenation of their responses to V .

4. For each i such that c∗i = 1, V finishes the MIP protocol following the messages

exchanged for φi. If the MIP protocol accepts then V sets R∗i = 1; otherwise R∗i = 0.

5. Finally, V simulates M till the end using the c∗i ’s. If the answer bit c does not match

M ’s output, then the protocol ends with R = −1; otherwise the protocol ends with

R = (
∑γ(n)

i=1 R
∗
i )/γ(n). V outputs c at the end of the protocol.

The correctness of this protocol is similar to Lemma 3.11, except some subtleties caused

by the simultaneous execution of the MRIP protocols for the φi’s. First of all, sending c and

c∗1, . . . , c
∗
γ(n) such that the output of M does not match c cannot be part of the provers’ best

strategy profile, because it leads to R = −1, while sending all messages truthfully leads to

R ≥ 1/2. Second, by linearity of expectation, for any strategy profile of the provers such

that c matches the output of M given c∗1, . . . , c
∗
γ(n), the expected payment is the sum of the

expected payment for each φi.

Note that for each φi, V ’s messages in the corresponding MIP protocol only depends

on its randomness, and it uses fresh coins for φi. Thus, even though the provers also see

V ’s messages for other φj’s, they cannot improve V ’s marginal accepting probability for φi.

From this, the expected payment for each φi is still maximized when the provers report the

correct c∗i and, when c∗i = 1, run the corresponding MIP protocol correctly. Therefore, under

the provers’ best strategy profile, the c∗i ’s are correct answers to M ’s oracle queries, c is the

correct output of M given the c∗i ’s, and c = 1 if and only if x ∈ L.

Finally, the utility gap of the protocol is the same as the protocol in Figure 6, that is,

the utility gap is O(γ(n)). Thus, P
NEXP[γ(n)]
|| ⊆ γ(n)-MRIP(2, 3) ⊆ γ(n)-MRIP.

Finally, we pove that any general MRIP protocol can be simulated by an MRIP protocol

that uses only 2 provers and 3 rounds and has exponential utility gap.
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Theorem 3.21. MRIP = MRIP(2, 3).

Proof. Arbitrarily fix an MRIP protocol (V, ~P ) for a language L with p(n) provers and

k(n) rounds. Without loss of generality, each message in the protocol is of length `(n) for

any input of length n, where `(n) is a polynomial in n. We shift and re-scale the reward

function of V , so that the payment is always in [0, 1], and the expected payment is strictly

larger than 0 under the provers’ best strategy profile. The corresponding 2-prover 3-round

protocol (V ′, (P ′1, P
′
2)) is defined in Figure 9.

Essentially, V ′ asks P ′1 to simulate all provers in the original protocol. V ′ wants to use

P ′2 to cross-check the transcript provided by P ′1, but in parallel: that is, without waiting for

P ′1’s message. It does so by randomly generating a proxy string of polynomial length and

giving it to P ′2. There is an exponentially small probability that this string is consistent with

the transcript P ′1 sends, and if it turns out to be consistent, V ′ goes on to match the answers

it receives from P ′1 and P ′2, and to compute the payment as in the 5-round protocol in [43].

For any input string x of length n, the protocol (V ′, ~P ′) works as follows:

1. P ′1 sends m11, . . . ,mp(n)1 to V ′, where mij denotes the message sent by prover Pi in

round j of (V, ~P ) according to the best strategy profile s of ~P .

Let c be the first bit of m11. V ′ outputs c at the end of the protocol.

2. V ′ generates the random string r used by V and sends it to P ′1. V ′ selects, uniformly
at random, a prover index i ∈ {1, . . . , p(n)} and a round number j ∈ {2, . . . , k(n)}.
V ′ then generates a random string m∗i of length (j− 1)`(n) and sends (i, j,m∗i ) to P ′2.

3. P ′1 uses r, m11, . . . ,mp(n)1 and s to continue simulating the protocol (V, ~P ), and sends
to V ′ the messages from round 2 to round k(n) in the resulting transcript ~m. P ′2 uses
m∗i (and s) to simulate Pi on round j, and sends the resulting message m′ij to V ′.

4. If m∗i 6= (mi1, . . . ,mi(j−1)), then the protocol ends with payment R′ = 0.

5. If mij 6= m′ij, then R′ = −1. Else, V ′ computes the payment R in the protocol (V, ~P )

using x, r and ~m, and sets R′ = R
p(n)2k(n)`(n)

.

Figure 9: Simulating any MRIP protocol with 2 provers and 3 rounds.

To see why this protocol works, first note that, even though V ′ sends to P ′1 the randomness

r used by V , V ′ itself uses fresh randomness in Step 2 to generate i, j and m∗i , which are

unknown to P ′1. Second, the strategy of P ′2 in Step 3 de facto commits to a strategy profile

for the provers in (V, ~P ) except for the first round, which together with the randomness r of

V and m11, . . . ,mp(n)1 sent by P ′1 determines a transcript ~m∗ in (V, ~P ).
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We distinguish two cases for the strategy profiles of (P ′1, P
′
2).

Case 1. Suppose there exists randomness r, such that P ′1 and P ′2 do not agree on the

transcript under r: that is, ~m 6= ~m∗, where ~m is the transcript sent by P ′1. Suppose ~m

disagrees with ~m∗ on y messages, with y ≥ 1. Then the probability that the prover index i

and the round number j chosen by V ′ in Step 2 satisfy m∗ij 6= mij is y
p(n)(k(n)−1)

.

When m∗ij 6= mij, if the random string m∗i generated by V ′ in Step 2 does not equal

(mi1, . . . ,mi(j−1)), then the inconsistency between m∗ij and mij is not caught and the payment

is 0; otherwise the payment is −1. When m∗ij = mij, the payment is either 0 or at most
1

p(n)2k(n)`(n)
, again depending on whether m∗i = (mi1, . . . ,mi(j−1)) or not.

Finally, as the length of each message in (V, ~P ) is `(n), for any i and j, the probability

that m∗i = (mi1, . . . ,mi(j−1)) is 1
2(j−1)`(n) ≥ 1

2(k(n)−1)`(n) . We upper bound the expected payment

R′ in Case 1 under r as follows.

R′ ≤
∑

i≤p(n),2≤j≤k(n)

1

p(n)(k(n)− 1)
· 1

2(j−1)`(n)
·
(
Im∗ij 6=mij · (−1) + Im∗ij=mij ·

1

p(n)2k(n)`(n)

)
≤ − y

p(n)(k(n)− 1)
· 1

2(k(n)−1)`(n)

+
∑

i≤p(n),2≤j≤k(n)

1

p(n)(k(n)− 1)
· 1

2(j−1)`(n)
· Im∗ij=mij ·

1

p(n)2k(n)`(n)

< − y

p(n)(k(n)− 1)
· 1

2(k(n)−1)`(n)
+

∑
2≤j≤k(n)

1

k(n)− 1
· 1

2(j−1)`(n)
· 1

p(n)2k(n)`(n)

< − y

p(n)(k(n)− 1)
· 1

2(k(n)−1)`(n)
+

1

(k(n)− 1)p(n)2k(n)`(n)
=

1− 2y

(k(n)− 1)p(n)2k(n)`(n)
< 0.

On the other hand, if P ′1 acts consistently with P ′2 in Step 3 under r, and keeps its

strategy unchanged under any other randomness of V sent to it by V ′, then the expected

payment under r is at least 0 and the expected payment under any other randomness of V

does not change, thus, the expected payment in the whole protocol gets larger. Under the

best strategy profile of (P ′1, P
′
2), Case 1 does not occur for any randomness r of V .

Case 2. In their strategy profile s′, P ′1 and P ′2 agree on the transcript ~m under every

randomness r of V , but the strategy profile s̃ committed by them for (V, ~P ) (that is, by P ′1

in Step 1 for round 1 and then by P ′2 in Step 3 for the remaining rounds) has the answer bit

c incorrect. Thus s̃ is not the best strategy profile s of ~P .

In this case, given any randomness r, prover i and round j chosen by V ′ in Step 2, the

expected payment is

R′ =
1

2(j−1)`(n)
· R

p(n)2k(n)`(n)
,
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where R is the payment of (V, ~P ) under s̃ and r. Therefore, the expected payment for P ′1

and P ′2 in the whole protocol is

u(V ′, ~P ′)(s
′, x) =

∑
i≤p(n),2≤j≤k(n)

1

p(n)(k(n)− 1)
· 1

2(j−1)`(n)
·
u(V, ~P )(s̃, x)

p(n)2k(n)`(n)

<
∑

i≤p(n),2≤j≤k(n)

1

p(n)(k(n)− 1)
· 1

2(j−1)`(n)
·
u(V, ~P )(s, x)

p(n)2k(n)`(n)
,

where the inequality is because u(V, ~P )(s̃, x) < u(V, ~P )(s, x). Note that the second line in the

equation above is exactly the expected payment for P ′1 and P ′2 when they commit to s. Thus

committing to s̃ is not the best strategy profile for P ′1 and P ′2.
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Chapter 4

Scaled-Down Cooperative Rational Proofs

4.1 Introduction

In Chapter 3, we designed and analyzed MRIP protocols where the verifier’s running time is

polynomial in n (the size of the input) and the communication complexity is also polynomial

in n. With a polynomial-time verifier, we were able to ensure that the protocols had a strong

utility-gap guarantees, that is, polynomial and even constant utility gap.

While a polynomial-time verifier is considered efficient, and rational proof protocols are

simpler than their classical variant, in terms of delegation of computation applications, we

need more efficient protocols—a “weak” client is unlikely to be able to spend (say) quadratic

time or linear extra space on verification.

In this chapter, we design “scaled-down” rational proof protocols that have very small

overheads in terms of verification time, space, communication cost and number of rounds.

In particular, we design constant-round rational protocols where the verification time and

communication cost are logarithmic in the input size n. We also design single-round rational

protocols that have only logarithmic overhead on the verifier’s use of space and randomness.

Recall that we measure the quality of the guarantee provided by rational proof protocol

by its utility gap. If a rational protocol has a utility gap of u, then the provers who mislead

the verifier to an incorrect answer are guaranteed to lose at least 1/u. (This is under a

normalized budget of 1; if the budget is scaled up to B, such provers can be made to lose

at least B/u.) Thus, protocols with small utility gap are sound even against provers with

bounded rationality ; that is, provers who are only sensitive to large losses.

We show that even though our protocols in this chapter are very efficient, they still retain

strong utility-gap guarantees—that is, polynomial, logarithmic, and even constant.

Later in Chapter 5, we show when and how a noticeable utility gap of a rational protocol

can be used to achieve the completeness and soundness guarantees of a classical proof.

4.1.1 Overview of Results and Contributions

We summarize our results and contributions.
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Super time-efficient rational proofs. We study the effect of different communication

costs and an additional prover on the power of rational proofs with a highly time-efficient

verifier. The utility gap of these protocols is polynomial.

• Constant communication. We show that multiple provers do not add any power when

the communication complexity of the protocol is restricted to be extremely small—a con-

stant number of bits. That is, we show that the class of languages that admit a multi-prover

rational proof with aO(log n)-time verifier andO(1) communication is exactly UniformTC0,

which is the same as the power of single-prover version under the same costs [11,80]. Recall

that UniformTC0 is the class of constant depth, polynomial size uniform threshold circuits,

an important complexity class that includes problems such as integer division, iterated

multiplication and radical summations [3, 4, 84,89,90].

• Logarithmic communication. We show that any rational proof with polynomial com-

munication can be simulated by a rational proof with logarithmic communication that uses

an additional prover. Using this property, we improve the communication complexity of

Azar and Micali’s [11] single-prover rational protocol and show that the class of languages

that admit a two-prover rational proof with logarithmic communication is exactly the class

of languages decidable by a polynomial time machine that can make polynomially many

queries in parallel to an NP oracle, denoted PNP
|| . We recall that this is a well-studied

class (e.g., [31, 45, 92, 99, 106,140]) and includes important optimization problems such as

maximum clique, longest paths, and variants of the traveling salesman problem.

Super space-efficient rational proofs. We achieve even better utility gap guarantees for

the setting where the verifier’s use of space and randomness is super-efficient. In particular,

we exactly characterize the class of single-round rational proofs with γ(n) utility gap and

logarithmic space and randomness as the class of languages decidable by a polynomial-

time machine that makes O(γ(n)) queries to an NP oracle, denoted P
NP[γ(n)]
|| . Even when

γ(n) = O(1) this bounded-query class is still sufficiently powerful and contains many of the

optimization problems mentioned above.

Thus, highly space-efficient rational protocols with strong guarantees against imperfectly

rational provers can solve many important optimization problems.

Interestingly, the logarithmic-space verifier studied in this chapter also happens to be a

streaming algorithm, that is, the verifier does not need to look again at any input or message

bits out of order. Thus, our space-efficient rational proofs are closely related to the work on

streaming interactive proofs [39, 49,50,52].
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4.2 Preliminaries

We use the model of multi-prover cooperative rational proofs defined in Chapter 3.2.

We denote the class of single-prover rational interactive protocols, that is, when ~P = P ,

as RIP. Multi-prover interactive protocols, where ~P = (P1, . . . , Pp(n)) are denoted by MRIP.

We use poly(n) as a shorthand for a polynomial nk, for some constant k.

Our primary focus in this chapter is analyzing the various computational costs of rational

interactive proofs. The different parameters fall into two categories.

Verification costs. A verifier has three main resources: running time, space usage and its

randomness. While in general the model allows for a verifier that runs in time polynomial

in n and uses polynomial space and randomness, we focus on more efficient verifiers in this

chapter. In particular, in Chapter 4.3, we focus on time-efficient O(log n) time verifiers.

Thus, their space and randomness is also O(log n). We denote the class of languages that

have time-efficient RIP protocols, that is, protocols with a O(log n) time verifier as RIPt.

Multi-prover notation MRIPt is analogous.

As a logarithmic verifier cannot even read the entire input, it is difficult to obtain pro-

tocols with good utility gap guarantees using these verifier. To achieve better utility gap,

in Chapter 4.4, we restrict the verifier’s space usage and randomness, instead of its running

time and consider verifiers that use O(log n) space and O(log n) randomness. We denote the

class of languages that have an RIP protocol with space- and randomness-efficient verifiers,

that is, verifiers with O(log n) space and O(log n) randomness as RIPs,r.

Protocol costs. A rational interactive proof protocol has three main ingredients: commu-

nication cost, number of provers and rounds and utility gap.

In Chapter 4.3, we study the effect of varying the communication complexity of a protocol

on its power when we have a logarithmic time verifier. The number of rounds in all the

protocols in the chapter is O(1).

We denote the class of languages that have an MRIP protocol with C(n) communication

cost, p(n) provers, k(n) rounds and O(γ(n)) utility gap as γ(n)-RIP[C(n), p(n), k(n)]. For

single-prover protocols with the same parameters, we keep the same notation with p(n) = 1

for consistency, that is, we use γ(n)-RIP[C(n), 1, k(n)].

When the verifier runs in O(log n) (as in Chapter 4.3), then the utility gap is trivially

at least polynomial in n. Thus, when considering a protocol in RIPt, we drop γ(n) from the

notation for simplicity when γ(n) = poly(n). That is, O(poly(n))-RIPt[C(n), p(n), k(n)] =

RIPt[C(n), p(n), k(n)]. The multi-prover case is analogous.
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4.3 Verification in Logarithmic Time

In this section we consider time-efficient verifiers that run in time logarithmic in the input

size. We show that for time-efficient verifiers, access to multiple provers is fundamentally

linked to the communication cost of the protocol: any single-prover protocol with high

communication costs can be reduced to a communication-efficient multi-prover protocol. On

the other hand, multiple provers give no extra power for communication-efficient protocols.

Since the utility gap of all the protocols in this section is polynomial in n, we drop it the

utility gap from the notations.

Constant communication. We first show that multiple provers do not increase the power

of a rational proof system when the communication complexity of the protocol is very

small, that is, only O(1) bits. Recall that with a single prover, RIPt[O(log n), 1,O(1)] =

RIPt[O(1), 1,O(1)] = UniformTC0 [11, 80].

Theorem 4.1. MRIPt[O(1),O(1),O(1)] = UniformTC0.

Proof. The lower bound follows directly from the single prover result [11,80].

Now, we prove that MRIPt[O(1),O(1),O(1)] ⊆ UniformTC0.

Let L be a language with a k-round MRIP protocol (V, ~P ) where V runs in O(log n)

time, and the transcript of (V, ~P ) has size O(1), where k is a constant.

Note that the strategy profile s of the provers ~P for a protocol with O(1) communication

can be specified in O(1) bits. Thus, there can be at most O(1) possible strategy profiles for

the provers to choose from. We first construct a circuit that decides L and then show that

the circuit can be simulated by a UniformTC0 machine.

We construct the gates in independent blocks (i.e. there are no wires between two gates

in different blocks). We denote the ith block by Gi for 1 ≤ i ≤ t for some constant t. The

purpose of Gi is to “try out” strategy profile si. In particular, the output of the block Gi is

the expected payment over all possible coin flips of the verifier when the strategy followed

by the provers is si. All blocks finally output their solution (the expected payment) to a

single max gate that finds the maximum over the expected payments.

The structure inside a block Gi is as follows: for each possible randomness r of the verifier

we have an input wire to the block gate (note that there are at most polynomially many

r). Given r, executing the strategy of the provers in a step by step manner (using the truth

table) can be simulated by a depth k circuit using using AND, OR, and NOT gates. Thus,

for each r, a constant sized circuit can compute the final payment.
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Finally, a SUM gate at the end of Gi can sum over the payments to compute the expected

payment.7 This final expectation is the output of the block Gi.

The final MAX gate over the output all Gi gives the maximum possible expected reward.

If the first bit of the corresponding strategy matches the first bit of the MRIP protocol’s

transcript, then the circuit outputs 1, else 0.

We note that the above circuit structure can be simulated by a constant-depth uniform

threshold circuit since SUM gates and MAX gates with polynomial input wires can be

implemented using UniformTC0 circuits [11].

Logarithmic and polynomial communication. We characterize the power of MRIP

protocols with O(log n)-time verification, when the communication complexity of the proto-

col is logarithmic and polynomial in n.

Theorem 4.2. MRIPt[poly(n), poly(n), poly(n)] = MRIPt[O(log(n)),O(1),O(1)] = P||
NP.

Azar and Micali [11] characterized the class PNP
|| in terms of single-prover rational proofs

with O(log n) verification and O(poly(n)) communication. In particular, they proved that

RIPt[O(poly(n)), 1,O(1)] = PNP
|| .

To prove Theorem 4.2, we first show that using two provers reduces the communication

complexity of the RIP protocol for PNP
|| exponentially. In fact, we show prove a more general

statement—any MRIP protocol (thus any RIP protocol as well) with a logarithmic time

verifier and polynomial communication can be simulated using two provers, five rounds and

logarithmic communication.

Lemma 4.3. An MRIP protocol with p(n) provers, k(n) rounds, T (n) verification cost, and

C(n) communication cost can be simulated by an MRIP protocol with 2 provers, 5 rounds,

O(T (n) + logC(n)) verification cost and O(T (n) + logC(n)) communication cost.

Proof. Let (V, ~P ) be the MRIP protocol for a language L with p(n) provers where V ’s

running time is T (n) and C(n) bits of communication are exchanged over k(n) rounds.

Without loss of generality, suppose each message is of length `(n). Note that k(n) ≤ C(n)

and `(n) ≤ C(n). We shift and scale the payment function R of (V, ~P ) such that R ∈ [0, 1].

The 2-prover 5-round MRIP protocol (V ′, P ′1, P
′
2) in Figure 10 simulates (V, ~P ).

The string m̃ in step 3 is the effective transcript of the protocol (V, ~P ). Since V runs

in time T (n), for a given randomness r, V can access at most T (n) bits from the C(n)-size

transcript ~m of the protocol (P, V ). Thus, |m̃| ≤ T (n).

7We could normalize by dividing by the number of possible r, but this scaling is unnecessary as we only
care about relative payments.
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For any input string x of length n, the protocol (V ′, P ′1, P
′
2) works as follows.

1. P ′1 sends m1 to V ′, where m1 is the message sent by P1 in the first round of (V, ~P )

according to the best strategy profile s of ~P . V ′ outputs c, the first bit of m1 at the
end of the protocol.

2. V ′ generates the random string r used by V in (V, ~P ) and sends it to P ′1.

3. P ′1 sends a string m̃, which is a concatenation of bits accessed by V in order in the

transcript ~m = (V, ~P )(x, r, s).

4. V ′ chooses a round j from {1, 2 . . . , k(n)}, a prover index i ∈ {1, . . . , p(n)} and a bit
index k from {1, 2, . . . , `(n)} uniformly at random.

5. V ′ simulates V using m̃ and sends all messages sent by V to Pi up to round j − 1 to
P2. P2 sends a bit b to V ′, where b is the kth bit of the round-j message sent by Pi.

6. V ′ simulates V to check if V ever accesses the kth bit of Pi’s round j message in ~m.
If V does not, then the protocol ends and R′ = 0.

7. Finally, V ′ computes the payment R′ as follows.

(a) If b does not match the kth bit of Pi’s round-j message in m̃, R′ = −1.

(b) Else, V ′ computes the payment R in (V, ~P ), and R′ = R/(2C(n)).

Figure 10: Simulating an RIP protocol using 2 provers and reduced communication.
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Furthermore, since any index i, j where 1 ≤ i ≤ `(n) and 1 ≤ j ≤ k(n) is of size at

most O(logC(n)), the communication complexity of the protocol (V ′, P ′1, P
′
2) is O(T (n) +

logC(n)). Similarly, i, j, k can be randomly selected in O(logC(n)) time, leading to total

time O(T (n) + logC(n)).

We now prove correctness of the protocol in Figure 10. Note that P ′2 commits to a

strategy profile s′ of the provers ~P in step 5. We consider two cases.

Case 1. For some randomness r, suppose P ′1 and P ′2 do not agree on the effective transcript

m̃. Then without loss of generality, there exist indices i, j, k such that the corresponding

bit is part of the effective transcript, and the verification in step 7 fails with R′ = −1. The

probability that V ′ chooses such indices i, j, k in step 4 is at least 1/C(n). Thus, the expected

payment of the provers is at most:

−1

(
1

C(n)

)
+

R

2C(n)

(
C(n)− 1

C(n)

)
≤ 1

C(n)

(
R

2
− 1

)
< 0,

where the last inequality follows from the fact that R ≤ 1. If P ′1 and P ′2 are consistent on m̃

and r (keeping the rest of their strategy the same) they can improve their expected payment

since their payment under r would be least 0. Thus, this case does not occur under the best

strategy profile of P ′1 and P ′2.

Case 2. P ′1 and P ′2 agree on the effective transcript m̃ for every randomness r, but the

answer bit c′ under the strategy s′ committed by P2 for ~P is incorrect.

For a given randomness r and indices i, j, and k such that V accesses kth bit of the

round-j message of Pi in (V, ~P ), R′ = R(s′, x)/(2C(n)), where R(s′, x) is the payment of

protocol (V, ~P ) under strategy s′. By the correctness and utility gap of (V, ~P ), we know that

the expected payment u(s′, x)+1/poly(n) < u(s, x), where s is the best strategy of ~P . Thus,

in this case, P ′1 and P ′2 lose a polynomial amount if they use strategy s′ instead of s.

Lemma 4.3 demonstrates the importance of two provers over one in rational proofs to

save on communication.

Corollary 4.4. Since RIPt[O(poly(n)),O(1),O(1)] = PNP
|| , using Lemma 4.3, we have, PNP

|| ⊆
MRIPt[O(poly(n)),O(poly(n), poly(n)] ⊆ MRIPt[O(log n),O(1),O(1)].

To complete the proof Theorem 4.2, we prove the following upper bound.

Lemma 4.5. MRIPt[O(log(n)),O(1)] ⊆ PNP
|| .

The proof of Lemma 4.5 is similar to the proof of MRIP ⊆ EXP||NP in Chapter 3.5.

Proof. Fix a language L ∈ MRIP(log(n), log(n),O(1)) and let (V, ~P ) be an MRIP protocol for

L. Since V runs in O(log n) time, there exists a constant k such that, for any two payments
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R and R′ computed by V for some input of length n and some randomness are such that

R 6= R′ ⇒ |R−R′| ≥ 1
nk
.

Moreover, since V uses O(log n) coin flips, there exists another constant k′ such that,

when a payment appears with positive probability under some input of length n, it must

appear with probability at least 1
nk
′ . Therefore, for any input x of length n and any two

strategy profiles s and s′ of the provers, we have |u(s, x)− u(s′, x)| ≥ 1
nk+k′

.

Consider the following deterministic oracle Turing machine M : Given any input x of

length n, it divides the interval [0, 1] into 2nk+k′ subintervals of length 1
2nk+k′

. For any

i ∈ {1, . . . , 2nk+k′}, the ith interval is [(i − 1)/2nk+k′ , i/2nk+k′ ]. M then makes 4nk+k′

queries of the form (i, j), where i ∈ {1, ..., 2nk+k′} and j ∈ {0, 1}. For each query (i, j), if

j = 0 then the corresponding question is “whether there exists a strategy profile s of the

provers such that u(s, x) is in the ith interval”; and if j = 1 then the corresponding question

is “whether there exists a strategy profile s such that u(s, x) is in the ith interval and the

first bit sent by P1 is c = 1”. Note that all queries are nonadaptive. We say that interval i

is non-empty if the query (i, 0) is answered 1, and empty otherwise.

Given the answers to all the queries, M finds the highest index i∗ such that the interval

i∗ is non-empty. It accepts if (i∗, 1) is answered 1, and rejects otherwise. Given correct oracle

answers, we show that M decides L.

For by the definition of MRIP, there exists a strategy profile whose expected payment is

non-negative and thus in [0, 1]. Thus there exists an interval i such that (i, 0) is answered 1.

Also by definition, the best strategy profile s has the highest expected payment, and thus

u(s, x) falls into interval i∗.

Any strategy profile s′ with u(s′, x) < u(s, x) has u(s′, x) not in interval i∗, since the

difference between u(s′, x) and u(s, x) is larger than the length of the interval. And so all

strategy profiles s′ with u(s′, x) in interval i∗ satisfies u(s′, x) = u(s, x), that is, they are all

the best strategy profiles of the provers. P1 must send the same first bit c under all such

strategy profiles, c = 1 if and only if x ∈ L, and there does not exist any other strategy

profile whose expected payment falls into interval i∗ but the first bit sent by P1 is different

from c. Thus the answer to (i∗, 1) always equals c, and M accepts iff c = 1.

We now show that the oracle queries can be answered by an NP oracle. Since the

communication complexity and verification complexity is O(log n) a strategy profile has size

polynomial in n. Thus, an NP machine can guess a strategy profile s̃, simulate the protocol,

and compute the expected payment u(s̃, x).
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4.4 Verification in Logarithmic Space

The protocols in Chapter 4.3 have a polynomial utility gap. For a constant budget this means

that the provers who mislead the verifier to an incorrect answer lose at least a polynomial

amount from their expected payment.

As utility gap is analogous to the soundness gap in classical proofs, which is constant

(independent of n), it is desirable to have rational protocols with constant utility gap as well.

Constant utility gap is difficult to achieve when the verifier is O(log n) time and cannot

even read the entire input. This is true even for classical proofs with a O(log n)-time verifier

where the soundness conditioned is weakened to design “proofs of proximity” [19,20,82,124].

In particular, the soundness guarantees of such proofs depend on how far (usually in terms of

hamming distance) the input string x is from the language L. Note that all existing O(log n)-

time rational proofs [11,80,81] have polynomial utility gap (under a constant budget).

To design protocols with a strong utility gap such as logarithmic or constant, in this

section we consider verifier’s that use only O(log n) space and randomness.

Let γ(n) be any polynomial-time computable function (given 1n) that is polynomially

bounded. For example, γ(n) can be a constant, log n, or
√
n. We prove the characterization

in general for a utility gap of γ(n).

Theorem 4.6. The class of languages that have a one-round RIP protocol with polyno-

mial communication, γ(n)-utility gap and a verifier that uses O(log n) space and O(log n)

randomness is exactly P
NP[γ(n)]
|| . That is, γ(n)-RIPr,s[poly(n), 1, 1] = P

NP[γ(n)]
|| .

First, we give a space-efficient RIP for the class NP using the log-space interactive proof

for the language given by Condon and Ladner [47] as a blackbox.

Lemma 4.7. NP ∈ γ(n)-RIPr,s[poly(n), 1, 1].

Proof. Let (V, P ) denote the 1-round log-space interactive proof for a language L ∈ NP given

in [47]. The one-round log-space RIP for  L, (V ′, P ′) is given. P ′ sends message m′ which is

the concatenation of answer bit c with a bit string m. If c = 0, then m can be a null string.

If c = 1, then m must be the message sent by P in (V, P ). If c = 0, then R = 1/2 and the

protocol ends. Otherwise, V ′ simulates V using m and if V accepts, then R = 1, else R = 0.

The verifier V ′ uses the same space as V , that is, O(log n). The communication of (V ′, P ′)

is the same as (V, P ), that is, polynomial in n.

We now argue correctness and show that the protocol has constant utility gap. Suppose

x ∈ L and P sends a message with answer bit c′ = 0, then its expected payment is 1/2.

On the other hand, if P sends c = 1, its expected payment can be 1 by the completeness

guarantee of (V, P ). Thus in this case the expected payment loss of P is constant. Now
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suppose x /∈ L and P sends the answer bit c′ = 1. From the soundness guarantee of (V, P ),

V accepts with probability at most 1/3, and thus the expected payment of P is at most 1/3.

On the other hand, if P sent c = 0, its expected payment would have been 1/2. Thus in this

case P loses a constant amount as well.

For the lower bound, we use a different but equivalent complexity class. Recall that

L
NP[γ(n)]
|| be a logarithmic space machine that can make O(γ(n)) nonadaptive queries to an

NP oracle and L
NP[γ(n)]
|| = P

NP[γ(n)]
|| [140]. We prove the following.

Lemma 4.8. P
NP[γ(n)]
|| = L

NP[γ(n)]
|| ⊆ γ(n)-RIPr,s[poly(n), 1, 1]

Proof. Consider any language L ∈ L
NP[γ(n)]
|| . Let M be the logarithmic-space oracle Turing

machine with nonadaptive accesses to an NP oracle that decides L. Without loss of generality,

suppose M makes exactly γ(n) ≥ 1 nonadaptive oracle queries. The RIP protocol for L uses

the RIP protocol for NP, given in Lemma 4.7, to simulate the oracle queries.

For any input x of length n, the protocol (V, P ) works as follows. Let Rn = 0.

1. P sends a message c, (c1,m1), (c2,m2), . . . , (cγ(n),mγ) to V , where c is the answer bit,
and ci is the answer to the ith oracle query qi generated by M and mi is the message
for qi based on Lemma 4.7. V outputs c at the end of the protocol.

2. V simulates M on x until M outputs queries q1, . . . , qγ(n).

3. For each i ∈ {1, . . . , γ(n)}, V simulates V ′ in the RIP protocol for NP in Lemma 4.7.
In particular, V uses the message ci and mi as the prover’s messages in the protocol
of Lemma 4.7. Let R∗i be the payment for the ith round. V updates Rn ← Rn +R∗i .

4. V continues simulating M till the end using c1, . . . , cγ(n). If c does not match M ’s
output, then R = −1; otherwise R = Rn/γ(n).

Figure 11: An RIP protocol for L
NP[γ(n)]
|| .

We now prove correctness of the protocol in Figure 11. Note that an honest strategy of

P , that is, reporting the correct answer bits c, c1, . . . , cγ(n), and sending correct proof strings

mi whenever ci = 1, leads to a payment R ≥ 1/2 (this is because of the payment-structure

of the protocol for NP in Lemma 4.7).

Suppose P reports the incorrect answer bit c′, then either (a) the output of M in Step 4

does not match c′ and R = −1; or (b) there exists an oracle query qi such that ci is incorrect.

In case (a), the expected payment loss of P is at least 1/2 + 1 = 3/2 > 1/γ(n), as

γ(n) ≥ 1. In case (b), because the protocol in Lemma 4.7 has O(1) utility gap, the provers’

expected payment loss in the overall protocol is 1/O(γ(n)).
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To complete the proof of Theorem 4.6 we prove the following upper bound.

Lemma 4.9. γ(n)-RIPr,s[poly(n), 1, 1] ⊆ P
NP[γ(n)]
||

Proof. Given any L ∈ γ(n)-RIP, let (V, P ) be the a 1-round RIP protocol for L with γ(n)

utility gap, and poly(n) communication cost, where V uses O(log n) space and randomness.

Consider a polynomial-time Turing machine M which can make O(γ(n)) nonadaptive

queries to an NP oracle. Given an input x of length n, M divides [0, 1] into 2γ(n) intervals,

each of length 1/(2γ(n)). That is, the ith interval is [i/2γ(n), (i + 1)/2γ(n)) for each i ∈
{1, . . . , 2γ(n)− 1}. For each such interval, M makes the following queries to its oracle:

1. Does there exist a message m sent by P such that the expected payment u(V,P )(s;x) is in

the ith interval?

2. Does there exist a message m sent by P such that the expected payment u(V,P )(s;x) is in

the ith interval and the corresponding answer bit c = 1?

Note that M makes O(γ(n)) nonadaptive queries and clearly runs in polynomial time.

We now show that it is an NP machine can answer the oracle queries. The key point to

note here is that protocol is one round and thus the size of a provers’ strategy is polynomial

in n. Thus, an NP oracle can guess a strategy and compute a payment R(s, x, (V, P )).

Since the verifier uses O(log n) randomness, an NP machine can enumerate over all possible

polynomial coin flips and compute the expected payment u(V,P )(s, x). If u(V,P )(s, x) is in

the ith interval the oracle returns 1 to query (1) and 0 otherwise. Similarly, if u(V,P )(s, x)

is in the ith interval and c = 1 for this strategy, the oracle responds 1 to query (2) and 0

otherwise. Thus, M ’s queries can be answered by an NP oracle.

Finally, M finds the highest index i∗ such that the oracle returns 1 to query (1) with

respect to the i∗. M accepts if the oracle returns 1 to query 2 for the i∗th interval, and

rejects otherwise. Note that M clearly runs in polynomial time.

M decides L given correct answers to its oracle queries, because the maximum expected

payment u(V,P )(s
∗, x) falls in the i∗th interval. As (V, ~P ) has γ(n)-utility gap, by construction

and definition of utility gap, all strategies with expected payments in the i∗th interval must

have the same answer bit c as that in s∗. Thus, x ∈ L if and only if c = 1, which occurs if

and only if the oracle’s answer to query 2 for interval i∗ is 1.

60



Chapter 5

Relationship Between Classical and Rational Proofs

5.1 Introduction

In Chapter 3 and Chapter 4, we designed several simple and efficient MRIP protocols with

strong utility-gap guarantees for important and powerful complexity classes.

In this chapter, we closely compare the guarantees provided by rational interactive proofs

to that of classical interactive proofs.

Classical interactive proofs provide completeness and soundness guarantees. In particu-

lar, they guarantee that if x ∈ L, there exists a strategy of the provers such that the verifier

accepts with probability at least 2/3 (completeness), and if x /∈ L, then no strategy of the

provers can make the verifier accept with probability more than 1/3 (soundness).

On the other hand, the strength of the guarantee provided by rational proofs is captured

by the notion of utility gap. The high level idea behind utility gap is that provers who are

not perfectly rational may not care about small losses in payments and may lazily give the

incorrect answer. If a rational protocol has a utility gap of u, then the provers who mislead

the verifier to an incorrect answer are guaranteed to lose at least 1/u.

Utility gap in rational proofs is analogous to the difference between completeness and

soundness in rational proofs. In this chapter, we make this connection explicit. In particular,

we construct a condition on the expected payments and utility gap of a rational proof which,

if satisfied, turns it into a classical proof with completeness and soundness guarantees.

First, we show that any rational proof protocol can be converted to one where the pay-

ments are 0 or 1, where 1 represents verifier’s “acceptance” of the provers’ claim and 0

represents the verifier’s “rejection” of the provers’ claim. In such a protocol, the probability

of acceptance is then exactly equal to the expected payment of the provers. We then use this

to prove that if the expected payments of all inputs x ∈ L are noticeably far away from that

of all inputs x /∈ L, the rational protocol can be converted to a classical interactive protocol.

This result demonstrates the usefulness of studying the incentives of the provers in a

proof system. The way interactive proofs are presented in general, the provers are said to

be malicious, however, they are not really malicious in the true sense of the term. Instead,

classical provers only have one goal—to maximize the probability of the verifier accepting

the claim x ∈ L. If x happens to be in L, all provers are honest, and if x happens not be in
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L, all provers are malicious.

Rational proofs, by virtue of being designed with the objective of specifically incentivizing

provers to give the “correct” answer, have guarantees that depend on the string x. In

particular, if an x ∈ L, then each prover strategy that reports x ∈ L is honest and all other

strategies are dishonest. Similarly, if x /∈ L, then each prover strategy that reports x /∈ L is

honest and all other are dishonest.

Thus, rational proofs incentivize the provers to always use an honest strategy and rational

proofs with a strong utility gap guarantee ensures that the expected payment of a dishonest

strategy is significantly less than an honest one.

5.2 Converting a Rational Proof to a Classical Proof

We show under what conditions does a rational interactive proof reduces to a classical in-

teractive proof. The results in this section are stated in terms of the multi-prover model

(that is, MRIP and MIP) which is more general, and thus they also hold for the single prover

model (that is, RIP and IP).

To compare the two proof models, we explore their differences. In rational interactive

proofs, the provers are allowed to give an answer bit c = 1 claiming x ∈ L or c = 0 claiming

x /∈ L.8 In other words, the question is “is x ∈ L?” and the rational provers can say “yes” or

“no” based on their incentives. Furthermore, for a particular input x of size n, if the provers’

claim c about x is incorrect, they lose at least a 1/γ(n), where γ(n) is the utility gap.

On the other hand, in classical proofs, the provers are only allowed to prove membership,

that is, x ∈ L. Furthermore, given completeness and soundness parameters c and s respec-

tively, where 0 ≤ s < c ≤ 1, we have that “for any x ∈ L”, there exists a strategy such that

V accepts with probability at least c and “for any x /∈ L”, for any strategy V rejects with

probability at most s. Thus, given L, the guarantees are independent of x.

In this section, we show under what conditions a rational proof reduces to a classical

proof. Intuitively, this happens when the utility gap guarantee of a rational protocol is made

to hold for all x and in particular, it is enforced to be the gap between the expected payments

for all x ∈ L and all x /∈ L.

We first show that without loss of generality we can restrict the expected payments of

the provers in a rational protocol to be either 1 or 0, where 1 corresponds to “accept” and

0 to “reject” respectively.

Lemma 5.1. Any MRIP protocol (V, ~P ) with payment R ∈ [0, 1] and utility gap γ(n) can be

simulated by an MRIP protocol (V ′, ~P ) with payment R′ ∈ {0, 1} and utility gap γ(n)/2. In

8Thus it is not surprising that rational proofs are closed under complement.
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particular, for any strategy s and any input x,

u(V, ~P )(x; s) ≤ u(V ′, ~P )(x; s) ≤ u(V, ~P )(x; s) + γ(n)/2.

V ′ uses 1 + dlog2 γ(n)e more random bits than V .

Proof. We go one by one through the payments made in the protocol (V, ~P ) and replace them

with payments in {0, 1}. At a high level, V ′ makes a payment 1 in (V ′, ~P ′) with probability

R(x, r, ~m) where R(x, r, ~m) is the payment made by V in (V, ~P ) , and 0 otherwise.

Assume without loss of generality that each random string r is a bit string that corre-

sponds exactly to the result of |r| coin flips. Let G = 21+dlog2 γ(n)e; thus 1/G ≤ 1/2γ(n).

We create a new protocol (V ′, ~P ′). First, V ′ runs the original protocol (V, ~P ) to obtain

a transcript ~m (given the provers’ strategy s) and randomness r of V . Let R(x, r, ~m) be

the payment made by V . Then, V ′ flips 1 + dlog2 γ(n)e extra coins; call this string r′.

Momentarily treat r′ as an integer. If r′ ≤ dG ·R(x, r, ~m)e then V ′ pays 1; otherwise V ′ pays

0. Let this final payment be denoted by R(x, r ◦ r′, ~m).

Note that in the above, because r′ is uniformly selected from G distinct values, for any

r, the V ′ pays 1 with probability

Er′ [R(x, r ◦ r′, ~m)] =
dG ·R(x, r, ~m)e

G
;

thus

R(x, r, ~m) ≤ Er′ [R(x, r ◦ r′, ~m)] ≤ R(x, r, ~m) + 1/G ≤ R(x, r, ~m) + 1/2γ(n).

The expected payment in (V, ~P ′), given input x and transcript ~m, is
∑

r R(x, r, ~m) Pr(r).

The expected payment in (V ′, ~P ) is (using independence of r′ and r)

Er,r′ [R(x, r ◦ r′, ~m)] =
∑
r

∑
r′

R(x, r ◦ r′, ~m) Pr(r′) Pr(r) =
∑
r

Er′ [R(x, r ◦ r′, ~m)] Pr(r).

Substituting with the above, the expected payment is bounded by∑
r

R(x, r, ~m) Pr(r) ≤ Er,r′ [R(x, r ◦ r′, ~m)] ≤ 1/2γ(n) +
∑
r

R(x, r, ~m) Pr(r).

Any rational protocol with zero-one payments immediately gives us an accept-reject

protocol such that for a given x, the probability that the verifier accepts is exactly the

expected payment of the original protocol. More formally let (V, ~P ) be a rational protocol

with R ∈ {0, 1} and utility gap γ(n). Let (V ′, ~P ′) be defined as follows: V ′ simulates V ,
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ignores the answer bit c, and if the payment in (V, ~P ) is R = 1 then accept, else reject.

Thus, for a given input string x, the expected payment in (V, ~P ) is equal to the probability

that V ′ accepts in (V ′, ~P ′). That is,

u(V, ~P )(x; s) = Er[R(x, r, (V, ~P )(x, r, s))] =
∑
r

Pr(r | R(x, r, (V, ~P )(x, r, s)) = 1)

=
∑
r

Pr(r | V ′accepts (V ′, ~P ′)) = Pr(V ′ accepts (V ′, ~P ′)). (3)

Furthermore, (V ′, ~P ′) satisfies the following instance-specific properties similar to complete-

ness and soundness in interactive proofs. For any x ∈ L, let s∗ denote the optimal strategy

of the provers ~P , that is, s∗ maximizes their expected payment. Then for ~P ′ following s∗,

V ′ accepts with probability exactly c(x, n) = u(V, ~P )(x; s∗). Furthermore, we know from the

utility gap condition that for any x /∈ L, for any strategy s′, the probability that V ′ accepts

is at most u(V, ~P )(x; s′) < u(V, ~P )(x; s∗)− 1/γ(n), that is, the probability that V ′ accepts is at

most s(x, n) < c(x, n)− 1/γ(n). Similar guarantees hold for any x /∈ L.

However, if we want (V ′, ~P ′) to be an interactive proof protocol with completeness and

soundness guarantees that hold for all x ∈ L and for all x /∈ L respectively, we need to

impose restrictions on the expected payments of the rational proof protocol.

Theorem 5.2. Let (V, ~P ) be an MRIP protocol for a language L such that

min
x∈L

u(V, ~P )(x; s∗) > max
x/∈L

u(V, ~P )(x; s∗) +
1

γ(n)
(4)

where x is any input of length n, s∗ is the strategy of the provers that maximizes their expected

payment in (V, ~P ) and γ(n) is any function such that γ(n) > 1 and γ = O(poly(n)). Then,

(V, ~P ) can be simulated by a MIP protocol for L.

We prove this theorem in two parts. First, we show prove the following lemma which

proves Theorem 5.2 with weak completeness and soundness guarantees.

Lemma 5.3. Let (V, ~P ) be an MRIP protocol for a language L that satisfies the condition 4

in Theorem 5.2. Then, (V, ~P ) can be simulated by MIP protocol with completeness and

soundness c(n) and s(n) respectively such that c(n) > s(n) + 1/2γ(n) and c(n), s(n) ≥ 0.

Proof. Using Lemma 5.1, without loss of generality, let the payment of (V, ~P ) be R ∈ {0, 1}.
Since the expected reward under each strategy is changed by at most 1/2γ(n), the condition

of Theorem 5.2 is still satisfied with γ(n)← 2γ(n). In the MIP protocol (V ′, ~P ), V ′ simulates

V , ignores the answer bit c, and if the payment in (V, ~P ) is 1, then accepts, else rejects. The

expected payment in (V, ~P ) is equal to the probability that V ′ accepts; see Equation 3.
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Define c(n) = minx∈L u(V, ~P )(x, r, s
∗) and s(n) = maxx/∈L u(V, ~P )(x, r, s

∗). Then, by defini-

tion, we have c(n), s(n) ≥ 0 and c(n) > s(n) + 1/2γ(n).

We now show that c(n) and s(n) are the completeness and soundness of the MIP (V ′, ~P ′)

respectively. For any x ∈ L, there exists ~P ′ where ~P ′ uses a strategy s∗, such that the

probability V ′ accepts is exactly u(V, ~P )(x, s
∗) ≥ c(n). For any x /∈ L, for all ~P ′ using any

strategy s, the probability V ′ accepts is exactly u(V, ~P )(x, s) ≤ u(V, ~P )(x, s
∗) ≤ s(n). Thus,

(V ′, ~P ′) is an MIP with completeness and soundness c(n) and s(n) respectively.

We amplify the “gap” of an MIP by repeating the protocol sufficiently many times and

then using Chernoff bounds. The techniques are mostly standard, although the parameters

must be set carefully to deal with the case s(n) = 0.

Lemma 5.4. Given an MIP protocol for a language L, with completeness c(n) > 0 and

soundness s(n) ≥ 0 such that c(n) > s(n)+1/γ′(n) for some γ′(n) > 1 and γ′ = O(poly(n)),

can be converted to an MIP protocol for L with completeness at least 1 − 1/poly(n) and

soundness at most 1/poly(n).

Proof. We repeat the MIP protocol ρ(n) = 96(log n)γ′(n)2/c(n) times and accept if more

than τ(n) = ρ(n)c(n)(1− 1/4γ′(n)) of the instances end in accept.

Let the random indicator variable Xi be 1 if the verifier in the ith repetition accepts,

otherwise Xi = 0. Let X =
∑ρ(n)

i=1 Xi be the total number of accepts.

Consider an x ∈ L. Then if provers use their best strategy of the original MIP protocol

in each iteration, we have

E[X] = E

ρ(n)∑
i=1

Xi

 =

ρ(n)∑
i=1

E [Xi] ≥
ρ(n)∑
i=1

c(n) = c(n)ρ(n).

Using Chernoff bounds, we obtain9

Pr(X < τ(n)) = Pr

(
X <

(
1− 1

4γ′(n)

)
c(n)ρ(n)

)
≤ e

− c(n)ρ(n)
32γ′(n)2 < 1/n.

Now consider an x /∈ L. For any strategy of the provers, by the soundness guarantee

at most s(n) of the original protocol (and using linearity of expectation as above) we have

E(X) ≤ s(n)ρ(n) < ρ(n)(c(n) − 1/2γ′(n)). Note c(n) − 1/2γ′(n) > c(n)/2 and τ(n) >

9This uses a slight extension of Chernoff bounds that uses a bound on the expectation rather than the
expectation itself; see Exercise 4.7 in [110] for example.
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ρ(n)(c(n)− 1/2γ′(n))(1 + 1/4γ′(n)). Then we can use the following Chernoff bound

Pr(X > τ(n)) ≤ Pr

(
X >

(
1 +

1

4γ′(n)

)
ρ(n)(c(n)− 1/2γ′(n))

)
≤ e−ρ(n)(c(n)−1/2γ′(n))/48γ′(n)2 ≤ e−ρ(n)c(n)/96γ′(n)2 ≤ 1/n.

Note that the same analysis extends to any 1/poly(n) instead of 1/n when ρ(n) is in-

creased by a constant.

Remark 5.5. The repetition of the MIP protocol to amplify its completeness and soundness

guarantee used in Lemma 5.4 is not efficient as it blows up the number of rounds. There

exist more efficient techniques to amplify IP guarantees by parallel repetition that can be used

instead; for example, see [16, 62, 74, 122].
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Chapter 6

Rational Proofs with Non-Cooperative Provers

6.1 Introduction

The motivation behind the study of efficient interactive proofs and rational interactive proofs

is largely to design efficient computation-outsourcing protocols. However, in all existing

interactive-proof systems with multiple provers, the provers’ interests either perfectly align as

in multi-prover interactive proofs and cooperative rational proofs (see Chapter 3, Chapter 4

and Chapter 5), or directly conflict as in refereed games (see Chapter 2). Neither of these

extremes truly capture the strategic nature of service providers in outsourcing applications.

How to design and analyze non-cooperative interactive proofs is an important open problem.

In this chapter, we introduce the model of rational proofs with non-cooperative

provers [44], where each prover acts selfishly to maximize its utility in the resulting game.

This incentive model is different from all interactive-proof systems with multiple provers.

In classical multi-prover interactive proofs [17], the provers are totally cooperative with each

other and their utility is equal to the probability that the verifier accepts the statement

x ∈ L. On the other hand, in refereed games [40, 63, 65, 67], the provers compete with one

another in a zero-sum game. The utility of each prover in a refereed game is the probability

that the verifier accepts their claim x ∈ L or x /∈ L respectively.

Several computation-outsourcing protocols that make use of either MIP or refereed games

have been designed [26,35–37,97]. However, the service providers in outsourcing applications,

may neither be completely cooperative nor completely conflicting.

In this chapter, we use a mechanism design approach to define the new interactive-proof

model, non-cooperative rational interactive proofs (ncRIP), in which each prover acts to

maximize its own expected utility given other provers’ strategies. Unlike refereed games, no

prover is required to be honest.

In the non-cooperative setting, the utility of non-cooperative provers may no longer

directly correspond to the verifier’s acceptance probability (as in MIP and refereed games).

To assign meaningful incentives, we draw on our cooperative model of rational proofs in

Chapter 3, in which the provers’ utility is a monetary payment given at the end of the

protocol. The provers are cooperative and rational—that is, they work together to maximize

their total expected payment received from the verifier. Since the provers cooperate, rational
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proofs are not too different from MIP—the total payment is analogous to the verifier’s

acceptance probability (see Chapter 5 for a detailed discussion on this).

We borrow the notion of payments as utilities in our new model with the difference that

instead of a total payment, each prover receives an individual expected payment. While this

leads to a well-defined utility structure, there are still significant challenges in designing the

overall model of a non-cooperative proof system and in understanding its full power.

In particular, we need to (a) select a meaningful equilibrium concept for the specific

game structure of interactive proofs, (b) design protocols where the verifier learns the correct

answer under such an equilibrium, and finally (c) bound the exact power of such equilibria-

based proofs. In this work, we address these challenges.

Finding the right solution concept. We describe the main obstacles to finding an

appropriate solution concept. First, the solution concept should not be susceptible to empty

threats. This rules out Nash and maximum Nash as they cannot handle empty threats.

It is worth pointing out that a possible approach to defining non-cooperative rational

proofs is to simulate an MRIP protocol using non-cooperative provers, and split the final

payment evenly among them and analyze the resulting game using maximum Nash. While

such an approach may not suffer from empty threats, it forces non-cooperative provers to act

cooperatively and fails to lead us to a more meaningful and general non-cooperative model.

Second, the solution concept should have an elegant way to handle provers’ beliefs at un-

reachable information sets. In particular, we want to avoid artificial consistency requirements

on the beliefs of the players at these information sets, like those of sequential equilibrium

(SE).10 Finally, the solution concept must handle equilibrium selection.

Strong sequential equilibrium. Taking the above constraints into account, we define a

new solution concept to help analyze ncRIP: strong sequential equilibrium (SSE). SSE is a

refinement of SE which, unlike SE, may not always exist. Thus, it is up to the mechanism de-

signer to ensure that their protocol does have an SSE. We believe that SSE is of independent

interest as a solution concept for designing extensive-form mechanisms (e.g. [57,72,135]). In

Chapter 6.3, we prove important properties of SSE that are used in this dissertation and

may prove useful in future studies.

To resolve the problem of equilibrium selection, we define a maximum variant of SSE and

apply it recursively to a larger class of “subgames.”11 Informally, in a rational proof with

10To quote Kreps, one of the inventors of SE, “rather a lot of bodies are buried in this definition” [100,117].
11Similar to subgame-perfect equilibrium, the recursive aspect is to ensure that provers play their best

response at each subform, an extension of subgame for imperfect-information games.
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non-cooperative provers, whenever the strategy profile used by the provers is a recursive-

maximum SSE (rmSSE), it leads the verifier to the correct answer. The ncRIP framework

is formally defined in Chapter 6.2.

Utility gap for non-cooperative provers. Similar to the model of cooperative rational

proofs, we need a notion of utility gap for the non-cooperative model as well so that we can

analyze the guarantees provided by the protocols.

This notion is straightforward to define for cooperative MRIP protocols—they have a

utility gap of u if the total expected payment decreases by 1/u whenever the provers report

the wrong answer. In the non-cooperative model, however, it is not a priori clear how to

define such a payment loss or and which prover to impose it on. A payment loss imposed

solely on the total payment may not prevent some provers from deviating, and a loss solely

imposed a prover’s final payment may not prevent it from deviating within subgames.

In this chapter, we define a meaningful notion of utility gap for ncRIP that captures how

the provers reason in the resulting extensive-form game, and is naturally incorporated into

the framework of recursive-maximum SSEs.

6.2 Model and Preliminaries

In this section we define the model for ncRIP formally.

Notation. The interactive model of non-cooperative rational proofs is similar to interactive

proofs described in Chapter 2, except for the following differences.

Similar to MRIP, in ncRIP, a round of interaction consists of either messages sent in

parallel by all or some provers to the verifier or messages sent by the verifier to all or some

provers, and these two cases alternate. Without loss of generality, we assume the first round

of messages are sent by the provers, and the first bit sent by P1, denoted by c, indicates

whether x ∈ L (corresponding to c = 1) or not (corresponding to c = 0). The length of

each message `(n), and the number of rounds k(n) are both polynomial in n. Let r be the

random string used by V . Given r, let ~m be the final transcript.

At the end of the communication, based on x, r, and ~m, the verifier computes an answer

bit c ∈ {0, 1} for the membership of x in L, and a payment vector ~R = (R1, R2, . . . , Rt(n)),

where Ri is the payment given to Pi and Ri ∈ [−1, 1], and the total
∑p(n)

i=1 Ri ∈ [−1, 1] as

well.12 The protocol and the payment function ~R are public knowledge.

12Negative payments are used to reflect punishment. They can be shifted and scaled to lie in [0, 1].
Similarly, we may allow V ’s total budget to be a larger constant for simplicity as it can be scaled down.
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Each prover Pi’s strategy at round j maps the transcript seen at the beginning of round

j to the message it sends in that round. Let si = (si1, . . . , sik(n)) be the strategy of prover

Pi, and s = (s1, . . . , st(n)) be the strategy profile of the provers. Given input x, and strategy

profile s, let µk(x, s, (V, ~P )) denote the expected payment of prover Pk in the protocol (V, ~P )

based on r, x and s; if (V, ~P ) is clear from context, this is shortened to µk(x, s).

At a high level, the provers choose their individual strategy to maximize their own pay-

ment; we formalize the solution concept in Chapter 6.3. The protocol and solution concept

should be such that when the provers reach an equilibrium, V learns the correct answer c.

Extensive-form games formed by IP protocols. An interactive proof protocol results

in an extensive-form game with imperfect information. The game tree is naturally induced

by the possible coin flips and messages of the verifiers, as well as the possible messages of

the provers. For a detailed exposition on extensive-form games, we refer the readers to the

textbook by Osborne and Rubinstein [117].

In a protocol (V, ~P ) with input x, the set of provers ~P = (P1, . . . , Pt(n)) are the players

and the verifier V ’s random coin flips are treated as the moves of Nature. The history

h = (a1, a2, . . . , aK) of a decision node is the sequence of actions taken by Nature and the

players along the path from the root to the decision node. The set of valid histories (including

φ, the empty history corresponding to the root) is denoted by H.

A history h is terminal if it belongs to a leaf in the game tree, and non-terminal otherwise.

Let Z(h) denote the player whose turn it is to act following a non-terminal history h—note

that even though in an ncRIP protocol more than one prover may send a message to the

verifier in a round, without loss of generality we can increase the number of rounds such

that only a single prover acts in each round. Let A(h) denote the set of actions available to

the acting player at a non-terminal history h: that is, A(h) = {a : (h, a) ∈ H}. If Z(h) is

Nature, then A(h) is the set of possible coin flips and messages of the verifier following h;

otherwise A(h) is the set of possible messages that Z(h) may send to the verifier. For each

terminal history h, the utility of a player i following h, ui(h), is the payment Ri computed

by the verifier given x and h.

Since the verifier’s coins are private and a prover does not see the messages exchanged

between the verifier and the other provers, an IP protocol represents an extensive-form game

of imperfect information.

An information set Ii of a player Pi is a subset of all possible histories h with Z(h) = Pi,

and represents all the information that the player knows when acting in one of the decision

nodes in Ii. That is, when a decision node in Ii is reached, Pi knows that Ii has been reached

but does not know exactly which node it is at. Naturally, A(h) = A(h′) for all h, h′ ∈ Ii

70



—that is, the set of actions available to player i at every decision node in a particular

information set is the same. Let A(Ii) denote the set of available actions at an information

set Ii. The set of all information sets of Pi forms a partition of the set {h ∈ H : Z(h) = Pi},
and let Ii to denote this partition, referred to as the information partition of Pi. In terms of

the protocol, Ii is in a one-to-one correspondence with the set of possible message sequences

(mi1, . . . ,mij) seen by Pi, where j ∈ {1, . . . , p(n)} and Pi is acting in round j.

A pure strategy si of a player Pi in an extensive-form game is a function that assigns an

action in A(Ii) to each information set Ii ∈ Ii. A behavioral strategy βi of Pi is a collection

(βi(Ii))Ii∈Ii of independent probability measures, where βi(Ii) is a probability measure over

the action set A(Ii). A behavioral strategy βi is completely mixed if each βi(Ii) assigns a

positive probability to every action in A(Ii).

In our protocols we only consider deterministic provers and thus analyze only pure strate-

gies. However, our solution concept applies to behavioral strategies as well.

A player i’s utility under a strategy profile s, ui(s), is its expected utility over the distri-

bution of histories induced by s and the verifier’s randomness.

The provers are computationally unbounded and never “forget” anything and thus the

game has perfect recall. That is, for any two histories h and h′ in the same information set Ii

of a player Pi, h and h′ pass the same sequence of information sets to player Pi. Furthermore,

for any information set in this sequence, player Pi took the same action in h and h′. This

holds in any ncRIP protocol since all histories of prover Pi in the same information set Ii at

round j correspond to the sequence of messages (mi1, . . . ,mij) seen by Pi up to round j.

6.3 Strong Sequential Equilibrium and its Properties

We formally define our refinement of sequential equilibrium—strong sequential equilibrium.

Recall that a sequential equilibrium considers a strategy profile s together with a belief

system µ, where µ specifies, for each information set I, the probability assigned to each

history in I. SE imposes a consistency condition on s and µ: s and µ are consistent if there

exists a sequence (st, µt)∞t=1 that converges to (s, µ), such that each st is a profile of completely

mixed behavioral strategies and each µt is the belief system derived from st using Bayes’

rule. The pair (s, µ) is an SE if s and µ are consistent and conditioned on any information

set Ii being reached by a player i, player i’s strategy is a best response to the others’ given

i’s beliefs at Ii (specified by µ). This condition is called sequential rationality.

We introduce a refinement of SE that avoids the somewhat artificial consistency con-

dition of SE, which involves computing limits of sequences to argue about players’ beliefs

at unreachable information sets. An information set is unreachable if it is reached with
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probability 0 under a equilibrium strategy s.

A strong sequential equilibrium is identical to SE for reachable information sets. At

any unreachable information set I, SSE requires that the acting player’s strategy be a best

response to the others, for any beliefs it may hold at I.

Definition 6.1. (Strong Sequential Equilibrium) A strategy profile s is a strong sequential

equilibrium (SSE) if for every player i and information set Ii of i:

• If I is reachable under s: conditioned on Ii being reached, player i’s strategy si is a

best response to s−i, given i’s beliefs at Ii being derived from s using Bayes’ rule.

• If I is not reachable under s: conditioned on Ii being reached, player i’s strategy si is

a best response to s−i, given any beliefs of i at Ii.

Strong sequential equilibrium strengthens SE so that a player’s beliefs at unreachable

information sets are irrelevant in justifying its equilibrium strategy. Unlike SE, not every

extensive-form game with perfect recall has an SSE. However, in the context of mechanism

design, SSE allows for the design of stronger mechanisms. This is reminiscent of dominant-

strategy equilibrium, and the difference between analyzing general games and designing

specific mechanisms. Not every game has a dominant-strategy equilibrium, and it cannot

be used to analyze general games. However, if the designer can design a mechanism with a

dominant-strategy equilibrium, it obtains a strong guarantee on the behavior of the players.

Although we introduce SSE to analyze ncRIP protocols, we believe it is of independent

interest as a solution concept for mechanisms based on extensive-form games. Next, we

prove several important properties of strong sequential equilibrium.

Strong Sequential Equilibrium Admits a Sequential Equilibrium. We show that,

given a strategy profile s that is a strong sequential equilibrium (thus does have a belief sys-

tem), we can construct a belief system µ such that the pair (s, µ) is a sequential equilibrium.

Lemma 6.2. For any strategy profile s that is a strong sequential equilibrium, there exists

a belief system µ such that (s, µ) is a sequential equilibrium.

Proof. To prove that s admits a sequential equilibrium, we first construct a belief system

µ and show that, there exists a sequence of pairs (sε, µε)ε→0 which converges to (s, µ), as ε

goes to 0, where each sε is a profile of completely mixed behavioral strategies and each uε is

the belief system derived from sε using Bayes’ rule.

Recall that a strategy profile s defines a probability distribution over the actions available

to a player at an information set where it acts. That is, for each information set Ii of a player

i, si(Ii) is a probability distribution over A(Ii), the set of actions available to player i at
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Ii. In particular, if A(Ii) = (a1, . . . , ak), then si(Ii) = (pi(a1), . . . , pi(ak)) where pi(a`) is the

probability that player i chooses action a` at Ii.

Let A+(Ii) and A0(Ii) be the set of actions at information set Ii which player i chooses

with positive probability and zero probability respectively; that is,

A+(Ii) = {a` ∈ A(Ii) | pi(a`) > 0} and A0(Ii) = A(Ii) \ A+(Ii).

For any ε ∈ (0, 1), we define sεi for player i at information set Ii as follows: if A0(Ii) = ∅
then sεi (Ii) = si(Ii); otherwise,

sεi (Ii)(a`) =

{
(1− ε) · pi(a`) for each a` ∈ A+(Ii);

ε
|A0(Ii)| for each a` ∈ A0(Ii).

By construction, sεi (Ii) is a valid probability distribution over Ii and is completely mixed,

that is, assigns a positive probability to every action in Ii. Indeed, because
∑k

`=1 pi(a`) =∑
a`∈A+(Ii)

pi(a`) = 1, when A0(Ii) 6= ∅ we have
∑

a`∈A(Ii)
sεi (Ii)(a`) =

∑
a`∈A+(Ii)

(1 −
ε)pi(a`) + ε = 1. It is easy to see that sεi converges to si when ε→ 0.

Given the strategy profile sε, to define µεi , the belief system of a player i, consider an

arbitrary information set Ii where player i acts. The probability that a particular history h =

(a1, . . . , aK) ∈ Ii occurs can be derived from sε as follows. For any history h′ = (a1, . . . , aw)

with 0 ≤ w ≤ K − 1, recall that Z(h′) is the player acting following history h′. For any

action a ∈ A(h′), let sεZ(h′)(h
′)(a) denote the probability assigned by sεZ(h′) to action a at

history h′ (i.e., at the information set containing h′). We have

Pr {h occurs under sε} =
K−1∏
w=0

sεZ(a1,...,aw)(a
1, . . . , aw)(aw+1) = chε

eh(1− ε)fh ,

where ch, eh and fh are positive constants depending on s and h, but not on ε. In particular,

letting S0 be the set of actions aw+1 in h that are assigned zero probability by sZ(h′) at

history h′ = (a1, . . . , aw), we have eh = |S0|. fh is the number of actions aw+1 in h such that

aw+1 is not in S0 but sZ(h′) is not completely mixed at h′ either. Finally,

ch =
∏

0≤w≤K−1
aw+1 /∈S0

sZ(a1,...,aw)(a
1, . . . , aw)(aw+1) ·

∏
0≤w≤K−1
aw+1∈S0

1

|A0(a1, . . . , aw)|
,

where the second term is defined to be 1 if S0 = ∅. Note that Pr {h occurs under sε} > 0

for every h ∈ Ii.
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The probability that the information set Ii is reached under sε is

P(Ii) ,
∑
h∈Ii

Pr {h occurs under sε} =
∑
h∈Ii

chε
eh(1− ε)fh > 0.

Then P(Ii) can be written as a polynomial in ε, that is, P(Ii) = b0 + b1ε+ b2ε
2 + . . .+ brε

r,

where the coefficients b0, . . . , br may be zero, positive or negative. Following Bayes’ rule, for

any history h ∈ Ii,

µεi (Ii)(h) =
chε

eh(1− ε)fh
P(Ii)

=
chε

eh(1− ε)fh
b0 + b1ε+ b2ε2 + . . .+ brεr

> 0.

To define the belief system µ, let d be the minimum degree of ε in P(Ii) such that bd 6= 0.

As the minimum degree of ε in each term chε
eh(1− ε)fh is eh with coefficient ch > 0, we have

d = minh∈Ii eh and bd =
∑

h∈Ii,eh=d ch > 0. For any h ∈ Ii, we define µi(Ii)(h) = ch/bd(> 0)

if eh = d, and µi(Ii)(h) = 0 if eh > d. It is easy to see that µi(Ii) is a probability distribution

over Ii. Moreover, limε→0 µ
ε
i (Ii)(h) = ch/bd when eh = d, and limε→0 µ

ε
i (Ii)(h) = 0 when

eh > d. Thus, limε→0 µ
ε
i (Ii)(h) = µi(Ii)(h) for any player i, information set Ii of i and history

h ∈ Ii, and µε converges to µ as ε→ 0. Since sε converges to s, s and µ are consistent.

To prove the condition of sequential rationality, we show that at a reachable information

set, the belief specified by µ is derived from s using Bayes’ rule. Consider an arbitrary player

i and an information set Ii of i that is reachable by s. By definition, there exists h ∈ Ii such

that eh = 0, thus d = 0 for P(Ii) and b0 =
∑

h∈Ii,eh=0 ch. Therefore µi(Ii) is the probability

distribution derived from s using Bayes’ rule. Sequential rationality of s (with respect to µ)

then follows from the definition of SSE. Thus (s, µ) is a sequential equilibrium.

Alternative Definition of Strong Sequential Equilibrium. The notion of strong se-

quential equilibrium, as stated in Definition 6.1, requires that at any unreachable information

set, regardless of the belief the acting player holds at that set, its action should be a best

response to that belief and the other players’ strategies.

We now give an equivalent definition of strong sequential equilibrium, which says that

a player’s strategy at an unreachable information set should be optimal following every

history in that information set. This definition is more convenient when proving that a

strategy profile is a strong sequential equilibrium.

Definition 6.3 (Strong Sequential Equilibrium: Alternate Definition). A strategy profile s

is a strong sequential equilibrium if for every player i and information set Ii of i, we have:

• If I is reachable under s: conditioned on Ii being reached, player i’s strategy si is a
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best response to s−i, given i’s beliefs at Ii being derived from s using Bayes’ rule.

• If I is unreachable under s: for every history h ∈ Ii, conditioned on Ii being reached,

player i’s strategy si is a best response to s−i, given player i’s belief that h occurs with

probability 1.

We now prove the equivalence of the two definitions of SSE in the following lemma.

Without loss of generality, let s be a profile of pure strategies.

Lemma 6.4. For any strategy profile s, any player i and information set Ii of i that is not

reached with positive probability under s, conditioned on Ii being reached, si is a best response

to s−i with respect to all possible beliefs that player i may hold at Ii if and only if for every

history h ∈ Ii, si is a best response to s−i given i’s belief that h occurs with probability 1.

Proof. The “only if” part is immediate, because for any history h ∈ Ii, at h with probability 1

(and any other history with probability 0) is a specific belief that i may hold at Ii.

Suppose that si is a best response to s−i conditioned on every history h ∈ Ii, that

is, conditioned on reaching h with probability 1. To show that si is a best response to

s−i conditioned on all possible beliefs player i may hold at information set Ii, fix an ar-

bitrary belief µi(Ii) over Ii and a strategy s′i. Let Ii = {h1, h2, . . . , hm} and µi(Ii) =

(µi(Ii)(h1), µi(Ii)(h2), . . . , µi(Ii)(hm)), where µi(Ii)(hk) is the probability with which player

i believes that history hk occurs conditioned on Ii being reached. Then, player i’s expected

utilities under si and s′i respectively, conditioned on Ii, µi(Ii) and s−i, are

ui(si, s−i|µi(Ii)) =
m∑
k=1

µi(Ii)(hk) · ui(si, s−i|hk) and

ui(s
′
i, s−i|µi(Ii)) =

m∑
k=1

µi(Ii)(hk) · ui(s′i, s−i|hk),

where ui(si, s−i|hk) is player i’s utility under (si, s−i), conditioned on history hk being

reached at Ii. Since si is a best response to s−i at every hk ∈ Ii, we have ui(si, s−i|hk) ≥
ui(s

′
i, s−i|hk) ∀k ∈ {1, . . . ,m}. Thus ui(si, s−i|µi(Ii)) ≥ ui(s

′
i, s−i|µi(Ii)).

Corollary 6.5. Definition 6.1 and Definition 6.3 are equivalent.

One-Shot Deviation for Strong Sequential Equilibrium. Informally, a solution con-

cept satisfies the one-shot deviation principle says that if whenever a strategy is at equilib-

rium then no player can change its action at a single information set (without changing the

rest of its and other players’ strategy) and improve its utility.
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In the context of sequential equilibrium, it is well known that given a consistent belief

system µ, (s, µ) is a sequential equilibrium if and only if the one-shot deviation principle

holds, that is, no player i has an information set Ii at which a change in si(Ii)—holding the

remaining of si fixed—increases its expected utility conditioned on reaching Ii [88, 117].

Since strong sequential equilibrium does not require artificial notion of beliefs for unreach-

able information sets, we define a stronger notion of one-shot deviation at those information

sets— for every decision node (i.e., history) in an unreachable information set of player i,

there does not exist a one-shot deviation at that node which improves player i’s utility con-

ditioned on that node being reached. At reachable information sets, both the definition and

proof of the one-shot deviation condition for SSE are exactly the same as in SE [88].

Lemma 6.6 (One-Shot Deviation for Strong Sequential Equilibrium). For any strategy pro-

file s, s is a strong sequential equilibrium if and only if it satisfies the following one-shot

deviation principle: For every player i and every information set Ii of i,

• If Ii is reachable under s: there does not exist a change in si(Ii) (holding the rest

of si fixed) that increases player i’s expected utility conditioned on reaching Ii, given

i’s belief at Ii derived using Bayes’ rule.

• If Ii is unreachable under s: for every history h ∈ Ii, there does not exist a change

in si(Ii) (holding the rest of si and s−i fixed) that increases player i’s expected utility

conditioned on reaching h.

Proof. The “only if” part follows immediately from Definition 6.3 and the fact that a one-

shot deviation results in a different strategy for the deviating player. We now prove that if

s satisfies the one-shot deviation principle then it is a strong sequential equilibrium.

Reachable information sets. First, similar to the proof of Lemma 6.2, we can con-

struct a belief system µ such that s and µ are consistent. Indeed, the construction of µ

only depends on the actions taken by s and does not depend on the utilities induced by s

at all. Since s satisfies the one-shot deviation principle at every reachable information set

and at every history in each unreachable information set, it is not hard to see that s satisfies

the one-shot deviation principle with respect to µ. Thus (s, µ) is a sequential equilibrium.

Furthermore, for any player i and information set Ii of i that is reachable by s, si is a best

response to s−i conditioned on µi(Ii) (which is derived from s using Bayes’ rule at Ii).

Unreachable information sets. Next, we use backward induction to show that, for

any player i, information set Ii of i that is unreachable by s, and history h ∈ Ii, si is a

best response to s−i conditioned on reaching h. To begin with, if h is of height 1 then this
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immediately holds: indeed, the strategy induced by si following h is exactly the action si(Ii),

thus the one-shot deviation principle implies that si is a best response to s−i at h.

Consider an arbitrary player i, information set Ii of i unreachable by s, and a history

h ∈ Ii of height larger than 1. By induction, assume that for any information set I ′i of i

unreachable by s, and history h′ ∈ I ′i of height smaller than that of h, si is a best response

to s−i at h′. For the sake of contradiction, suppose player i can deviate to strategy s′i and

increase its utility conditioned on reaching h, that is, ui(s
′
i, s−i|h) > ui(si, s−i|h).

If s′i(Ii) = si(Ii), consider the first history h′ following h where player i acts and s′i differs

from si. As h is unreachable by s, h′ is unreachable by s as well. However, the height of

h′ is smaller than that of h and ui(s
′
i, s−i|h′) = ui(s

′
i, s−i|h) > ui(si, s−i|h) = ui(si, s−i|h′),

contradicting the inductive hypothesis. Thus we have s′i(Ii) 6= si(Ii).

If s′i is the same as si at all the histories following (h, s′i(Ii)) where player i acts, then the

one-shot deviation principle is violated. Thus, there must exist a history following (h, s′i(Ii)),

where player i acts and s′i differ from si. Letting h′ be the first such history, we have that

the height of h′ is smaller than that of h. Since h′ is unreachable by s, by the inductive

hypothesis we have that si is a best response to s−i at h′. Thus ui(si, s−i|h′) ≥ ui(s
′
i, s−i|h′).

As ui(s
′
i, s−i|h′) = ui(s

′
i, s−i|h) > ui(si, s−i|h), we have ui(si, s−i|h′) > ui(si, s−i|h).

Let strategy s′′i be such that, it follows si till history h, then follows action s′i(Ii), then

follows s′i (and si as well, because they are the same after (h, s′i(Ii)) and before h′) till

history h′, and then follows si for the rest. Note that s′′i can be obtained from si by a

one-shot deviation from si(Ii) to s′i(Ii). However,

ui(s
′′
i , s−i|h) = ui(s

′′
i , s−i|h′) = ui(si, s−i|h′) > ui(si, s−i|h),

contradicting the one-shot deviation principle and si is a best response to s−i conditioned

on reaching h. Thus, by Definition 6.3, s is an SSE and Lemma 6.6 holds.

Verifying Strong Sequential Equilibrium. Given an extensive-form game with arbi-

trary number of players, it is possible to decide whether a pair (s, µ) is a sequential equilib-

rium in time polynomial in the size of the game tree [70].

However, if only a strategy profile s is given, then it is NP-hard to decide whether s is

part of an SE (that is, whether there exists a belief system µ such that (s, µ) is an SE) [86].

As strong sequential equilibrium does not rely on belief systems, we prove the following.

Lemma 6.7. Given an extensive-form game and a strategy profile s of the players, deciding

whether s is an SSE of the game can be done in time polynomial in the size of the game tree.

Proof. In time polynomial in the size of the game tree we can traverse it, mark each in-
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formation set whether it is reachable by s or not, and compute, for each player i and each

reachable information set Ii of i, the belief µi(Ii) derived from s using Bayes’ rule. Next, we

apply the one-shot deviation principle (Lemma 6.6).

We start from the bottom level of the tree and proceed up. For every player i and every

information set Ii of i, if Ii is unreachable under s, then we go through each h ∈ Ii and each

a ∈ A(Ii), and check if changing si(Ii) to a improves i’s utility conditioned on reaching h. If

so then s is not an SSE. If Ii is reachable under s, then we go through every a ∈ A(Ii), and

check if changing si(Ii) to a improves i’s expected utility conditioned on Ii and µi(Ii). If so

then again s is not an SSE. If all the checks above pass, then s is an SSE.

Since we go through each decision node of the game tree at most once, and since it takes

polynomial time to compute expected utilities of the players under s, deciding whether s is

an SSE takes polynomial time in the size of the tree.

6.4 Recursive-Maximum SSE

We define maximum SSE. A strategy profile s is a maximum SSE if it is an SSE and for

any player i and SSE s′, ui(s) ≥ ui(s
′). However, maximum SSE alone is not enough to

resolve equilibrium-selection problems in extensive-form games, as the maximality is only

imposed at the root. Instead, we impose the maximality condition at every subgame. This is

analogous to the backward induction in subgame-perfect equilibrium. As the correctness of

ncRIP protocols only hold at max SSE, the provers must play their max SSE strategy when

restricted to subforms as well.

A subgame is a subtree that can be singled out from the game tree and treated as a

separate well-defined game. As an extensive-form game with imperfect information may

have very few proper subgames, we use the extended notion of subgames, subforms, defined

by Kreps and Wilson13 [101] to ensure that the solution concept “has enough bite.”

Subforms. For any information set I, let HI be the forest rooted at I, that is, HI =

∪h′∈I{h | (h′, h) ∈ H}, where H is the set of all valid histories in the game. For a history

h ∈ H, let I(h) be the unique information set containing h. Let FI be the set of all

information sets following I, that is, FI = {I(h′, h) | h′ ∈ I, (h′, h) ∈ H}. As h can be the

empty history φ, we have I ∈ FI .

Definition 6.8. (Subform [101]) For any information set I, HI is a subform rooted at I if

for every I ′ ∈ FI and every ĥ ∈ FI , ∃h′ ∈ I and ∃h ∈ HI such that ĥ = (h′, h).

13We would like to thank an anonymous reviewer of [44] for pointing us towards this citation.
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Roughly speaking, a subform HI completely contains all the information sets following I,

so there is no information asymmetry between the players acting within HI . A subform HI

and a probability distribution µI on I together form a well-defined game, where the players’

expected utilities under s are based on µI and the Nature moves in HI .

A subform HI is reachable under s if I is reachable under s. Given a strategy profile s,

let sI be the strategy profile induced by s in the subform HI . The height of a subform HI

is the length of the longest path in the game following the information set I.

Recursive-Maximum SSE. To deal with equilibrium selection, we enforce the solution

concept to hold recursively on every subform, as in subgame-perfect equilibrium.

Definition 6.9 (Recursive-Maximum Strong Sequential Equilibrium). A strategy profile s

is a recursive-maximum strong sequential equilibrium (or rmSSE) if s is an SSE and

• for every subform HI of height 1:

– if I is reachable under s: sI is a maximum SSE on HI with respect to µI (deduced

from s using Bayes’ rule),

– if I is unreachable under s: sI is a maximum SSE on HI with respect to any

distribution µI ,

• for every subform HI subgame of height > 1:

– if I is reachable under s: sI is maximum among all SSEs on HI that are rmSSEs in

all subforms following I (with respect to µI deduced from s using Bayes’ rule),

– if I is unreachable under s: sI is maximum among all SSEs on HI that are rmSSEs

in all subforms following I (with respect to any distribution µI).

We are ready to define rational proofs with non-cooperative provers.

Definition 6.10. For any language L, an interactive protocol (V, ~P ) is a non-cooperative

rational interactive proof (ncRIP) protocol for L if, for any x ∈ {0, 1}∗, there exists a

strategy profile s of the provers that is a recursive-maximum SSE in the resulting extensive-

form game, and under any recursive-maximum SSE, the answer bit c output by V is correct

(i.e., c = 1 iff x ∈ L) with probability 1, where the probability is over V ’s randomness.

6.5 Utility Gap in ncRIP Protocols

The notion of rmSSE provides a strong guarantee that rational non-cooperative provers will

act as prescribed by the protocol and lead the verifier to the correct answer.

However, this is only true in the classic game-theoretic sense where the players are per-

fectly rational and “sensitive” to arbitrarily small utility losses. In reality, some provers may
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not care about small payment losses. Such provers could still deviate to lead the verifier to

the wrong answer. To make ncRIP protocols robust against such “insensitive” provers, we

define utility gap for ncRIP protocols.

Informally, a utility gap of u means that if a strategy profile s leads the verifier to the

wrong answer, there must exist a subform such that some provers must lose at least a 1/u

amount from their payments (compared to if they played their best strategy in that subform).

Thus, these provers will not deviate to s, as long as they care about 1/u payment losses.

Recall that the notion of utility gap is analogous to soundness gap—the difference between

completeness and soundness—in interactive proofs. If an IP protocol has a large soundness

gap, then the probability that malicious provers can make the verifier accept when x /∈ L is

low. Similarly, if an ncRIP protocol has a large utility gap, then even provers who are not

perfectly rational and are insensitive to small losses will not deviate to the wrong answer.

We proved this connection formally for the cooperative model in Chapter 5.

Definition 6.11. Let (V, ~P ) be an ncRIP protocol for a language L and s∗ be a recursive-

maximum SSE in the resulting game. The protocol (V, ~P ) has an γ(n)-utility gap or γ(n)-gap,

if for any strategy profile s′ under which the answer bit c′ is wrong, there exists a subform HI

reachable under s′, and a prover Pj acting in HI who has deviated from s∗ such that

uj(x, (s
′
−I , s

∗
I), (V, ~P ))− uj(x, (s′−I , s′I), (V, ~P )) > 1/γ(n),

where s′−I denotes the strategy profile s′ outside subform HI , that is, s′−I = s′ \ s′I .

The class of languages that have an ncRIP protocol with constant, polynomial and ex-

ponential utility gap, are denoted by O(1)-ncRIP, poly(n)-ncRIP, and ncRIP respectively.14

Note that these terms refer to γ(n), so exponential gives the weakest gap guarantees.

14These classes are formally defined by taking the union over languages with γ(n) utility gap, for every
γ(n) that is constant, polynomial and exponential in n respectively.
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Chapter 7

Tight Characterizations of ncRIP Classes

7.1 Introduction

In Chapter 6, we defined the model of non-cooperative rational proofs (ncRIP) using the

solution concept of recursive-maximum strong sequential equilibrium (rmSSE).

In this chapter, we construct ncRIP protocols with constant, polynomial, and exponential

utility gaps for powerful (and tight) complexity classes, demonstrating the strength of our

solution concept. Our protocols are simple and intuitive (in fact requiring few changes from

their cooperative counterparts), and are thus easy to explain and implement. However,

proving their correctness requires significant effort to analyze the provers’ incentives and to

show that the protocol meets the strong solution-concept and utility-gap requirements.

A natural question to ask is whether we are “overfitting” the solution concept so as to

give the verifier unrealistic or unlimited power in leveraging the provers’ rationality. We

show that this is not the case by proving tight upper-bounds for all three ncRIP classes.

Proving tight upper bounds on the classes of ncRIP protocols is quite technically chal-

lenging. For example, while an NEXP oracle can guess a strategy profile and verify if it

is an SSE, it cannot itself verify recursive-maximum SSEs. Furthermore, the polynomial

randomness of the verifier can induce an exponential-sized game tree. The key lemma that

helps us overcome these challenges is the pruning lemma (Lemma 7.11). At a high level, it

shows how we can prune the nature moves of the verifier in the resulting game tree, while

preserving the recursive-maximum SSE and utility-gap guarantees.

Our results are stated in Figure 12. Recall that O(1)-ncRIP, poly(n)-ncRIP and ncRIP

denote ncRIP classes with constant, polynomial and exponential utility gaps respectively.

The notations are analogous for MRIP. Recall that PNEXP[O(1)] is the class of languages decided

by a polynomial-time Turing machine that makes O(1) queries to an NEXP oracle, and

EXPpoly-NEXP is the class decided by an exponential-time Turing machine with polynomial-

length queries to an NEXP oracle. (This class is not known to be equivalent to EXPNP).

Figure 13 gives a pictorial hierarchy of the power of MIP, MRIP, and ncRIP in terms

of different utility gaps. These exact characterizations confirm that our solution concept

properly reflects the game-theoretic nature of rational provers in interactive proofs. The
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Theorem 7.1. O(1)-ncRIP = PNEXP[O(1)]

Theorem 7.2. poly(n)-ncRIP = PNEXP

Theorem 7.3. ncRIP = EXPpoly-NEXP

Corollary 7.4. O(1)-ncRIP = O(1)-MRIP

Corollary 7.5. poly(n)-ncRIP ⊇ poly(n)-MRIP

Corollary 7.6. ncRIP = MRIP

Figure 12: Summary of the tight characterizations of ncRIP classes.

techniques we use for the upper bounds are quite different from those used for the lower

bounds, and require a deep understanding of the solution concept and extensive-form games.

Figure 13: The computation power hierarchy of classical, rational cooperative and rational
non-cooperative interactive proof systems, assuming PNEXP

|| 6= PNEXP.

Non-Cooperative vs. Cooperative and Competitive Provers. Interestingly, in the

case of constant and exponential utility gap, ncRIP and MRIP classes coincides. This can

be explained by the power of adaptive versus nonadaptive queries in oracle Turing machines.

Indeed, our results reveal the main difference between non-cooperative and cooperative

provers: the former can be used to handle adaptive oracle queries, the latter cannot. Intu-

itively, this makes sense—cooperative provers may collude across adaptive queries, answering

some incorrectly to gain on future queries. On the other hand, ncRIP protocols allow us

to dissociate the provers handling oracle queries from the others. Thus, whenever adaptive

queries to the oracle reduce to nonadaptive queries, the two classes coincide.
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Furthermore, non-cooperative provers are more powerful than competing provers—the

power of refereed games with imperfect information and perfect recall is equal to EXP [63].

MRIP vs. ncRIP protocols. The ncRIP protocols presented in this chapter are largely

the same as the corresponding MRIP protocols in Chapter 3—this is somewhat unsurprising

as both are tailored tightly to a circuit representation of the classes in Figure 12.

However, the techniques used in the analysis are substantially different. The proofs in

this chapter require careful analysis of the information sets, and subtleties of identifying

when they form proper “subgames”. On the other hand, ncRIP protocols and proofs are in

some places much more intuitive—for example, they let us avoid the difficult and somewhat

artificial payment scaling between rounds, often required in RIP and MRIP [10,43,80].

7.2 Lower Bounds on ncRIP Classes

In this section, we design a O(1)-utility gap ncRIP protocol for the class NEXP and use it to

give a O(γ(n))-utility gap ncRIP protocol for the class PNEXP[γ(n)]. Setting γ(n) to a constant

or polynomial gives us PNEXP[O(1)] ⊆ O(1)-ncRIP and PNEXP ⊆ poly(n)-ncRIP respectively.

Then, we show how to simulate any cooperative multi-prover rational interactive proof

(MRIP) using an ncRIP protocol with exponential utility gap. Since EXPNP
|| ⊆ MRIP, and

EXPNP
|| = EXPpoly−NEXP [43], this proves that EXPpoly−NEXP ⊆ ncRIP.

Constant-utility gap ncRIP protocol for NEXP. The ncRIP protocol for any language

in NEXP is in Figure 14.15 While the protocol is simple and uses the 2-prover 1-round MIP

for NEXP [64] as a blackbox, in the analysis we have to open up the black-box. In particular,

if P1 sends c = 0 in round 1, all the information sets of P1 and P2 in round 3 become

unreachable. To show that a strong sequential equilibrium exists, we need to show that

the provers have a best response at these unreachable sets, which is argued based on the

messages exchanged in the MIP procotol.

This protocol is a good example to highlight the differences between ncRIP and MRIP

protocols—the ncRIP protocol appears almost identical to the MRIP protocol for NEXP in

Chapter 3.3. However, the analyses are significantly different—the correctness of the MRIP

protocol follows almost immediately from that of the blackbox MIP protocol, while in the

case of the ncRIP protocol, we have to show that it meets all the conditions of rmSSE.

Lemma 7.7. Any language L ∈ NEXP has an ncRIP protocol that uses two provers, three

rounds and has a utility gap of 6/5.

15It is also possible to give a scoring-rule based ncRIP protocol for NEXP, as in Chapter 3.3. However,
such a protocol has an exponential utility gap and is subsumed by our simulation of the MRIP in Figure 16.
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For any input x and language L ∈ NEXP, the protocol (V, P1, P2) for L is:

1. P1 sends a bit c to V . V outputs c at the end of the protocol.

2. If c = 0, then the protocol ends and the payments are R1 = R2 = 1/2.

3. Otherwise, V runs the 2-prover 1-round MIP protocol for NEXP [64] with P1 and P2.
If the MIP protocol accepts then R1 = 1, R2 = 1; else, R1 = −1, R2 = −1.

Figure 14: A O(1)-utility gap ncRIP protocol for NEXP.

Proof. The ncRIP protocol for any language L ∈ NEXP is given in Figure 14.

We show that there exists a strategy profile s = (s1, s2) of provers P1 and P2 respectively

that is a recursive-maximum SSE of the game tree corresponding to the protocol (V, P1, P2)

and under any recursive-maximum SSE, the answer bit c = 1 if and only if x ∈ L.

In the protocol, if c = 0, no player acts. If c = 1, the verifier executes the 1-round

blackbox MIP protocol with P1 and P2. To exhibit a strategy that is a best response for

P1 and P2 on their information sets at step 3, we look at the messages the verifier sends to

each prover in the classic MIP protocol. In the MIP protocol, the verifier sends P1 a tuple of

message pairs ~m1 = ((q1, x1), . . . , (qm, xm)) where m is a polynomial in n and V sends P2 a

tuple of random messages ~m2 = (y1, . . . , ym). P1 sends back a polynomial P (t) and P2 sends

back the value of the polynomial P (t) for t satisfying qj + txj = yj. The verifier rejects if

their answers are inconsistent.

To analyze the SSE strategy, without loss of generality, suppose P1 moves last in the

MIP protocol. Any information set I1 of P1 at step 3 is characterized by the message ~m1 it

receives. The decision nodes in I1 correspond to each possible message ~m2 to P2.

Given P2’s strategy, if any information set I1 of P1 is reached under s then P1’s best

response at I1 is to maximize the acceptance-probability of the MIP protocol given its be-

liefs on I1. Similarly, given P2’s strategy, if any information set I1 of P1 is unreachable

under s then, P1’s best response at I1 for every decision node in I1 is the following: given

~m1 = ((q1, x1), . . . , (qm, xm)), respond with a polynomial P (t) such that P (t)’s value at all t

coincides with P2’s reply on all yj where qj + txj = yj.

Given P1’s strategy of committing to a polynomial P (t) that matches P2 on all values of

t, P2’ best response at any information set I2 (reachable or unreachable under s) at step 3 at

every decision node in I2 is to answer the tuple of queries (y1, . . . , ym) so as to maximize the

acceptance probability of the MIP protocol. The verifier’s move at step 3 starts a subform.

Conditioned on step 3 being reached, any maximum SSE at this subform corresponds to

a strategy profile s that is an SSE, which when restricted to this subform, maximizes the

84



acceptance probability of the MIP protocol. Under any such recursive-maximum SSE, we

show that P1’s best response at step 1 is to send the correct answer bit.

Suppose x ∈ L. If P1 sends c = 0, then R1 = 1/2 with probability 1. On the other hand,

if P1 sends c = 1, by the soundness condition of MIP, the acceptance probability is 1, leading

to R1 = 1. Thus for x ∈ L, s is a recursive-maximum SSE iff P1 sends c = 1.

Suppose x /∈ L. If P1 reports c = 0, then R1 = 1/2 with probability 1. On the other

hand if P1 reports c = 1, then by the soundness condition of the MIP protocol, the maximum

acceptance probability is 1/3 leading to R1 = 1. The protocol rejects with probability at

least 2/3 leading to R1 = −1. Thus, P1’s expected payment for misreporting the answer bit

is at most R1 = −1/3. Thus for x /∈ L, s is a recursive-maximum SSE iff P1 sends c = 0.

Thus, under s which is a recursive-maximum SSE, c = 1 if and only if x ∈ L. Furthermore,

the payment incurred by the provers when the answer bit sent in the first round is incorrect

is at least 5/6 for both provers and thus the protocol has constant utility gap.

O(γ(n))-utility gap ncRIP protocol for PNEXP[γ(n)]. Next, we give an ncRIP protocol

with O(γ(n))-utility gap for the class PNEXP[γ(n)], where γ(n) is a function of n which (1)

only takes positive integral values, (2) is upper-bounded by a polynomial in n, and (3) is

polynomial-time computable. For example, γ(n) can be log n,
√
n, etc.

The ncRIP protocol for any L ∈ PNEXP[γ(n)] is in Figure 15. It is fairly intuitive: V

simulates the polynomial-time machine and uses the ncRIP protocol for NEXP for the queries.

The analysis of the protocol illustrates the robustness of the solution concept. In par-

ticular, the NEXP queries start the non-trivial subforms in the game, and which of them

are reachable under any strategy profile s is determined solely by P ′1 strategy. To avoid

suboptimal equilibria and the problem of empty threats, recursive-maximality must hold at

both reachable and unreachable subforms. Otherwise, P1 cannot unilaterally deviate out of

a bad strategy where it is lying on an NEXP gate to a strategy giving the correct answers

(and thus making a previously unreachable NEXP query reachable), if P2 and P3 are giving

wrong answers at those NEXP queries.

The analysis of the protocol in Figure 15 shows that even though V can only check

the NEXP queries that P1 wants V to see, the protocol is designed to ensure that deviating

provers in some reachable subform suffer an 1/O(γ(n)) loss in their overall expected payment.

Lemma 7.8. Any language L ∈ PNEXP[γ(n)] has an ncRIP protocol that uses three provers,

five rounds and has a utility gap of 6/(5γ(n)).

Proof. Consider any language L ∈ PNEXP[γ(n)]. Let M be a polynomial-time Turing machine

deciding L, with access to an oracle O for an NEXP language.
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For any input x of length n, the protocol (V, ~P ) works as follows.

1. P1 sends (c, c1, . . . , cγ(n)) ∈ {0, 1}γ(n)+1 to V . V outputs c at the end of the protocol.

2. V simulatesM on x using the bits c1, . . . , cγ(n) as answers to NEXP queries φ1, . . . , φγ(n)

generated by M respectively. If M accepts and c = 0 or M rejects and c = 1, then
the protocol ends and R1 = −1, R2 = R3 = 0.

3. V picks a random index i′ from {1, . . . , γ(n)} and sends (i′, φi′) to P2 and P3.

4. V runs the 2-prover 3-round O(1)-gap ncRIP protocol for NEXP (Figure 14) with P2

and P3 on φi. P2 and P3 get payments R2 and R3 based on the protocol. Let c∗i′ be
the answer bit in the NEXP protocol. If c∗i′ 6= ci′ , then R1 = 0; otherwise R1 = 1.

Figure 15: An O(γ(n))-utility gap ncRIP protocol for PNEXP[γ(n)].

The ncRIP protocol for L is given in Figure 15.

Let s1, s2, s3 be the strategy used by P1, P2 and P3 respectively in the protocol in Fig-

ure 15, and s = (s1, s2, s3). First, note that regardless of s2 and s3, P1’s best response at

step 1 is to send the bits c, c1, . . . , cγ(n) such that the verification in step 2 goes through.

In particular, if s1 is such that the output of M on input x, using c1, . . . , cγ(n) as answers

to NEXP queries φ1, . . . , φγ(n) is consistent with c, then P1 gets R1 ≥ 0. Meanwhile, if the

verification in step 2 fails then R = −1. Thus, under any SSE s, the answer bits c1, . . . , cγ(n)

sent by P1 must be consistent with the computation of M on x and the final the answer bit

c, regardless of s2 and s3.

We now argue using backward induction. Each random index i′ chosen by V in step 3

together with φi′ starts a subform. In particular, since P2 and P3 both know (i′, φi′), all their

information sets starting from step 4 are completely disjoint from information sets reached

under a different index and NEXP query. By Lemma 7.7, there exists a recursive-maximum

SSE s on each such subform simulating an NEXP query, and under any recursive-maximum

SSE, s2 and s3 are such that c∗i′ is the correct answer to the NEXP query.

Moving up the tree, the next subform is induced by V ’s nature move at step 3 assigning

a probability to each subsequent subform. Since under any recursive-maximum SSE, the

expected payments of P2 and P3 (conditioned on reaching these subforms) are maximized,

the overall expected payments under V ’s nature move at step 3 is also maximized.

We move up a further level in the tree to the root. We show that P1’s best response at

step 1 is to send the correct answer bits, given that under any recursive-maximum SSE s:

• P2 and P3 answer each NEXP query φi′ determined by s1 and index i′ correctly, and
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• the verification in step 2 goes through (i.e. P does not set R1 = −1) under s1.

Suppose s1 is such that there exists an NEXP query where P1 lies. Let k be the first

NEXP query index such that ck is not the correct answer to query φk, where 1 ≤ k ≤ γ(n).

In particular, the instance φk is evaluated correctly (by running M on x using the correct

answers to previous queries: c1, . . . , ck−1 but the answer ck is not evaluated correctly based

on φk. Then with probability 1/γ(n), V picks k in step 3 and crosschecks the ck with c∗i′ ,

in which case the verification fails and R1 = 0. Thus, P1’s expected payment is at most

1 − 1/γ(n). If P1 answers all NEXP queries correctly, since the verification in step 2 goes

through, P1 gets R1 = 1 with probability 1. Thus, c, c1, . . . , cγ(n) are correct under any

recursive-maximum SSE s, and c = 0 if and only if x ∈ L.

Now, we show that protocol (V, ~P ) has O(γ(n)) utility gap. Let s∗ be a recursive-

maximum SSE of the game resulting from (V, ~P ). Suppose s′ is such that the answer bit

c′ under s′ is incorrect. We go “bottom-up” in the game tree and exhibit a subform HI

(reachable under s′) such that some prover acting in that subform loses O(1/γ(n)) compared

to the strategy where s∗I is played on HI , keeping the rest of the strategy fixed.

First, consider all the NEXP queries at step 4 that start subforms. Suppose there exists

a query φk committed under s′1, for 1 ≤ k ≤ γ(n), such that ck∗ is the wrong answer to

φk. By Lemma 7.7, both P2 and P3 lose 5/6 from their expected payment (conditioned on

reaching this subform) compared to the recursive-maximum SSE strategy profile s∗φk which

reports the correct answer to φk. Since V chooses φk with probability 1/γ(n), P2 and P3 can

gain O(1/γ(n)) in their overall expected payment by deviating to strategy profile sφk , at the

subform corresponding to (k, φk) keeping s′−φk fixed. Specifically,

µi

(
x, r, (s′−φk , s

∗
φk

), (V, ~P )
)
− µi

(
x, r, (s′−φk , s

′
φk

), (V, ~P )
)

>
1

γ(n)

(
5

6

)
, for i ∈ {2, 3}.

Finally, suppose P2 and P3 answer all NEXP queries (reachable under s′) correctly. Then,

P1 loses at least 1/γ(n) at the subform at the root—the entire game. Since the answer bit c′

under s′ is incorrect, either step 2 fails or P1 lies on some NEXP query. In the first case, P1

gets −1 with probability 1 compared to an expected payment of 1 under s∗. In the second

case, P1 gets caught in step 4 with probability 1/γ(n), and gets an expected payment of at

most 1− 1/γ(n), losing at least 1/γ(n) compared to s∗.

The ncRIP protocol in Figure 15 is a good example to demonstrate the problem of empty

threats that can occur under Nash and maximum Nash equilibrium.
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In this protocol, P2 and P3 obtain a higher expected payment if the NEXP instance they

are queried is not satisfiable. Thus, they can blackmail P1—if it does not give answers that

lead them to a satisfiable instance, they will lie about the answer to the NEXP instance in

step 4, which would result in P1 being punished. This is an empty threat (as it is not a

rational move for P2 and P3), however it leads to an unnatural Nash equilibrium. Similarly,

there does exist a maximum Nash equilibrium for this protocol.

Simulating any MRIP protocol using an ncRIP Protocol. Any MRIP protocol

(V, ~P ) with p(n) provers and k(n) rounds can be simulated by a 2-prover 3-round ncRIP

protocol (V ′, P ′1, P
′
2) with exponential utility gap.

Essentially, V ′ gives all the randomness of V to P ′1 and asks for the entire transcript and

uses P ′2 to commit to a single prover’s message, and cross-checks their answers. However,

we don’t want P ′1 who has access to all the randomness to dictate what information sets of

P ′2 are reachable. Because the ncRIP protocol need only have an exponential utility gap, V ′

asks one prover a totally random question (independent of P ′1), and with exponentially small

probability this random message is exactly the message V ′ intended to check. This protocol

shows why exponential gap guarantees do not lead to meaningful protocols—a verifier that

asks random questions can still extract honest behavior from rational provers through the

exponentially small changes in expected payments.

Lemma 7.9. Any MRIP protocol can be simulated by an ncRIP protocol that uses two

provers, three rounds and has exponential utility gap.

Proof. Let (V, ~P ) be an MRIP protocol with p(n) provers and k(n) rounds for a language

L. Without loss of generality, each message in the protocol is of length `(n) for any input of

length n, where `(n) is a polynomial in n. We shift and rescale the payment function of V ,

so that the payment is always in [0, 1], and the expected payment is strictly greater than 0

under the provers’ best strategy profile.

We simulate (V, ~P ′) using an ncRIP protocol (V ′, (P ′1, P
′
2)), given in Figure 16.

Let s′1 and s′2 denote the strategy of the provers P ′1 and P ′2 respectively and s′ = (s′1, s
′
2).

Since P ′2 is queried only once and about a single message in step 3, any strategy s′2 of P ′2 de

facto commits to a strategy profile for the provers in (V, ~P ).

We analyze the game tree of the protocol (V ′, ~P ′) bottom-up.

The last move is by P ′1 sending the entire transcript ~m at step 5. Any information set I ′1 of

P ′1 is characterized by the randomness r received by P ′1 in step 4 and all information sets are

reachable under any s′. The decision nodes in I ′2 correspond to different strings m̃ij that P ′2

could have been asked in step 2. Given s′2, the best response of P ′1 at any information set I ′1,
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Given input x of length n, and an MRIP protocol (V, ~P ), the ncRIP protocol (V ′, ~P ′) is:

1. P ′1 sends the round 1 messages m11, . . . ,mp(n)1 of (V, ~P ) to V ′. V ′ outputs c, the first
bit of m11, at the end of the protocol.

2. V ′ selects a random prover index i ∈ {1, . . . , p(n)} and a random round j ∈
{1, . . . , k(n)}. Then, V ′ generates a random string m̃ij of length (j − 1)`(n).

3. V ′ sends (i, j, m̃ij) to P ′2. P ′2 simulates Pi on round j and sends back the message m′ij.

4. V ′ generates all the randomness r used by V and sends it to P ′1.

5. P ′1 uses r to simulate the protocol (V, ~P ), and sends the resulting transcript ~m to V ′.

6. If m̃ij 6= (mi1, . . . ,mi(j−1)), wheremij denotes prover Pi’s message in round j according
to ~m sent by P1’, then the protocol ends and R′1 = R′2 = 0.

7. Otherwise, if mij 6= m′ij, then R′1 = R′2 = −1.

8. Else, V ′ computes the payment R in (V, ~P ) using x, r and ~m, and sets R′1 = 0, R′2 = R.

Figure 16: Simulating any MRIP using an ncRIP protocol with exponential utility gap.

for any beliefs at I ′1, is to match the transcript committed by P ′2 and make the verification

in step 7 go through. Suppose there exists a prover index i and round j such that the

message mij in ~m that is inconsistent with the corresponding message m′ij committed under

s′2. With probability 1
2(j−1)`(n) , the random string m̃ij generated by V ′ in Step 2 is equal

to (mi1, . . . ,mi(j−1)), otherwise the protocol ends with R′1 = 0. With probability at least
1

p(n)k(n)
, V ′ chooses (i, j) in step 2, and queries P ′2 for m′ij and R′1 = −1. If (i, j) is not chosen

then R′1 = 0. Thus, P ′1 expected payment at I ′1 is at most

∑
i≤p(n),1≤j≤k(n)

1

2(j−1)`(n)
· 1

p(n)k(n)
·
(
Imij 6=m′ij · (−1) + Imij=m′ij · 0

)
< 0.

On the other hand, matching s′2 on all messages gets P ′1 an expected payment of 0 at I ′1.

Given that P ′1 best response is to make the verifier in step 7 go through for every ran-

domness r, we analyze P ′2 move at step 3. Any information set I ′2 of P ′2 is characterized by

the random string m̃ij received by P ′2 in step 2 and all information sets are reachable under

any s′. The decision nodes in I ′1 correspond to different random strings r that P ′1 could have

been asked in step 2. The best response of P ′2 at any information set I ′1, for any beliefs at

I ′1, is to commit to the correct strategy profile s of the provers ~P . Suppose P ′2 commits to

a strategy profile s′ such that the answer bit under s′ is wrong. With probability 1
2(j−1)`(n) ,
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the random string m̃ij generated by V ′ in Step 2 matches (mi1, . . . ,mi(j−1)), otherwise the

protocol ends with R′2 = 0. If it matches, then P ′2 expected payment is determined by the

expected payment that s̃ gets in (V, ~P ) given x and randomness r, which is strictly less than

the expected payment under the strategy profile s which commits to the correct answer bit

(by correctness of the original MRIP protocol). That is,

∑
1≤j≤k(n)

1

k(n)
· 1

2(j−1)`(n)
· u(V, ~P )(x, s̃) <

∑
1≤j≤k(n)

1

k(n)
· 1

2(j−1)`(n)
· u(V, ~P )(x, s).

Thus, given that s′1 matches s′2 for every randomness r, the best response by P ′2 is to commit

to a strategy profile s′2 = s that maximizes the total expected payment of the original

protocol (V, ~P ) and thus has the correct answer bit.

There are no non-trivial subforms in the game. Any maximum SSE is a recursive-

maximum SSE, under which both P ′1 and P ′2 maximize their expected payments—P ′1 matches

P ′2 on all messages and P ′2 commits to the correct strategy profile s.

7.3 Upper Bounds on ncRIP Classes

In this section, we prove matching upper bounds on the classes of ncRIP protocols with con-

stant, polynomial and exponential utility gaps. We focus on the upper bound for O(1)-ncRIP

and poly(n)-ncRIP, in which a polynomial-time Turing machine needs to simulate the protocol

with a constant and polynomial number of queries to an NEXP oracle respectively.

To simulate an ncRIP protocol, we need to find a strategy profile “close enough” to a

recursive-maximum SSE so that the answer bit is still correct, that is, it is sufficient to find

a strategy profile that satisfies the utility gap guarantee. We formalize this restatement

of Definition 3.6 as the following observation.

Observation 7.10. Given input x of length n and an ncRIP protocol (V, ~P ) with a utility

gap of γ(n), let s be a strategy profile such that for all subforms HI (reachable under s), and

for all provers Pj acting in HI , we have

uj(x, (V, ~P ), (s−I , s
∗
I))− uj(x, (V, ~P ), (s−I , sI)) <

1

γ(n)
,

where s∗ is a recursive-maximum SSE. Then, the answer bit c under s must be correct.

There are several challenges involved in finding a strategy satisfying Observation 7.10.

First, the size of the game tree of any ncRIP protocol—small gap notwithstanding—can

be exponential in n. Even if the polynomial-time Turing machine considers a single strategy
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profile s at a time, since V can flip polynomial coins, the part of the tree “in play”—the

number of decision nodes reached with nonzero probability under s—can still be exponential.

The second and related problem is that while the NEXP oracle can guess and verify

an SSE, it cannot help the Turing machine directly with maximum SSEs. In particular,

the polynomial-time machine must go bottom-up in the game tree and find an SSE that is

recursively maximal on all its reachable subgames (which can again be exponential in n).

Finally, the polynomial-time machine needs to search through the exponentially large

strategy-profile space in an efficient way to find one which leads to the correct answer.

We now prove a fundamental lemma about ncRIP protocols with utility gap that lets us

get around the first two challenges mentioned above.

Pruning Nature moves in ncRIP protocols. A verifier’s coin flips in an ncRIP pro-

tocol represent Nature moves in the resulting game. A Nature move that imposes nonzero

probabilities over exponentially many outcomes can cause the game tree under play to be

exponential in size. We prune the Nature moves so that a polynomial-time Turing machine

simulating an γ(n)-utility gap protocol can traverse the game tree reached under any given s.

Lemma 7.11 (Pruning Lemma). Let L ∈ γ(n)-ncRIP and let (V, ~P ) be an ncRIP protocol

for L with γ(n) utility gap and p(n) provers. Given an input x and a strategy s, the protocol

(V, ~P ) can be transformed in exponential time to a new protocol, say (V ′, ~P ), where

• the probability distributions imposed by the nature moves of V ′ have O(γ(n)) support,

• if s is a rmSSE of (V, ~P ), s induces a rmSSE in (V ′, ~P ),

• |uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4γ(n)) for all j ∈ {1, . . . , p(n)}, and

• if the answer bit under s is wrong, then there exists a subform HI in the game (V ′, ~P )

(reachable under s) and a prover Pj acting at HI , such that Pj loses a 1/(2γ(n)) amount

in its expected payment compared to a strategy profile where sI (induced by s on HI) is

replaced by s∗I (the recursive-maximum SSE on HI), keeping the strategy profile outside

HI , s−I , fixed.

We prove Lemma 7.11 in several parts. First, we show how to transform any nature move

of V that imposes a nonzero probability distribution on exponentially many outcomes into

a probability distribution with O(γ(n)) support, given an input x and a strategy s.

Let (V, ~P ) use p(n) provers and let the running time of V be nk for some constant k.

There can be at most 2n
k

different payments that V can generate for a particular prover

given the input x. Given x and s, fix a prover index j ∈ {1, p(n)}. Let R1, R2, . . . , Rm be the
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payments generated by V on s for Pj. Let V ’s randomness assign probability distribution

µ = (p1, p2, . . . , pm) to R1, R2, . . . , Rm respectively. Then, the expected payment of Pj under

s, uj(x, s, (V, ~P )) =
∑m

i=1 piRi.

Recall that uj(x, s, (V, ~P )) ∈ [−1, 1] for all 1 ≤ j ≤ p(n). For each prover Pj, divide the

interval [−1, 1] into 4γ(n) intervals, each of length 1/(2γ(n)). In other words, prover Pj’s

ith interval is [i/2γ(n), (i+ 1)/2γ(n)), for each i ∈ {−2γ(n), . . . , 2γ(n)− 1}.16

We round the possible payments for Pj to a representative of the interval they belong.

Specifically, we map each payment Ri to rj as described in Equation 5. There are potentially

rj =


4`+1
4γ(n)

if Ri ∈
[

`
2γ(n)

, 2`+1
4γ(n)

)
4`+3
4γ(n)

if Ri ∈
[

2`+1
4γ(n)

, `+1
2γ(n)

) (5) p′i =

{ ∑
k∈Tj pk if i = f(S(i))

0 otherwise
(6)

exponentially many different payments Ri, and only polynomially many different payments

rj, so several Ri must map to the same rj. Let Tj = {i : Ri maps to rj}. Let T = ∪j{Tj}.
Thus the total number of distinct rj’s is 8γ(n), |T | = O(γ(n)). Let S : {1, . . . ,m} → T ,

such that S(i) = Tj iff i ∈ Tj.
For each Tj ∈ T , let f(Tj) denote a unique index in the set Tj. Without loss of generality,

let f(Tj) be the lowest index in Tj.

We define a new probability distribution µ′ = (p′1, . . . , p
′
h) over the payments R1, . . . , Rh

respectively given by Equation 6. In particular, for every Tj ∈ T , assign Rf(Tj) probability∑
k∈Tj pk and for every other index ` ∈ Tj, ` 6= f(Tj), assign R` probability 0.

Given x, define V ′ as a polynomial-time verifier that simulates all deterministic computa-

tion of V and imposes a probability distribution µ′ with O(γ(n)) support for any probability

distribution µ imposed by V . For other inputs, V ′ simulates V without any modification.

Note that given x, a strategy profile s and the protocol (V, ~P ), transforming the distribu-

tion µ to µ′ takes time linear in the size of the game tree, and thus exponential in n. (Thus

an NEXP oracle, given x, can guess a particular s and perform the transformation.)

Next, we show that if a strategy s is a recursive-maximum SSE of (V, ~P ), then s restricted

to the pruned game tree of (V ′, ~P ) imposes a recursive-maximum SSE on (V ′, ~P ) as well.

Claim 7.12. Any recursive-maximum SSE s in the game tree of protocol (V, ~P ) induces a

recursive-maximum SSE in the game tree of protocol (V ′, ~P ).

Proof. By contradiction, suppose s is not an SSE of (V ′, ~P ). Then there exists an information

set I = {h1, . . . , hm}, such that, conditioned on reaching I, the prover acting at I can improve

16To include 1 as a payment, interval 2γ(n)−1 should be closed on both sides; we ignore this for simplicity.

92



its expected payment by deviating (given its belief u′I at I if I is reachable under s and for

any belief it may hold at I if I is unreachable under s).

We split into two cases: I is either reachable or unreachable under s.

By construction, if I is reachable under s in (V ′, ~P ), then I must also be reachable under

s in (V, ~P ). Let µ′I = (p′1, . . . , p
′
m), where p′i is the probability assigned to hi and the support

of µ′I is O(γ(n)). Let R1, . . . , Rm be the payments that the player acting on I gets under s

conditioned on reaching h1, . . . , hm respectively. Similarly, let R′1, . . . , R
′
m be the payments

conditioned on reaching h1, . . . , hm respectively under the strategy to which the player at

I deviates from s. Then,
∑m

i=1 p
′
iR
′
i >

∑m
i=1 p

′
iRi. Let µI = (p1, . . . , pm) be the beliefs on

I under s in (V, ~P ). We use the relationship between the distributions µ′I and µI , to show

that such a deviation in (V ′, ~P ) would imply a deviation in (V, ~P ). In particular, mapping

µ′I back to µI , using Equation 6 we get:

m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pk

)
R′i >

m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pk

)
Ri

m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pk

)
· min
k∈S(i)

R′k >
m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pk

)
· max
k∈S(i)

Rk (7)

m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pkR
′
k

)
>

m∑
i=1

(
Ii=f(S(i)) ·

∑
k∈S(i)

pkRk

)
m∑
i=1

piR
′
i >

m∑
i=1

piRi (8)

Inequality 7 holds becauseR′f(S(i)) > Rf(S(i)), and so the two payments lie in different intervals

in the mapping (Equation 5). Thus the minimum payment in the interval of R′f(S(i)) will

be greater than the maximum payment in the interval of Rf(S(i)). Finally, Inequality 8

contradicts the fact that s is an SSE in (V, ~P ).

Consider an information set I unreachable under s in (V ′, ~P ), then I must be unreachable

under s in (V, ~P ). If the action of prover acting at I is not its best response in (V ′, ~P ) for

some history h ∈ I then, it contradicts the fact that s is an SSE of (V, ~P ).

Suppose s is not a recursive-maximum SSE of (V ′, ~P ). Then there exists a subgame HI

of height k such that s is recursive-maximum on all subgames following HI of height < k but

not maximum at HI (among SSE’s that are recursively-maximum at all subforms following

HI). Let s∗ be recursive-maximum on HI , then the expected payment of at least one prover

Pj is better under s∗, while everyone else does just as well (given the beliefs at I derived using

Bayes’ rule if I is reachable under s or given any beliefs if I is unreachable under s). Writing

the expression of expected payment of Pj conditioned on reaching HI and “unfolding” the
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probability distribution back to the original game, we get a contradiction that s is not its

recursive-maximum SSE, as s∗ gives Pj a better expected payment at HI while doing just

as well for other provers. The proof is similar as before; we omit the details.

We now show that for a given s, the expected payments of the provers under (V, ~P ) and

under (V ′, ~P ) are not too far off. In particular, we prove the following claim.

Claim 7.13. For all j ∈ {1, . . . , p(n)}, |uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4γ(n)).

Proof. Given input x and strategy profile s, fix a prover Pj. Let V generate payments

R1, R2, . . . , Rm under s for Pj, and assign the probability distribution µ = (p1, p2, . . . , pm) on

R1, R2, . . . , Rm respectively. Using Equations (5) and (6) we compare Pj’s expected payment:

|uj(s, x, (V, ~P ))− uj(s, x, (V ′, ~P ))| =
∣∣∣∣ m∑
i=1

piRi −
∑
Tj∈T

(∑
k∈Tj

pk

)
Rf(Tj)

∣∣∣∣
=
∑
Tj∈T

∑
k∈Tj

pk

(
|Rf(Tj) −Ri|

)
<
∑
Tj∈T

∑
k∈Tj

pi

(
1

4γ(n)

)
=

( m∑
i=1

pi

)
1

4γ(n)
=

1

4γ(n)

To complete the proof of Lemma 7.11, we show that (V ′, ~P ) preserves utility gap.

Claim 7.14. Given input x, if the answer bit under s is wrong, then there exists a subform

HI reachable under s in (V ′, ~P ) and Pj acting at HI , such that Pj’s expected payment under s

is 1/2γ(n) less than that under (s−I , s
∗
I), where s∗I is a recursive-maximum SSE on HI .

Proof. Consider a strategy profile s∗ that is a recursive-maximum SSE of (V, ~P ). Since s

gives the wrong answer bit, from the γ(n)-utility gap guarantee of (V, ~P ) and Definition 3.6,

there exists a subform HI reachable under s, such that a prover Pj acting in HI loses 1/γ(n)

in its expected payment under s compared to the strategy profile (s−I , s
∗
I). That is,

uj(x, (s−I , s
∗
I), (V, ~P ))− uj(x, (s−I , sI), (V, ~P )) >

1

γ(n)
. (9)

Using Claim 7.12, s∗ also induces a recursive-maximum SSE of (V ′, ~P ). And since HI is

reachable under s in (V, ~P ), it is reachable under s in (V ′, ~P ) as well. We show that:

uj(x, (s−I , s
∗
I), (V

′, ~P ))− uj(x, (s−I , sI), (V ′, ~P )) >
1

2γ(n)
. (10)
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Using Claim 7.13, Pj’s expected payments in the two protocols under s and s∗ follow:

|uj(x, (s−I , s∗I), (V, ~P ))− uj(x, (s−I , s∗I), (V ′, ~P ))| < 1

4γ(n)
(11)

|uj(x, (s−I , sI), (V, ~P ))− uj(x, (s−I , sI), (V ′, ~P ))| < 1

4γ(n)
(12)

There are four cases depending on the sign of the left hand side of Inequalities (11)

and (12). We show Claim 7.14 holds for one case and omit others, which are similar.

Suppose the left hand side of both inequalities is positive, that is, uj(x, (s−I , s
∗
I), (V,

~P )) >

uj(x, (s−I , s
∗
I), (V

′, ~P )), and uj(x, (s−I , sI), (V, ~P )) > uj(x, (s−I , sI), (V
′, ~P )). Then,

uj(x, (s−I , s
∗
I), (V

′, ~P ))− uj(x, (s−I , sI), (V ′, ~P ))

>

(
uj(x, (s−I , s

∗
I), (V, ~P ))− 1

4γ(n)

)
− uj(s′, x, (V ′, ~P ))

>

(
uj(x, (s−I , sI), (V, ~P )) +

1

γ(n)

)
− 1

4γ(n)
− uj(x, (s−I , sI), (V ′, ~P )) >

3

4γ(n)

Searching through strategy-profile space efficiently. Using Lemma 7.11, given an

input x and ncRIP protocol (V, ~P ) with utility gap γ(n) that is constant or polynomial, a

polynomial-time oracle Turing machine can use its NEXP oracle to guess a strategy s, prune

the Nature moves of V , and report the resulting O(γ(n))-support distribution bit-by-bit.

Thus, it can simulate the new distribution to figure out decision nodes reachable under s.

The next question then is, how should the polynomial-time Turing machine navigate

the potential strategy-profile space in polynomial-time to find the strategy profile that sat-

isfies Observation 7.10 (and thus gives the correct answer bit)? To do this, we invoke a

recurring idea: divide each prover’s expected payment interval [−1, 1], evenly into 8γ(n)

subintervals of length 1/(4γ(n)), and consider subinterval profiles (a tuple of subintervals,

one for each prover) to cut down on the search space.

Claim 7.15. Given an input x and an ncRIP protocol (V, ~P ) with γ(n)-utility gap, consider

a subinterval profile (L1, . . . , Lp(n)), where each Li = [k/(4γ), (k + 1)/(4γ + 1)) denotes a

subinterval for prover Pi’s expected payment in [−1, 1], for some k ∈ {−2γ(n), . . . , 2γ(n)−1}.
If an SSE s has an expected payment profile ũ(x, s) such that ui(x, s) ∈ Li for all 1 ≤ i ≤
p(n), and s does not satisfy Observation 7.10, then there exists a prover index j such that

uj(x, s
∗) /∈ Lj, where s∗ is a recursive-maximum SSE.

Proof. Since s does not satisfy Observation 7.10, there exists a reachable subform HI and
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prover Pj acting on HI such that (without loss of generality, let uj(s, x) ∈ Lk):

uj(x, (s−I , s
∗
I), (V, ~P ))− uj(x, (s−I , sI), (V, ~P )) >

1

γ(n)

uj(x, s
∗, (V, ~P )) >

1

γ(n)
+

k

4γ(n)
=⇒ uj(x, s

∗, (V, ~P )) /∈ Lk

Using Claim 7.15, if the polynomial-time machine is able to test any SSE s with ũ(x, s)

in a subinterval profile, for all subinterval profiles, it is guaranteed to find one that satis-

fies Observation 7.10. This is because a recursive-maximum SSE of an ncRIP protocol is

guaranteed to exist and its expected payment profile must belong to some subinterval profile.

However, as there are O(γ(n) subintervals for each of the p(n) provers, there are

O(γ(n)p(n)) total subinterval profiles and a polynomial-time machine cannot test SSEs for

each of them.

To reduce the search space further, we show that it is sufficient to consider subintervals

of the total expected-payment interval and test an SSE s for each of them. To test if an SSE

s satisfies Observation 7.10, we go bottom-up in the game tree reachable under s to find the

maximum SSE for all subforms (always exists in an ncRIP protocol).

Recall that a maximum SSE is an SSE where for any player i and SSE s′, ui(s) ≥ ui(s
′).

We find such an SSE by querying about total expected payments only using the next lemma.

Lemma 7.16. If a maximum SSE exists then a strategy profile s is a maximum SSE if and

only if s is an SSE and s maximizes the sum of utilities of all players among all SSEs.

Using Lemma 7.16, we can divide [−1, 1] into γ(n)/4-sized subintervals, and query

whether a strategy profile has a total expected payment in a given interval.17

We are now ready to prove the upper bounds on the power of our ncRIP classes.

Constant utility gap. Using Lemma 7.11 and Lemma 7.16, simulating a constant-gap

protocol using a PNEXP[O(1)] machine M is easy. In particular, there are at most O(1) subforms

that are reachable under any strategy profile s, and the total expected payment of the

provers conditioned on reaching these subforms will be in one of the O(1) subintervals.

Thus, there are O(1) combinations of total expected payments on all subforms (including

the whole game). M queries its NEXP oracle whether there exists an SSE that achieves that

combination of total expected payments on those subforms, for all combinations. Then, M

finds the maximum among all of the combinations that got a “yes”.

17We maintain a constant total budget for V ; the payments in our protocols can be scaled so that total is
in [−1, 1].
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Lemma 7.17. O(1)-ncRIP ⊆ PNEXP[O(1)].

Proof. Given any L ∈ γ(n)-ncRIP, let (V, ~P ) be the MRIP protocol with γ(n) utility gap

for L, where γ(n) is a constant.

Given an input x of length n, consider the following deterministic polynomial-time oracle

Turing machine M with access to an oracle O for an NEXP language. Similar to the proof

of Lemma 7.18, M divides [−1, 1] into 8γ(n) intervals, each of length 1/4γ(n). In other

words, the ith interval is [i/4γ(n), (i+ 1)/4γ(n)) for each i ∈ {−4γ(n), . . . , 4γ(n)− 1}.
Using Lemma 7.11, under a given input x and strategy profile s, there are at most 8γ(n)

subforms are reached under any s in the modified game. Total expected payment of provers

acting within any subform (conditioned on reaching the subform) must lie in any one of the

8γ(n) intervals in [−1, 1]. Thus overall, there are O(γ(n)γ(n)) combinations of total expected

payments over subforms, which is still O(1). Let (u, uI1 , . . . , uIk) be a tuple of total expected

payments, where k = 8γ(n), the maximum number of subforms reachable under any s, and

u represents the total expected payment of the whole game, whereas uIj represents total

expected payment of the provers acting in subform Ij (conditioned on reaching Ij).

For each combination (u, uI1 , . . . , uIk), M queries O: does there exists a strategy profile

that is an SSE and the total expected payments over reachable subforms under s and O(γ(n))

support Nature moves imposed by Lemma 7.11 is (u, uI1 , . . . , uIk) (conditioned on reaching

the subforms)? Among the queries to which the oracle’s answer is “yes”, M finds the

combination that achieves maximum expected payment for all subforms. Such a combination

is guaranteed to exist because (V, ~P ) is an ncRIP protocol, and a recursive-maximum SSE

of the game exists and maximizes expected payment on all subforms.

The polynomial-time oracle Turing machine in Lemma 7.17 can issue all its queries non-

adaptively That is, γ(n)-ncRIP ⊆ P
NEXP[O(1)]
|| . Furthermore, we know that O(1)-ncRIP ⊆

PNEXP[O(1)]. Indeed, the two classes are equal: P
NEXP[O(1)]
|| = PNEXP[O(1)].

Since we prove that O(1)-MRIP = P
NEXP[O(1)]
|| in Chapter 3, this shows that cooperative

provers are as powerful as non-cooperative provers under constant utility-gap guarantees,

and we obtain Corollary 7.4.

Polynomial utility gap. To simulate a polynomial-utility gap ncRIP protocol (V, ~P ),

using a PNEXP machine M , we put to use all the structure we have established in this

section. We note that the simple strategy of querying all possible payment combinations as

in Lemma 7.17 does not work (there are total O(γ(n)γ(n)) combinations).

Lemma 7.18. poly(n)-ncRIP ⊆ PNEXP.
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Proof. Given any L ∈ poly(n)-ncRIP, let (V, ~P ) be the ncRIP protocol with γ(n) utility gap

for L, where γ(n) = nk for some constant k.

Given an input x of length n, consider the following deterministic polynomial-time oracle

Turing machine M with access to an oracle O for an NEXP language. M divides [−1, 1]

into 8γ(n) intervals, each of length 1/4γ(n). In other words, the ith interval is [i/4γ(n), (i+

1)/4γ(n)) for each i ∈ {−4γ(n), . . . , 4γ(n)− 1}.
For each interval [i/4γ(n), (i+1)/4γ(n)), M makes the following queries to O: does there

exist a strategy profile s that is an SSE and the sum of expected payments of all provers

u(x, s) is in the ith interval? Let L denote the set of intervals for which the answer is “yes”.

For each interval [`/4γ(n), (` + 1)/4γ(n)) ∈ L, M queries O: does there exist a strategy

profile s that is an SSE and the sum of expected payments of all provers u(x, s) is in the first

half of the `th interval? If the answer is “yes”, M recurses on the first half, else M recursives

on the second half of the interval. In polynomial time and queries, M can find the exact total

expected payment u(x, s, (V, ~P )) in the interval that is generated by an SSE. M asks further

queries to figure out the exact payment profile under such an SSE. For k ∈ {1, . . . , p(n)},
where p(n) is the total number of provers in (V, ~P ), and for each j ∈ {1, . . . , nk′}, where nk

′

is the running time of V (k′ is a constant), M asks the following queries adaptively: under

an SSE where
∑p(n)

i=1 µi(x, s) = u(x, s), what is the jth bit in the expected payment µk(x, s) of

prover Pk, given and the first j−1 bits of µk(x, s) and µ1(x, s), . . . , µk−1(x, s). In O(nk
′
p(n))

queries, M can figure out the exact payment profile ũ(x, s) = (µ1, (x, s) . . . , µk(x, s)) under

an SSE s, such that the total expected payment is in the `th interval.

M now verifies whether the SSE corresponding to the payment profile ũ(x, s) satisfies

the condition of Observation 7.10. M proceeds in two phases: first, M goes “top-down”

figuring out what part of the game tree is being played under s on input x, using the oracle

to simulate the provers and the verifier. Then, it goes “bottom-up” in the tree under play to

check whether all subforms are “(1/γ(n))-close” to the recursive-maximum at that subform.

Top-down phase. Let k(n) be the total number of rounds in (V, ~P ). Note that k(n) is

polynomial in n. Let mij denote the message sent by prover Pi at round j. Then, for each

round j and each prover i where 1 ≤ j ≤ k(n) and 1 ≤ k ≤ p(n), M first asks the oracle to

give the “pruned” O(γ(n)) support distribution imposed by the Nature move of V at round

j bit by bit as follows: “under an SSE where the expected payment profile is ũ(x, s), what

is the rth bit of the distribution imposed by V ′ using V and Lemma 7.11?” This requires

a polynomial number of bits (and therefore queries) because the distribution is polynomial

sized. The pruned distribution preserves the recursive-maximum SSE and changes the utility

gap by only a factor 2 (this factor does not affect the proof as our intervals are scaled down
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to handle it). Given this distribution, M simulates V on the support of the distribution to

figure out the messages that V sends to the provers in round j. In particular, M does not

have access to random bits, so instead it simulates every action of V in the support. To

simulate the provers at round j, M similarly queries O bit by bit: “under an SSE where

the expected payment profile is ũ(x, s), what is the rth bit of the message sent by Pk”. Thus,

after simulating the moves of V and P under s, M has sketched out the O(γ(n)) size part

of the game tree being played under s corresponding to ũ(x, s).

Bottom-up phase. Given the O(γ(n)) nodes reached under s, M can mark out the sub-

forms reachable under s (corresponding to ũ(x, s)). Starting from last level and going up, for

each subform HI reachable under s, M uses the oracle to figure out which payment interval

the expected payments of the maximum SSE on HI lie in (given the expected maximum SSE

payments on the reachable subforms verified so far), until it finds a subform that violates

the condition of Observation 7.10.

In particular, for each subform HI of height k, let ũ(x, s, I ′) denote the tuple of total

expected payments under s on all subforms HI′ of height < k following I (conditioned on

reaching I) verified so far. M divides the interval [−1, 1] into 8γ(n) intervals of size γ(n)/4 as

before and for each interval queries the oracle O: does there exist a strategy sI on subform HI

that is an SSE and the total expected payments of provers u(x, s, I) is in the xth interval, and

gets a total expected payments on subforms HI′ of height < k following I equal to ũ(x, s, I ′).18

Then, M finds the maximum interval [i/4γ(n), (i + 1)/4γ(n)) among the intervals for

which the oracle says yes. By Lemma 7.16, the maximum SSE, s∗I at HI also lies in the ith

interval. Using the probability pI assigned by HI (M knows the distribution imposed by all

“pruned” Nature moves), M checks whether the total expected payment of maximum SSE

s∗I is in the same interval as the sum of expected payments of provers in ZI under s. If it is

not, then s fails the test and M continues to the next interval in L. Otherwise, M continues

to the next reachable subform.

If s passes the test for all subforms, then by Observation 7.10, the answer bit under s

is correct. M ’s final query to O is: “under an SSE where the expected payment profile is

ũ(x, s), what is the answer bit c? If c = 1, then M accepts x, otherwise M rejects x.

M is guaranteed to find a payment profile ũ(x, s) (and thus a strategy profile s) that

passes the test. Since (V, ~P ) is an ncRIP protocol for L, there exists a recusive-maximum

SSE s∗ in some interval in L. By Observation 7.10, if a strategy profile s′ fails the test,

18M does not need to send the total expected payments of the subforms at lower levels (that have already
been verified). Instead, M can just send the total expected payment u(x, s) at the root and ask O to guess
s as well. While an NEXP oracle cannot find max SSEs, it can guess two strategy profiles and compare their
expected payments. This observation is crucial in extending this proof to exponential utility gap.
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the recursive-maximum SSE can not get a total expected payment in the same interval as

s′. Thus, we can rule out intervals by checking any SSE with total expected payment in

that interval. Since a recursive-maximum SSE s∗ exists, M must eventually find an interval,

where the corresponding SSE passes the test.

To complete the proof, we prove that M runs in polynomial time, and the oracle queries

can be answered by a NEXP machine.

M is polynomial time because each top-down and bottom-up phase is executed O(γ(n))

times and both take polynomial time. In the top-down phase, M simulates the protocol

on strategy s with Nature moves of O(γ(n)) support. In the bottom-up phase, M finds

maximum SSEs atO(γ(n)) reachable subforms andO(γ(n)) interval queries for each subform.

Finally, the oracle queries can be answered by an NEXP machine because it can guess a

strategy s of the provers (which is at most exponential in size), compute expected payments

under s, and and by Lemma 6.7 verify whether s is an SSE in exponential time.

Exponential utility gap. Finally, we prove a tight upper bound on the class of ncRIP pro-

tocols with exponential utility gap. The proof follows immediately from that of Lemma 7.18.

In fact, it is simpler as the exponential-time Turing machine is powerful enough to (a) sim-

ulate V ’s Nature moves directly, and (b) test all possible payment profiles.

Lemma 7.19. ncRIP ⊆ EXPpoly−NEXP.

Since EXPpoly−NEXP ⊆ EXPpoly−NEXP
|| = EXPNP

|| , and EXPNP
|| ⊆ MRIP [43], Lemma 7.19

shows that ncRIP ⊆ MRIP and using Lemma 7.9, we get that in general the two classes

coincide. In other words, non-cooperative rational proofs are as powerful as cooperative

multi-prover rational proofs under exponential utility gap and we obtain Corollary 7.6.

7.4 Optimal Number of Provers and Rounds

Theorem 7.2 and Lemma 7.8 together show that the full power of ncRIP protocols with

polynomial gap can be captured by 3 provers and 5 rounds. In this section, we prove that

this is tight, that is, 3 provers and 5 rounds are optimal for polynomial-gap ncRIP protocols.

We first start with a structural lemmas about recursive-maximum SSEs and extensive

form games with less than 3 provers and less than 5 rounds.

Lemma 7.20. Consider an extensive-form game with 2 players and k rounds. Then any

maximum SSE of the game is also a recursive maximum SSE.

Proof. Let s be the maximum SSE of the extensive-form game with players P1 and P2 such

that s is not a recursive-maximum SSE. Then, there exists an information set I and a
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subform FI rooted at I such that sI is not a maximum SSE (with respect to µI deduced by

Bayes’ rule if I is reachable or with respect to any distribution µI if I is unreachable).

Thus, there exists another strategy s′ such that s′I is an SSE and without loss of generality

P1 gets a strictly better payment under s′ in FI (without hurting P2’s payment in FI). That

is, u1(x, s′I) > u1(x, sI) and u2(x, s′I) ≥ u2(x, sI). Consider the strategy profile s∗ = (s−I , s
′
I),

that is, s on the entire game tree except subform FI , and s′ on FI . Then s∗ is an SSE of

the entire game. This is because both s and s′ are an SSE. Furthermore, u1(x, s∗) > u1(x, s)

and u2(x, s∗) ≥ u2(x, s). This is a contradiction as s is the maximum SSE.

For the next lemma, we recall that we count the provers’ and verifier’s messages as

separate rounds. Furthermore, the first prover sends the message in the first round by

default. Thus three rounds are optimal in a non-trivial ncRIP protocol.

Lemma 7.21. Consider an ncRIP protocol with p provers and 3 rounds. Then any maximum

SSE of the resulting game is also a recursive-maximum SSE.

Proof. In the extensive-form game resulting from a 3-round ncRIP protocol (V, ~P ), the only

subforms start in the last and first round (where latter is the entire game). This is because

the verifier’s messages in round 2 only imposes a probability distribution over the round-3

information sets of the provers, and any strategy that maximizes their expected payment

conditioned on reaching the last round, also maximizes it under the verifier’s distribution.

All the subforms starting in round 3 have height 1, and thus consist of a single information

set I. Let s be a maximum SSE of the entire game. If s is not a recursive-maximum SSE

then there must exist a round-3 information set I such that, conditioned on reaching this

information set, sI is not the maximum SSE.

That is, there exists another SSE s′ such that the single prover P (I) acting in I gets a

better payment under s′I compared to sI . Consider the strategy s∗ = (s
I
, s′I), that is, replace

the strategy on information set I by s′ keeping the rest the same. Then, uj(x, s
∗) ≥ uj(x, s)

for all j ∈ ~P \ P (I). The expected payment of P (I) is strictly better under s∗. This

contradicts the assumption that s is the recursive maximum SSE.

Finally, using Lemma 7.20 and Lemma 7.21, we show that any ncRIP protocol with

polynomial utility gap that has less than 3 provers, or has less than 5 rounds can be simulated

by a polynomial-time Turing machine with nonadaptive access to an NEXP oracle, that is,

the power of the class reduces to that of cooperative rational provers.

Theorem 7.22. Let poly(n)-ncRIP(p, k) denote the class of languages decided by an ncRIP

protocol with polynomial gap using p provers and k rounds, then we have the following:

poly(n)-ncRIP(2, k) ⊆ PNEXP
|| and poly(n)-ncRIP(p, 3) ⊆ PNEXP

|| .
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Proof. Given any L ∈ poly(n)-ncRIP, let (V, ~P ) be the ncRIP protocol with p provers and k

rounds and γ(n) utility gap for L, where γ(n) = nk for some constant k. Assume that p = 2

or k = 3, then by Lemma 7.20 and Lemma 7.21, we only need to a maximum SSE.

Given an input x of length n, consider the deterministic polynomial-time oracle machine

M with access to a NEXP oracle. M divides [−1, 1] into 8γ(n) intervals, each of length

1/4γ(n). For each interval [i/4γ(n), (i+ 1)/4γ(n)), M makes the following oracle queries:

1. Does there exist a strategy profile s that is an SSE and the sum of expected payments of

all provers u(x, s) is in the ith interval?

2. Does there exist a strategy profile s that is an SSE and the sum of expected payments of

all provers u(x, s) is in the ith interval and corresponding answer bit c = 1?

Note that M makes O(γ(n)) nonadaptive queries, each of polynomial size. Furthermore, the

queries by M can be answered by an NEXP oracle as in the proof of Lemma 7.18. Finally,

M finds the highest index i∗ such that interval i∗ is “non-empty”: that is, the oracle has

answered 1 for query 1 for this interval. M accepts if the oracle’s answer to query 2 for this

interval is 1, and rejects otherwise. The correctness follows from the fact that the protocol

(V, ~P ) has a utility gap of γ and from Lemma 7.16.

Corollary 7.23. We need at least 3 provers and 5 rounds to design an ncRIP protocol

for PNEXP, assuming PNEXP 6= PNEXP
|| . Thus, the prover and round complexity of our ncRIP

protocol for PNEXP in Figure 15 is optimal.

Lemma 7.20 and Lemma 7.21 simplify the solution concept and thus the construction and

analysis of ncRIP protocols that do not require more than 2 provers and more than 5 rounds

(perhaps for deciding problems in smaller complexity classes). This is because verifying and

satisfying a maximum SSE condition is easier than a recursive-maximum SSE condition.
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Chapter 8

Scaled-Down Non-Cooperative Rational Proofs

8.1 Introduction

In Chapter 7, we characterized the power of the general class of non-cooperative protocols

with constant, polynomial and negligible utility gap. In this chapter, we mirror the work on

scaled-down cooperative rational proofs in Chapter 4 to the non-cooperative prover setting.

In particular, we design highly efficient non-cooperative rational proofs that have strong

utility-gap guarantees. Specifically, we design ncRIP protocols for important complexity

classes that require only O(log n) verification and have O(log n), even O(1) utility gap.

We show that any language in the class NP admits a non-cooperative rational proof with

O(log n) verification and constant utility gap. This result is surprising, since no classical

interactive proof for NP is known where the verifier is O(log n) time while retaining strong

soundness guarantees. The work on probabilistically checkable proofs [6, 8, 9, 83, 131] for

languages in NP, focuses on improving the query complexity and randomness of the verifier,

but the running time of the verifier is still polynomial in n. Making PCP verifier’s more

efficient, has led to the work on probabilistically checkable “proofs of proximity” [19, 20, 82,

124], where the verifier runs in O(log n) time, however the soundness conditions are weakened

to ensure that the verifier rejects all x “far away” from L (in terms of Hamming distance).

Even with cooperative rational proofs, we were only able to design a protocol for NP

with constant utility gap that is efficient in terms of space and randomness, that is, O(log n)

space and randomness, but still polynomial in terms of the verifier’s running time.

The main hurdle to making the verification time of these classical and rational protocols

sublinear in n, is that if the verifier cannot read the entire input, it is difficult to discover if

the provers are lying on a few bits of the proofs. Even in the probabilistic proofs of proximity

for NP if an input x /∈ L is too close in terms of hamming distance to another input x ∈ L,

a sublinear verifier cannot hope to reject it with noticeable probability.

The reason non-cooperative provers are able to overcome this obstacle is because you can

use them against each other to find even a single incorrect bit in the proof. In particular,

if the first prover gives the verifier a polynomial-size proof that is incorrect at only a couple

of bits, the way a log-time verifier catches the mistakes without having to read the entire

proof is to incentivize a second prover (who is not cooperative with the first) to report the
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discrepancies in the proof. Specifically, if the second prover agrees with the first it gets a

payment of 1/2, however if it is able to spot a mistake, which then the O(log n)-time verifier

can verify is indeed a mistake by a local spot check, it gets 1 instead. This idea of exploiting

the provers’ non-cooperativeness directly leads to extremely efficient and powerful protocols.

8.1.1 Overview of Results and Contributions

Next, we summarize the results of this chapter.

Log-time, constant gap protocol for any language in P and NP. We start by design-

ing highly efficient protocols for any language in P and NP. The verification-time of these

protocols is only O(log n), and the utility gap is constant. Another interesting and surprising

aspect of these protocols is that the verifier is deterministic. In contrast, both in classical

and cooperative rational interactive proofs, the randomness of the verifier is essential to

providing the correctness and soundness guarantees of the protocol.

Our protocol for NP uses the protocol for P as a subroutine for the reduction of any

L ∈ NP to 3-SAT. To facilitate this reduction, we prove a general composition lemma

(Lemma 8.3) about ncRIP protocols, which may be of independent interest.

A lower bound on the power of ncRIP protocols with O(log n)-time verifier. We

prove that the class of languages that admit a O(log n)-time ncRIP protocol with constant

provers and rounds, polynomial communication, and O(γ(n)) utility gap is at least as large as

the class of languages decided by a polynomial-time Turing machine with O(γ(n)) adaptive

queries to an NP oracle, denoted as PNP[γ(n)]. It is well-known that PNP
|| = PNP[O(log n)]. Thus,

using non-cooperative provers, we improve both the running time and the utility gap of the

rational protocol for PNP
|| in Chapter 4.4, from polynomial to logarithmic.

An upper bound on the power of ncRIP protocols with O(log n)-time verifier.

Finally, we show that any O(γ)-utility gap ncRIP protocol with constant provers and rounds

and O(log n) verification and communication cost can be simulated by a polynomial-time

machine with O(γ(n) adaptive queries to an NP oracle.

There is a gap between our upper and lower bound—the protocol for PNP[γ(n)] requires

polynomial communication, while the upper bound only holds for ncRIP protocols with

logarithmic communication. In case of cooperative rational proofs, polynomial communi-

cation does not add any power over logarithmic when the verifier runs in O(log n) time;

see Chapter 4.3. We leave the problem of resolving this gap for ncRIP as future work.
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8.2 Model and Preliminaries

We follow our model in Chapter 4.2 and previous literature on PCPs and O(log n)-time

verifiers, see for example [11, 82, 124], and allow the verifier to read only limited bits of the

transcript. That is, the O(log n)-time verifier can choose to read a constant many bits of a

polynomial-size message sent by the prover.

We extend the model to further allow the verifier to pass on polynomial-size messages

sent by one provers to another prover without reading it. This assumption is equivalent to

saying that the verifier may let a prover observe some messages sent by the other provers.

The non-cooperative rational proof model, including the solution concept of recursive-

maximum strong sequential equilibrium (rmSSE) and the definition of utility gap, used in

this chapter is defined in Chapter 6. The only difference is that in this chapter, we focus

on the computational cost of the verifier and the communication cost of the protocol. In

particular, we restrict the verifier to use O(log n) time (thus, the space and randomness used

is also O(log n)). The communication of the ncRIP protocols is polynomial in Chapter 8.3

and Chapter 8.4 and logarithmic in Chapter 8.5.

To prove the upper bound, we use a scaled-down version of the pruning lemma

(Lemma 7.11 in Chapter 7.3). We restate the pruning lemma for the case where the verifier’s

running time is logarithmic in the input size. The bulk of the proof remains the same, except

that it takes polynomial-time instead of exponential to do the pruning.

Lemma 8.1 (Scaled-Down Pruning Lemma). Let (V, ~P ) be an ncRIP protocol with γ(n)

utility gap, where V runs in O(log n) time. Given an input x of length n and a strategy s,

(V, ~P ) can be transformed in polynomial time to a new ncRIP protocol (V ′, ~P ), such that

• the probability distributions imposed by the nature moves of V ′ have O(γ(n)) support,

• if s is a rmSSE of (V, ~P ), s induces a rmSSE in (V ′, ~P ),

• |uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4γ(n)) for each prover PJ , and

• if the answer bit under s is wrong, then there exists a subform HI in the game of (V ′, ~P )

that is reachable under s and a prover Pj acting at HI , such that Pj loses a 1/(2γ(n))

amount in its expected payment compared to a strategy profile where sI (induced by

s on HI) is replaced by s∗I (the recursive-maximum SSE on HI), keeping the strategy

profile outside HI , s−I , fixed.

Notation. Similar to Chapter 4, we denote the class of languages decided by an ncRIP pro-

tocol with a O log n)-time verifier as ncRIPt. Furthermore, we denote the class of languages
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decided by an ncRIP protocol with a O(log n)-time verifier and has O(γ(n)) utility gap, C(n)

communication cost, p(n) provers, and k(n) rounds, as γ(n)-ncRIPt[C(n), p(n), k(n)].

8.3 Warm up: O(log n)-time ncRIP Protocols for P and NP

We start by giving a highly-efficient ncRIP protocol with constant utility gap for any lan-

guages decidable in polynomial time. At a high level, the protocol works as follows—the

first prover provides the transcript of the evaluation of all gates in the DLOGTIME uniform

circuit for the polynomial-time language. The second prover is then asked if the transcript

is correct and incentivized to point out an incorrectly evaluated gate.

Then, we give a composition lemma that says that a verifier can execute two ncRIP

protocols one after the other, without modification, to obtain an ncRIP protocol for the

union of the languages decided by both as long as the provers in the two protocols are

different and their payments are independent.

Using the composition lemma and the protocol for P, we finally give a highly-efficient

ncRIP protocol for any language in the class NP.

We note that the protocols in the section use polynomial communication, and only con-

stant number of provers and rounds, and have constant utility gap.

Lemma 8.2. Any language L ∈ P has an ncRIP protocol that uses 2 provers, 3 rounds,

O(poly(n)) communication, O(log n) verification time, and has O(1) utility gap.

Proof. Let L ∈ P, then following Lemma 2.6, there exists a DLOGTIME circuit family

{Cn}∞n=1 that computes L. Let g = nk be the size of each Cn, where k is a constant that

may depend on L. For any input string x of length n and any gate i ∈ {1, 2, ..., g} in Cn,

let vi(x) ∈ {0, 1} be the value of i’s output on input x. In particular, vi(x) = xi for any

i ∈ {1, 2, ..., n}. We call a gate i′ in Cn an input gate of i if there is a directed wire from i′

to i. The ncRIP protocol (V, ~P ) for L is given in Figure 17.

To see correctness, we show that under a rmSSE, the verifier learns the correct answer

bit c = vg(x). Since the protocol has only two provers, using Corollary 7.23, it is sufficient

to prove that under a max SSE, the verifier learns the correct answer bit.

Let P1 and P2 use strategies s1 and s2, and let s = (s1, s2). We show that if s is a

maximum strong sequential equilibrium, then c = 1 iff x ∈ L.

We argue by backward induction. The last move is by P2 at step 3. Since P2 has full

information about the history leading up to this step, thus its information set is a singleton

consisting of the tuple T of values. If T corresponds to a valid evaluation of all gates of the

circuit on input x, then P2’s best response is to say yes, and get a payment of 1/2. Otherwise,

it would be unable to present a gate that evaluates incorrectly and get a payment of 0. On
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Given any string x of length n, (V, ~P ) proceeds as follows.

1. P1 sends the transcript T of values of all the gates of Cn on x, that is, T =
(v1(x), . . . , vg(x)) to V . V outputs c = vg(x) at the end of the protocol.

2. V sends T to P2 (without reading it) and asks if T sent by P1 is correct.

3. If P2 says yes, then R1 = 1, R2 = 1/2 and the protocol ends. If P2 says no, then it
must also provide the gate index j of the gate that is is not been evaluated correctly
in T .

4. V uses DC uniformity to find the input gates j1, j2 of gate j and the type of gate j.
Using T , V checks if vj1 , vj2 and vj satisfy the Boolean logic of the gate according
to its type. If they do, R1 = 1, R2 = 0. Otherwise, R1 = 0 and R2 = 1.

Figure 17: A constant-utility gap, O(log n)-time ncRIP protocol for P.

the other hand, if T corresponds to an invalid evaluation of gates of the circuit on x, that

is, there exists a gate index j with input gates indices j1 and j2 such that vj1 , vj2 and vj

together do not satisfy the Boolean logic of gate j then P2’s best response is to send V the

index j and get a payment of 1. This is because if instead it lies and says T is valid then it

only gets a payment of 1/2.

Given that P2’s best strategy is to report an invalid T and agree with a valid T , P1’s

best response at step 1 is to commit to a valid transcript T and get a payment of 1. This is

because sending an invalid transcript leads to a payment of 0 for P1, given P2’s best strategy.

Thus, any strategy profile (s1, s2) where s1 commits to a valid transcript T and s2 agrees

is an SSE. Since all such strategies receive an expected payment R1 = 1 and R2 = 1/2, they

are also maximum SSEs. Under any maximum SSE, the verifier learns the correct answer

bit c = vg(x), (since the transcript T is correct and includes the output gate).

Finally, note that V runs in O(log n) time as it only computes the input gates, type of a

single gate in step 4 and computes the value of that gate. The communication complexity is

the size of the transcript O(nk). The utility gap is constant because if P2 lies in step 3 (says

yes on an incorrect T or no on a correct T ), it loses a constant amount and given P2 follows

its best strategy, P1 loses a constant amount if it misreports the answer bit.

The high-level idea of the next protocol is the same as that of Lemma 8.2. In particular,

if P1 claims the input x is a language is a language L ∈ NP, it is asked to provide a certificate

to prove it. Then P2 is incentivized to call out invalid certificates.

First, we show a composition theorem about the extensive form game resulting from two

ncRIP protocols with different provers executed one after the other by the same verifier.
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Lemma 8.3. Let (V, ~P ) be an ncRIP protocol for a language L and (V, ~P ′) be an ncRIP

protocol for a language L′ such that ~P and ~P ′ do not have a single prover in common. Then

the protocol (V, ~P , ~P ′) where V executes (V, ~P ) first with ~P including computing their final

payment, followed by (V, ~P ′) with ~P ′ is an ncRIP protocol for the language L ∪ L′.

Proof. To be consistent with the model, add an additional prover P0 that sends the answer

bit c∗ = c∨ c′, where c is the answer bit sent in (V, ~P ) and c′ is the answer bit sent in (V, ~P ′).

V outputs c∗ at the end of the protocol. P0 gets a payment R = 1 if after executing both

protocols, V verifies that c∗ is in fact c ∨ c′, and 0 otherwise.

Consider the extensive-form game G resulting from the composed protocol (V, P0, ~P , ~P
′).

Let s be a rmSSE of (V, ~P ) and s be a rmSSE of (V, ~P ′). We know that such s and s′ exist

from the definition of them being ncRIP protocols. Consider the strategy profile s∗ = s ◦ s′

for the game tree G, where s∗ imposes strategy s on the nodes corresponding to the moves

of ~P and s∗ imposes s′ on the moves of ~P ′. Then s∗ is a rmSSE of the entire game tree since

the utilities of ~P and ~P ′ remain the same under s∗ compared to s and s′ respectively. This

is because the payments of ~P and ~P ′ are completely independent. Thus, under s∗, we have

that c = 1 iff x ∈ L and c′ = 1 iff x ∈ L′ and thus c∗ = 1 iff x ∈ L ∪ L′.

Lemma 8.4. Any language L ∈ NP has an ncRIP protocol that uses O(1) provers, O(1)

rounds, O(poly(n)) communication, O(log n) verification time, and has O(1) utility gap.

Proof. Given an input x and a language L ∈ NP, there exists a polynomial-time computable

function f that converts x to a 3-SAT instance φx such that x ∈ L if and only if φx ∈ 3-SAT.

Since f is computable in polynomial-time, there exists a DLOGTIME uniform circuit family

{Cn}∞n=1 that given x computes f(x) = φx. We use provers P1 and P2 to send a transcript

T committing to the correct evaluation of the circuit to compute φx, similar to the protocol

described in Figure 17. In particular, P1 sends T and P2 is asked if T is valid or not. From

the correctness of protocol Figure 17, we know that under a maximum SSE, P1 must commit

to a valid T and P2 must agree. Thus, V can obtain the correct 3-SAT instance φx.

Next, V uses two different provers—P3 and P4 to run the ncRIP protocol to determine

is φx ∈ 3-SAT described in Figure 18. By Lemma 8.3 and the correctness of the protocol

in Figure 17, it is sufficient to prove correctness of the protocol in Figure 18 for the overall

language L ∈ P ∪ NP = NP. To see correctness of the protocol for 3-SAT in Figure 18, it is

sufficient to prove that under a max SSE, the verifier learns the correct answer bit c.

Let P3 and P4 use strategies s3 and s4, and let s = (s3, s4). We argue by backward

induction. The last move is by P4 at step 4. Since P4 has full information about the history

leading up to this step, its information set is a singleton step consisting of the assignment

A. If A is such that all clauses of φx are satisfied, then P4’s best response is to say yes, and
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Given an 3-SAT instance φx of length n, (V, P3, P4) proceeds as follows.

1. P3 sends an answer bit c and string A. V outputs c at the end of the protocol.

2. If c = 0, V ignores A, sets R3 = 1/2, R4 = 0 and the protocol ends.

3. If c = 1, A must correspond to the satisfying assignment of φx. V sends A to P4

(without reading it) and asks if A is valid.

4. If P4 says yes, R3 = 1, R4 = 1/2 and the protocol ends. If P4 says no, then it must
provide a clause index j such that the jth clause is not satisfied under A.

5. V uses the circuit for f to compute the clause description (xa ∨ xb ∨ xc) of the
jth clause and compute its value using A(xa), A(xb) and A(xc). If the clause is
satisfied, R3 = 1, R4 = 0. Otherwise, R3 = 0, R4 = 1.

Figure 18: A constant-utility gap O(log n)-time ncRIP protocol for 3-SAT.

get a payment of 1/2. Otherwise, it would be unable to present an unsatisfied clause and

get a payment of 0. On the other hand, if A is such that there exists a clause j in φx that

is not satisfied, then P4’s best response is to send V the index j and get a payment of 1 (it

can only get 1/2 by saying yes in this case).

Given that s4 is such that P4 always reports an invalid assignment (that is, an assignment

under which φx is not satisfied), P1’s best response at step 3 is to send a satisfying assignment

A and receive 1, otherwise it receives 0. Given that P1 must send a satisfying assignment in

step 3, its best response in step 1 is to commit to the correct answer bit. That is, if x ∈ L,

and P1 sends c = 0, P1 only receives 1/2, while sending c = 1 on the other hand can get P1

a payment of 1. Furthermore, if x /∈ L then P1 should send c = 0 and get a payment of 1/2,

otherwise its invalid assignment would be reported leading to a payment of 0.

Thus, any strategy profile (s3, s4) where s1 reports c = 0 if x ∈ L and c = 1 if x /∈ L

and s2 always reports an invalid assignment is an SSE. Since all such strategies receive a

payment R1 = 1 and R2 = 1/2 if x ∈ L, and R1 = 1/2 and R2 = 0 if x /∈ L, which are the

maximum possible respectively, they are also maximum SSEs. Thus, under any maximum

SSE, the verifier learns the correct answer bit c.

The protocol has constant utility gap because of the following “bottom-up” reasoning.

If P4 lies in step 4 that is, if T is invalid P4 says yes, or if T is valid and P4 says no, then in

both cases P4 loses a constant amount from its payment. Given that P4 follows the max SSE

strategy, if P3 reports the incorrect answer bit c, it loses a constant amount of its payment.

Finally, we note that the running time of the verifier V is O(log n) because V only checks

the satisfiability of a single clause of length O(log n) bits. The protocol uses five provers—
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two provers for the polynomial time reduction to 3-SAT, two provers for the 3-SAT protocol

and an additional prover as in proof of Lemma 8.3 to give the overall answer bit.

8.4 A Lower Bound on O(log n)-time ncRIP Protocols

In this section, we show how to combine the protocols for P and NP we designed in the

previous section to obtain an ncRIP protocol with a O(log n)-time verifier and O(γ(n))

utility gap for any language decided by PNP[γ(n)]. Recall that γ(n) is any function that takes

positive integral values, is computable in polynomial time (given 1n) and is polynomially

bounded.

In our protocol, we repeatedly make use of the fact that the verifier is allowed to send

one provers’s message to another without reading it. This is essentially analogous to a

game of perfect information where each prover is completely aware of the history leading

up to its turn. Thus, the polynomial-size messages sent by the provers count towards the

communication complexity of the protocol and not the verifier’s running time for verification.

Lemma 8.5. Any language L ∈ PNP[γ(n)] has an ncRIP protocol that uses O(1) provers and

rounds, poly(n) communication, O(log n)-time verifier and has O(1) utility gap. That is,

PNP[γ(n)] ⊆ γ(n)-ncRIPt[poly(n),O(1),O(1)].

Proof. For any language L ∈ PNP[γ(n)], let M be the polynomial-time oracle Turing machine

deciding L and O be the oracle used by M . Without loss of generality, we assume O = 3-SAT.

And without loss of generality, we assume that M makes γ(n) ≥ 1 queries on any input x

of length n. We use γ to denote γ(n) when n is clear from context.

Let (φ1, φ2, . . . , φγ) denote the sequence of oracle queries in the order they are made by

M . The ncRIP protocol that simulates M and the oracle queries is given in Figure 19.

For a given input x of length n, let the oracle O’s answer to query φi be ci, that is, ci = 1

if and only if φi ∈ 3-SAT for all 1 ≤ i ≤ γ. Then, the polynomial-time computation of

machine M on input x, given c1, . . . , cγ can be represented by a DLOGTIME uniform circuit

Cn of size O(nk). We use the protocol in Figure 17 to simulate this circuit and obtain the

transcript T of it. V uses two more provers to obtain the description of the description of φi

according to T . Note that we allow the verifier to pass the messages sent by one prover to

others. Once V obtains the instance φi, it uses the final two provers to execute the 3-SAT

protocol in Figure 18. The complete protocol is described in Figure 19.

We argue correctness using backwards induction. Step 7 starts the first proper subform.

By correctness of the protocol in Figure 18, we know that under a recursive-maximum SSE

c∗i is the correct answer to φi.
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For any input x of length n, the ncRIP protocol (V, ~P ) works as follows.

1. P1 sends (c, c1, . . . , cγ) ∈ {0, 1}γ+1 to V . V outputs c at the end of the protocol.

2. V sends (c1, . . . , cγ) to P2 and P3 and simulates the protocol in Figure 17 with them
to obtain the transcript of values of all gates of circuit Cn corresponding to M , given
x and oracle answers (c1, . . . , cγ). Let c∗ be the answer bit of the protocol, if c∗ 6= c,
then R1 = 0 and the protocol ends.

3. V picks a random index i from {1, . . . , γ} sends (i, T ) to P4 and P5. V asks P4 for the
ith 3-SAT query according to T .

4. P4 sends φ′i. V sends φ′i to P5 and asks if φi matches the ith 3-SAT query φi in T .

5. If P5 says yes, R4 = 1, R5 = 1/2 and protocol continues. If P5 says no, it must point
the gate index gj such that the output of gate gj is the jth bit of φi which does not
match the jth bit of φ′i.

6. V uses uniformity to check if gj is the gate that outputs the jth bit of φi. If it is not,
then R4 = 0, R5 = 0 and the protocol ends. Else if, the jth bit of φ′i does not match
the jth bit of φi, R4 = 0, R5 = 1 and the protocol ends. Else, R4 = 1, R5 = 0.

7. V sends φi to P6 and P7 and executes the protocol for 3-SAT in Figure 18. Let c∗i be
the answer bit. If c∗i 6= ci, R1 = 0; otherwise, R1 = 1.

Figure 19: An O(γ(n))-utility gap ncRIP protocol for PNEXP[γ(n)].
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The second-last move is by P5 in step 5. Regardless of the strategy of others, under a

recursive-maximum SSE, given a transcript T and query φ′i, P5’s must say yes if they are

consistent and get 1/2 (instead of 0), or say no if they are inconsistent and get 1 (instead of

1/2). Given that P5 reports any inconsistency between T and φ′i, in step 4 P4 should send

φ′i that is consistent with T and get a payment of 1, instead of lying and getting 0.

One level up, at step 2, we know from the correctness of the protocol in Figure 17, that

given c1, . . . , cγ, under a recursive-maximum SSE, P2 must commit to the correct transcript

T and P3 must agree with P2.

Finally, given that P2 and P3 commit to the correct transcript T , and P6 and P7 report

the correct answer to the 3-SAT query in step 7, under a recursive-maximum SSE, P1 must

commit to the correct answer bits c, c1, . . . , cγ in step 1. Suppose there exists a j such that cj

is incorrect, where 1 ≤ j ≤ γ, then since φj is evaluated correctly based on x and c1, . . . , cj−1

and V picks j in step 3 with probability 1/γ, we have that c∗j will not match cj in step 7

and thus P1 gets 0, making its overall expected payment at most 1 − 1/γ in this case. On

the other hand, if all answer bits are reported correctly, its expected payment is 1 under a

recursive-maximum SSE. Thus, its best strategy is to report each cj correctly. Finally, given

(c1, . . . , cγ) are correct, if P misreports the answer bit c, it will not match c∗ in step 2 leading

to a payment of 0. Thus, under a recursive-maximum SSE, c = 1 if and only if x ∈ L.

We now show that the utility gap of the protocol is O(γ). First, consider all the 3-SAT

queries at step 7 that start subforms. Suppose there exists a query φk, for 1 ≤ k ≤ γ, such

that ck∗ is the wrong answer to φk. Since the protocol in Figure 18 has O(1) utility gap,

either P6 or P7 loses a constant amount from their payment (conditioned on reaching this

subform). V chooses φk with probability 1/γ, P2 and P3 lose 1/O(γ) from their expected

payment in this case. Given P6 and P7 answer all 3-SAT queries correctly, it is easy to see

that P4 and P5 lose a constant amount from the expected payment if they deviate from

the recursive-maximum SSE in steps 4 and 5. Moving up, since the protocol in Figure 17

has constant utility gap, P2 and P3 lose a constant amount if they deviate from their best

strategy. Finally, given everyone else plays their best strategy, we argued above that P1 loses

1/O(γ) on deviating from the recursive-maximum SSE.

Since the verification is O(log n) time for the protocols in Figure 17 and Figure 18, and V

only checks O(1) gates and probes O(1) string indices in step 5 and uses O(log n) random bits

in step 3, the overall verification time is O(log n) time. Finally, the protocol has polynomial

communication as γ, T , φi are polynomial in n.
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8.5 A Upper Bound on O(log n)-time ncRIP Protocols

In this section, we prove a weak upper bound on the power of O(log n)-time ncRIP protocols

with communication complexity of O(log n). In particular, we prove the following.

Lemma 8.6. If a language L has an ncRIP protocol that uses O(1) provers and rounds,

O(log n) communication, O(log n)-time verifier and has O(1) utility gap, then L ∈ PNP[γ(n)].

That is,

γ(n)-ncRIPt[O(log n),O(1),O(1) ⊆ PNP[γ(n)].

Thus, there is a communication-complexity gap between between the lower bound in

Lemma 8.5 which requires polynomial communication and this upper bound which holds for

logarithmic communication. We leave the problem of resolving this gap (either by improving

the communication cost of the ncRIP protocol in Figure 19 or by tightening the upper bound

to hold for polynomial communication protocols) for future work.

Proof of Lemma 8.6. Given an input x of length n, let L be language that has an ncRIP

protocol (V, ~P ) with O(1) provers and rounds, O(log n) communication and verification and

O(γ(n)) utility gap. Consider the following deterministic polynomial-time oracle Turing

machine M with access to an oracle O for an NP language. Similar to all utility-gap based

upper bounds, M divides [−1, 1] into 8γ(n) intervals, each of length 1/4γ(n). In other words,

the ith interval is [i/4γ(n), (i+ 1)/4γ(n)) for each i ∈ {−4γ(n), . . . , 4γ(n)− 1}.
We note that since the verifier’s running time and communication complexity is O(log n),

and the number of provers and rounds is O(1), the size of the complete game tree of the

protocol (V, ~P ) is polynomial in n. Thus, a strategy profile s of the provers can be specified

in polynomial bits and an NP oracle can guess such a s in non-deterministic polynomial time.

We divide the proof into two cases depending on the value of γ(n).

Case 1. γ(n) = O(1).

The proof for this case is similar to the proof of O(1)-ncRIP ⊆ PNEXP[O(1)] (Lemma 7.17

in Chapter 7.3). In particular, using Lemma 8.1, under a given input x and strategy profile

s, there are at most O(γ(n)) subforms that are reached under any s in the modified game.

Total expected payment of provers acting within any subform (conditioned on reaching

the subform) must lie in any one of the 8γ(n) intervals in [−1, 1]. Thus overall, there

are O(γ(n)γ(n)) combinations of total expected payments over subforms, which is O(1) for

γ(n) = O(1). Let (u, uI1 , . . . , uIk) be a tuple of total expected payments, where k = 8γ(n),

the maximum number of subforms reachable under any s, and u represents the total expected
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payment of the whole game, whereas uIj represents total expected payment of the provers

acting in subform Ij (conditioned on reaching Ij).

For each combination (u, uI1 , . . . , uIk), M queries O: does there exists a strategy profile s

that is an SSE and the total expected payments over reachable subforms under s and O(γ(n))

support Nature moves imposed by Lemma 8.1 is (u, uI1 , . . . , uIk) (conditioned on reaching the

subforms)? Among the queries to which the oracle’s answer is “yes”, M finds the combination

that achieves maximum expected payment for all subforms and accepts if the answer bit

under such a strategy is 1, otherwise rejects. Such a combination is guaranteed to exist

because (V, ~P ) is an ncRIP protocol, and thus a rmSSE of the game exists.

Case 2. Ω(log n) ≤ γ(n) ≤ O(poly(n)).

For each of the O(γ(n)) subintervals of the interval [−1, 1], M first queries the oracle to

find out if there exists an SSE with total expected payment u(x, s) in the subinterval. For all

the subintervals that correspond to an SSE, M does a recursive search to find an exact total

expected payment u(x, s) that is generated by an SSE. In particular, M queries the NP oracle:

Does there exist an SSE with total expected payment in the first half of the ith interval? If

the oracle says yes, M then recurses on the first half if the answer is yes, else recurses on

the second half. Since the verifier runs in O(log n) time, any expected payment generated

is at least 1/nk, for some constant k. Thus, in O(log n) time and O(log n) = O(γ(n)) oracle

queries, M can find an exact u(x, s) for an SSE s in the subinterval using its adaptive queries.

Using Lemma 8.1, under a given input x and strategy profile s, there are at most O(γ(n))

subforms that are reached s in the modified game. Without loss of generality, let the subform

reached (in order) under any s be indexed 1, . . . , `γ(n) for some constant `. Then for each

j ∈ {1, . . . , `γ(n)}, M asks the NP oracle: does there exist an SSE with total expected payment

u(x, s) and another SSE s′ such that for the jth subform rooted at information set I there

exists a prover Pk acting in the subform such that: uj(x, (s−I , s
′
I)) − uj(x, s) > 1/γ(n). We

note that an NP oracle can guess two strategy profile s, s′, as both of them are polynomial

in size, check if they are an SSE, execute them and compare their expected payments. If for

any index j, the oracle says yes, we say that this interval and this s have “failed” the test of

Observation 7.10. Using Claim 7.15, we know that the rmSSE cannot be in this subinterval.

Since (V, ~P ) is an ncRIP protocol, a recursive-maximum SSE exists and thus there exists

a subinterval and an SSE s with u(x, s) in that subinterval that passes the above test for

all subforms. The answer bit under such s must be correct. For that subinterval, M asks

a final question: “under an SSE where the expected payment profile is ũ(x, s), what is the

answer bit c? If c = 1, M accepts, else M rejects.
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Chapter 9

Adaptive Bloom Filters to Minimize Remote Accesses

9.1 Introduction

So far in this dissertation, we focused on designing efficient protocols for verifiable compu-

tation outsourcing. We used payments to leverage the rationality of service provers in a

marketplace, where the service providers can be cooperative or non-cooperative.

In this chapter, we focus on a different scenario that also arises in settings involving

a weak client—storage outsourcing. In particular, most memory-constrained devices store

their large input data on external servers or clouds. Outsourcing the data to external servers

then leads to expensive remote accesses. We focus on minimizing such remote accesses in the

context of the following specific algorithmic problem—how do we efficiently test membership

and perform updates on a set that is stored remotely?

In this chapter, we present adaptive and more efficient variants of a Bloom filter, a data

structure that is widely used to speed up membership queries to a remote set. The results

described in this chapter are based on [21].

A Bloom filter [24,29]—or, more generally, an approximate membership query data struc-

ture (AMQ19)—maintains a compact, probabilistic representation of a set S from a universe

U . AMQs support queries and inserts, and some AMQs also support deletes. A positive

query, i.e., for an x ∈ S, is guaranteed to return “present.” A negative query, i.e., for x 6∈ S,

returns “absent” with probability at least 1−ε, where ε is a tunable false-positive probability .

If the query returns “present,” but x 6∈ S, then x is a false positive of the AMQ.

Because Bloom filters and other AMQs have a nonzero false-positive probability, they

are able to consume much less space than regular dictionary data structures. Specifically,

a Bloom filter can maintain a set S ⊆ U , where |S| = n and |U| = u, with a false-positive

probability ε using Θ(n log(1/ε)) bits [38], which is asymptotically optimal. In contrast, an

error-free representation of S takes Ω(n log u) bits.

One of the main uses of AMQs is to speed up dictionaries [29,41,46,54,55,58,59,61,103,

108,111,132,143,144,147]. Often, there is not enough local storage (e.g., RAM) to store the

dictionary’s internal state, D. Thus, D must be maintained remotely (e.g., on-disk or across

19We refer to a data structure as a “Bloom filter” only if has the same basic structure as the standard Bloom
filter. We use “AMQ” to refer to general data structures that give similar approximate-membership-query
guarantees, possibly using different techniques.
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a network), and accesses to D are expensive. By maintaining a local AMQ for the set S of

keys occurring in D, the dictionary can avoid accessing D on most negative queries: if the

AMQ says that a key is not in S, then no query to D is necessary.

Thus, the primary performance metric of an AMQ is how well it enables a dictionary to

avoid these expensive accesses to D. The fewer false positives an AMQ returns on a sequence

of queries, the more effective it is as a filter.

AMQ guarantees. Most AMQs offer weak guarantees on the number of false positives

incurred on a sequence of queries. The false-positive probability of ε holds only for a single

query. It does not extend to multiple queries, because queries can be correlated. An adver-

sary can drive an AMQ’s false-positive rate towards 1 by simply repeating false-positives.

Even when the adversary is oblivious, i.e., selects n queries independent of past queries,

most AMQs have weak guarantees. With probability ε, a random query is a false positive,

and repeating it n times results in a false-positive rate of 1. Thus, even against an oblivious

adversary, most AMQs have O(εn) false positives in expectation but not with high proba-

bility. This distinction has implications: Mitzenmacher et al. [109] show that on network

traces, existing AMQs leave performance on the table by not adapting to past false positives.

Adaptive AMQs. We define an adaptive AMQ to be an AMQ that returns “present” with

probability at most ε for every negative query, regardless of answers to previous queries. For

a dictionary using an adaptive AMQ, any sequence of n negative queries will result in O(εn)

false positives, with high probability. This gives a strong bound on the number of (expensive)

negative accesses that the dictionary will need to make to D. This is true even if the queries

are selected by an adaptive adversary.

Several attempts have been made to move towards adaptivity (and beyond oblivious

adversaries). Naor and Yogev [113] considered an adaptive adversary that tries to increase the

false-positive rate by discovering collisions in the AMQ’s hash functions, but they explicitly

forbade the adversary from repeating queries. Chazelle et al. [42] introduced bloomier filters,

which can be updated to specify a white list, which are elements in U−S on which the AMQ

may not answer present. However, bloomier filters are space efficient only when the white

list is specified in advance, which makes them unsuitable for adaptivity. Mitzenmacher et

al. [109] proposed an elegant variant of the cuckoo filter that stores part of the AMQ locally

and part of it remotely in order to achieve adaptivity. They empirically show that their data

structure helps maintain a low false-positive rate against temporally-correlated queries.

However, no existing AMQ is provably adaptive.
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Feedback, local AMQs, and remote representations. When an AMQ is used to speed

up a dictionary, the dictionary always detects which queries are false positives of the AMQ.

Thus, the dictionary can provide this feedback to the AMQ. This feedback is free because it

does not require any additional accesses to D beyond what was used to answer the query.

In this chapter we show that, even with this feedback, it is impossible to construct an

adaptive AMQ that uses less than Ω(min(n log log u, n log n)) bits of space; see Theorem 9.3.

That is, even if an AMQ is told which are the true and false positives, a very large amount

of space is necessary to achieve adaptivity.

This lower bound on the space required by an adaptive AMQ would appear to kill the

whole idea of adaptive AMQs, since one of the key ideas of an AMQ is to be small enough

to fit in local storage. Remarkably, efficient adaptivity is still achievable.

The way around this impasse is to partition an AMQ’s state into a small local state L

and a larger remote state R. The AMQ can still have good performance provided that it

accesses the remote state infrequently.

By using this idea, we show how to make an adaptive AMQ that consumes no more local

space than the best nonadaptive AMQ (and much less than a Bloom filter). We call this

data structure a broom filter (because it cleans up its previous mistakes). The broom filter

accesses R only when the dictionary accesses D. Thus, the AMQ’s accesses to R are free;

they do not asymptotically affect the number of remote accesses required to perform a query.

Partitioning appears to be essential to creating a space-efficient adaptive AMQ. For

example, the adaptive cuckoo filter [109] also partitions its state into local and remote

components, but lacks the strong theoretical performance guarantees of the broom filter.

It turns out that the local component of the broom filter is itself a nonadaptive AMQ plus

O(n) bits for adaptivity. The purpose of R is merely to provide a little more information to

help L adapt.

Thus, we have a dual view of adaptivity that helps us interpret the upper and lower

bounds. The local representation L is an AMQ in its own right. The remote representation

R is an “oracle” that gives extra feedback to L whenever there is a false positive. Because

R is simply an oracle, all the heavy lifting is in the design of L. In the broom filter, R

enables L to identify an element y ∈ S that triggered the false positive. As described above,

accessing R is free because it is paid for by accesses to D.

Putting these results together, we pinpoint how much information is needed for an adap-

tive AMQ to update its local information. The lower bound shows that simply learning if

the query is a false positive is not sufficient. But if this local information is augmented with

asymptotically free dictionary lookups, then adaptivity is achievable.
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A note on optimality. The broom filter dominates existing AMQs in all regards. Its

local state by itself is an optimal conventional AMQ: it uses optimal space up to lower-order

terms, and supports queries and updates in worst-case constant time, with high probability.

Thus the remote state is only for adaptivity. For comparison, a Bloom filter has a lookup

time of O(log 1
ε
), the space is suboptimal, and the filter does not support deletes. More

recent AMQs [22, 60, 118, 119] also fail to match the broom filter on one or more of these

criteria, even leaving aside adaptivity. Thus, we show that adaptivity has no cost.

9.2 Related Work

Bloom filters [24] are a ubiquitous data structure for approximate membership queries and

have inspired the study of many other AMQs; see surveys [29, 132]. Here, we only mention

a few well-known AMQs in and several results closely related to adaptivity.

Bloom Filters [24]. The standard Bloom filter, representing a set S ⊆ U , is composed of

m bits, and uses k independent hash functions h1, h2, . . . , hk, where hi : U → {1, . . . ,m}. To

insert x ∈ S, the bits hi(x) are set to 1 for 1 ≤ 1 ≤ k. A query for x checks if the bits hi(x)

are set to 1 for 1 ≤ i ≤ k—if they are, it returns “present”, and else it returns “absent”.

A Bloom filter does not support deletes. For a false-positive probability of ε > 0, it uses

m = (log e)n log2(1/ε) bits and has an expected lookup time of O(log(1/ε)).

Single-Hash-Function AMQs. Carter et al. [38] introduced the idea of an AMQ that

uses a single hash function that maps each element in the universe to one of dn/εe elements,

and then uses a compressed exact-membership tester. Pagh et al. [118] show how to build

the first near-optimal single hash-function AMQ by applying a universal hash function h :

U → {0, 1, . . . , dn/εe} to S, storing the resulting values using (1 + o(1))n log 1
ε

+ O(n) bits.

Their construction achieves O(1) amortized insert/delete bounds and has been deamortized,

in the case of inserts, by the backyard hashing approach of Arbitman et al. [5].

The quotient filter (QF) [22,119] is a practical variant of Pagh et al.’s single-hash function

AMQ. The QF serves as the basis for our adaptive AMQ and is described in Chapter 9.5.

The cuckoo filter [60] is also a practical variant of Pagh et al.’s single-hash function AMQ.

However, the implementation is based on cuckoo hashing rather than linear probing. This

difference leads to performance advantages for some parameter settings [60,119].

It would be interesting to develop a provably adaptive variant of the cuckoo filter. Its

structure makes it difficult to use our approach of maintaining adaptivity bits. On the other

hand, analyzing the Markov chain resulting from the heuristic approach to cuckoo-filter

adaptivity in [109] has its own challenges.
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Bloomier filters. Chazelle et al. [42]’s Bloomier filters generalize Bloom filters to avoid

a predetermined list of undesirable false positives. Given a set S of size n and a whitelist W

of size w, a Bloomier filter stores a function f that returns “present” if the query is in the S,

“absent” if the query is not in S∪W , and “is a false positive” if the query is in W . Bloomier

filters use O((n + w) log 1/ε) bits. The set S ∪W cannot be updated without blowing up

the space used and thus their data structure is limited to a static whitelist.

Adversarial-resilient Bloom filters. Naor and Yogev [113] study Bloom filters in the

context of a repeat-free adaptive adversary, which queries elements until it can find a never-

before-queried element that has a false-positive probability greater than ε. (They do not

consider the false-positive probability of repeated queries.) They show how to protect an

AMQ from a repeat-free adaptive adversaries using cryptographically secure hash functions

so that new queries are indistinguishable from uniformly selected queries [113]. Hiding data-

structure hash functions has been studied beyond AMQs (e.g., see [25,71,87,107,112]).

Adaptive cuckoo filter. Recently, Mitzenmacher et al. [109] introduced the adaptive

cuckoo filter which removes false positives after they have been queried. They do so by

consulting the remote representation of the set stored in a hash table. Their data structure

takes more space than a regular cuckoo filter but their experiments show that it performs

better on real packet traces and when queries have a temporal correlation.

Other AMQs and false-positive optimizations. Retouched Bloom filters [56] and gen-

eralized Bloom filter [102] reduce the number of false positives by introducing false negatives.

Variants of Bloom filter that choose the number of hash functions assigned to a key based

on its frequency in some predetermined query distribution have also been studied [30,146].

Data Structures and Adaptive Adversaries. Nonadaptive data structures lead to

significant problems in security-critical applications, such as algorithmic complexity attacks

against hash tables [33,51], peacock and cuckoo hash tables [18], (unbalanced) binary search

trees [51], and quicksort [94]. In these attacks, the adversary adaptively constructs a sequence

of inputs and queries that causes the data structure to exhibit its worst-case performance.

9.3 Preliminaries

As in the standard notion of an AMQ, our AMQ is a dynamic set data structure and supports

insertions, deletions, and membership queries, and may return false positives on queries.

119



However, we generalize the standard notion of an AMQ in two ways. First, our AMQ

can update its internal representation based on feedback from the system. We also divide

the AMQ’s internal state into local (i.e., in-memory) and remote (i.e., on-disk) components.

The AMQ answers queries based solely on the local state, but can use the remote state to

help it correct errors based on feedback.

We begin by defining the operations that our AMQ supports. These operations specify

precisely when it can access its local vs. remote state, when it gets to update its state, and

how it receives feedback.

Definition 9.1. An approximate membership query (AMQ) data structure consists of the

following deterministic functions. Here ρ denotes the AMQ’s private infinite random string,

L and R denote its private local and remote state respectively, n denotes the maximum set

size and ε denotes the false-positive probability.

• Init(n, ε, ρ) −→ (L,R) takes n, ε and ρ and returns an initial state (L,R).

• Lookup(L, x, ρ) −→ (L′, b) takes a local state L, element x ∈ U and ρ, and returns a new

local state L′ and bit b indicating whether x is “present” or “absent”. Note that Lookup

does not get access to R.

• Insert((L,R), x, ρ) −→ (L′,R′) takes state (L,R), element x ∈ U to be inserted and ρ

and returns the new state (L′,R′). Delete is defined analogously.

• Adapt((L,R), x, ρ) −→ (L′,R′) takes state (L,R), false-positive element20 x and ρ, and

returns the new state (L′,R′).

Note that this definition generalizes existing AMQs [22,24,42,60,118,119]. For example,

we can view Bloom filters, cuckoo filters, etc., as AMQs that never make any modifications or

accesses to R, and that have an Adapt function that returns (L,R) unmodified. An AMQ

is local if it never accesses R. An AMQ is oblivious if its Adapt is the identity function.

Histories and adaptivity. A history is an invocation of Init followed by a sequence of

Inserts, Deletes, Adapts, and Lookups. Histories serve two purposes. First, a history

H encodes the set SH of true positives, i.e., the elements that have been inserted into the

AMQ (but not deleted). Second, the calls to Adapt in the history encode the information

that an adversary can learn from queries—which queries resulted in false positives. Thus,

in an adaptive AMQ when we analyze the probability that each query is a false positive

independent of the results of past queries, we mean independent of the AMQ’s history.

For notational convenience, for a given n and ε, we view a history H as a function H(ρ)

that returns the final state of the AMQ that results from calling Init(n, ε, ρ) and then

20We precisely define false-positive below.

120



performing the sequence of Inserts, Deletes, Lookups, and Adapts specified in H. Let

LH(ρ) and RH(ρ) be the local and remote components, respectively, of AMQ state H(ρ).

The AMQs we consider only make guarantees on their correctness and false-positive rate

for histories that use the AMQ properly. For example, if a history builds the AMQ with

maximum size n, then the history should never have more than n items inserted at one time.

A history should also never delete an item that is not in the set. Throughout the rest of this

chapter, we consider only histories that obey these rules.

A history should call Adapt immediately after each Lookup that returns a false positive,

and at no other time. However, whether a call to Lookup yields a false positive depends

on ρ. Thus a history H might obey this rule for some ρs but not for others. A history H and

a string ρ are consistent if, during the execution of H(ρ), each call to Adapt immediately

follows a call to Lookup that returned a false positive.

We can now define false positives, negatives, and adaptivity.

Given consistent history H and random string ρ, x is a false positive of LH(ρ) with respect

toH if x 6∈ SH but Lookup(LH(ρ), x, ρ) returns “present”. We define false negative similarly.

We consider only AMQs that have no false negatives whenever H and ρ are consistent.

We define the standard static (or single-query) false-positive rate of an AMQ as follows.

An AMQ supports static false-positive rate ε if, for all lookup-free histories H (i.e., histories

that do not contain any calls to Lookup) that call Init with false-positive-rate parameter

ε and all elements x ∈ U \ SH,

Pr
ρ

[Lookup(LH(ρ), x, ρ) returns “present”] ≤ ε.

We now extend the notion of false-positive rate to handle adaptive queries.

Definition 9.2. An AMQ supports sustained false-positive rate ε if, for every history H
that calls Init with false-positive-rate parameter ε and all elements x ∈ U \ SH,

Pr
ρ

[Lookup(LH(ρ), x) returns “present”|ρ is consistent with H] ≤ ε.

The probability in the definition of sustained false-positive rate is taken only over ρ that

are consistent with the false positives specified inH. In other words, an AMQ has a sustained

false-positive rate ε if, no matter the results of past queries, the next query always has a

false-positive probability of at most ε.

An AMQ is adaptive if it guarantees a sustained false-positive rate of ε for some ε < 1.
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Cost model. We measure AMQ performance in terms of RAM model operations to ex-

amine and update L and in terms of updates and queries to R. We measure these three

quantities (RAM operations, remote updates, and remote queries) separately.

We follow the standard practice of analyzing AMQ performance in terms of the AMQ’s

maximum capacity, n.21 We assume the RAM model with a word size w = Ω(log u). For

simplicity of presentation, we assume that u = poly(n) but our results generalize.

Hash functions. In this work, we assume that the adversary cannot find a never-queried-

before element that is a false positive of the AMQ with probability greater than ε based

on the result of previous queries. Ideal hash functions have this property for arbitrary

adversaries. If the adversary is polynomially bounded, one-way functions are sufficient to

prevent them from generating new false positives [113].

Notation. An event occurs with high probability (w.h.p.) if it occurs with probability at

least 1− 1/nc for a tunable constant c.

9.4 A Lower Bound on Local AMQs

In this section, we show that a local AMQ cannot maintain adaptivity along with space

efficiency. More formally, if the Adapt function depends only on L, x and ρ (and not on

a remote representation R), then the AMQ must use Ω(min{n log n, n log log u}) bits, much

larger than our desired space when U is large. Thus, an AMQ cannot be adaptive if it only

learns whether each query x is a false positive or a true positive.

In particular, we prove the following lower bound on the space required by a local AMQ

to maintain adaptivity.

Theorem 9.3. Any local adaptive AMQ storing a set of size n from a universe of size u > n4

requires m = Ω(min{n log n, n log log u}) bits of space with high probability to maintain any

constant sustained false-positive rate ε < 1.

Interestingly, a similar lower bound was studied in the context of Bloomier filters [42].

The Bloomier filter is an AMQ designed to solve the problem of storing n items for which

it must return “present”, along with a whitelist of Θ(n) items for which it must return

“absent”. Other queries must have a static false-positive rate of ε. Chazelle et al. [42] give

a lower bound on any data structure that updates this whitelist dynamically, showing that

such a data structure must use Ω(n log log(u/n)) space. Their lower bound implies that if the

21This originates from the Bloom filter literature, since Bloom filters cannot be resized.
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adversary gives an AMQ a dynamic white list of false positives that it needs to permanently

fix, then it must use too much space. We generalize this bound to all adaptive local AMQs.

9.4.1 Notation and Adversary Model

We begin by formalizing our notation and defining the adversary used in the lower bound.

We fix n and ε and drop them from most notation. We use Build(S, ρ) to denote the

state that results from calling Init(n, ε, ρ) followed by Insert(x, ρ) for each x ∈ S (in

lexicographic order).

The adversary does not have access to the AMQ’s internal randomness ρ, or any internal

state L of the AMQ. The adversary can only issue a query x to the AMQ and only learns

the AMQ’s output—“present” or “absent”—to query x.

The adversary’s goal is to adaptively generate a sequence of O(n) queries and force the

AMQ to either use too much space or to fail to satisfy a sustained false-positive rate of ε.

Let ε0 = max{1/n1/4, (log2 log u)/ log u}. Thus, our lower bound can be rephrased as

m = Ω(n log 1/ε0). Note that ε0 ≤ ε; otherwise the classic AMQ lower bound of m ≥
n log 1/ε [38, 104] is sufficient to prove Theorem 9.3. We can think of ε0 as a maximum

bound on how often the AMQ encounters elements that are hard to fix.

Attack description. First, the adversary chooses a set S of size n uniformly at random

from U . After choosing the initial set, the adversary’s attack proceeds in rounds. The

adversary selects a set Q of size n uniformly at random from U −S. Starting from Q, in each

round, it queries the elements that were false positives in the previous round. To simplify

analysis, we assume that the adversary orders its queries in lexicographic order. Let FPi be

the set of queries that are false positives in round i ≥ 1. The attack is described below:

1. In the first round, the adversary queries each element of Q.

2. In round i > 1, if |FPi−1| > 0, the adversary queries each element in FPi−1; otherwise the

attack ends.

Classifying false positives. The crux of our proof is that some false positives are difficult

to “fix”—in particular, these are the queries where an AMQ is unable to distinguish whether

or not x ∈ S by looking at its local state L.22 We call y ∈ U \ S an absolute false positive

of a state L and randomness ρ if there exists a set S ′ of size n and a sequence of queries

(x1, . . . , xt) such that y ∈ S ′ and L is the state of the AMQ when queries x1, . . . , xt are

performed (some of which may result in Adapts if they are false positives) on Build(S ′, ρ).

22This is as opposed to easy-to-fix queries where, e.g., the AMQ answers “present” randomly just to
confuse an adversary. For all previous AMQs we are aware of, all false positives are absolute false positives.

123



We use AFP(L,S, ρ) to denote the set of absolute false positives of state L, randomness ρ,

and true-positive set S. We call (S ′, (x1, . . . , xt)) a witness to y. We call y ∈ U \ S an

original absolute false positive if and only if y ∈ AFP(Build(S, ρ),S, ρ). We call the set of

original absolute false positives OFP(S, ρ) = AFP(Build(S, ρ),S, ρ).

As the AMQ handles queries, it will need to fix some previous false positives. To fix a

false positive, the AMQ must change its local state so that it can safely answer “absent”

to it. For a state L, we define the set of elements that are no longer false positives by

the set FIX(L,S, ρ) = OFP(S, ρ) \ AFP(L,S, ρ). Note that all fixed false positives are

original absolute false positives.

An AMQ without false negatives cannot fix an original absolute false positive y unless it

learns that y /∈ S. This idea is formalized in the next two observations.

Observation 9.4. For any randomness ρ, set S, and state L of the AMQ, if a query x ∈
AFP(L,S, ρ), then Lookup (L, x, ρ) must return“present”.

Observation 9.5. Let L1 be a state of the AMQ before a query x and L2 be the updated

state after x (i.e., after invoking Lookup and possibly Adapt). Let y be an absolute false

positive of L1 with witness Sy. Then if y is not an absolute false positive of L2, then x ∈ Sy.

9.4.2 Analysis

We start with an informal overview of the lower-bound proof.

The following observation shows that there is a 1-to-1 mapping from “fixed” sets of

original absolute false positives to AMQ states. Thus, we can lower bound the number of

AMQ states (and hence the space needed to represent a state) by lower-bounding the number

of sets of original absolute false positives the adversary can force the AMQ to fix.

Observation 9.6. Given randomness ρ and set S of size n, consider two fixed false positive

sets FIX(L1,S, ρ) and FIX(L2,S, ρ). Then if FIX(L1,S, ρ) 6= FIX(L2,S, ρ), then L1 6= L2.

We begin with a known result showing that if the AMQ cannot use too

much space, it must start with a large number of original absolute false positives

(Claim 9.7) for almost all S. Given that the AMQ starts with a large number of

original absolute false positives, a decent fraction of the adversary’s randomly chosen queries

Q are original absolute false positives of the AMQ (Lemma 9.8).

Next, we show that through its adaptive queries, the adversary is able to force the AMQ to

fix almost all of these discovered original absolute false positives, for most sets Q (Lemma 9.9

and Lemma 9.10).
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The crux of the proof relies on Lemma 9.11 which says that the AMQ cannot fix too

many extra original absolute false positives during the attack—thus, it needs a large number

of distinct “fixed” sets to cover all the different sets of original absolute false positives that

the adversary forces the AMQ to fix. This is where we use that the AMQ is local, and

only receives a limited amount of feedback on each false positive—it cannot fix more false

positives without risking some false negatives.

Finally, the proof of Theorem 9.3 pulls these pieces together to derive the lower bound

on the space required by a local adaptive AMQ.

Discovering original absolute false positives through random queries. First, we

note that for a given randomness ρ, the AMQ must start with a large number of

original absolute false positives for most sets S.

While for some special sets S given in advance, an AMQ may be able to store S very

accurately (with few false positives), this is not true for a random set S chosen by the

adversary. In particular, we note the following claim, also presented by Naor et al. [113].

Claim 9.7 ( [113, Claim 5.3]). Given any randomness ρ of AMQ using space m ≤
n log 1/ε0 + 4n bits, for any set S of size n chosen uniformly at random from U , we have:

PrS [|OFP(S, ρ)| ≤ uε0] ≤ 2−n.

For the remainder of this section, we fix a set S∗ ⊆ U of size n such that |OFP(S∗, ρ)| >
uε0.23 Let Q be the set of all possible query sets Q the adversary can choose, that is,

Q = {Q ⊆ U \ S∗ | |Q| = n}. (We do not include S∗ in the notation of Q for simplicity.)

Lemma 9.8. For a fixed randomness ρ of an AMQ of size m ≤ n log 1/ε0+4n and fixed set S∗

such that |OFP(S∗, ρ)| > uε0, we have PrQ∈Q [|Q ∩OFP(S∗, ρ)| = Ω(nε0)] ≥ 1− 1/poly(n).

Proof. The probability that a given query x ∈ Q is an original absolute false positive is Ω(ε0)

and EQ∈Q[|Q ∩OFP(S∗, ρ)|] =
∑

x∈Q Prx∈U\S [x ∈ OFP(S∗, ρ)] = Ω(nε0).

Since ε0 = Ω(n1/4), using Chernoff bounds, with high probability over the choice of Q,

we have that |Q ∩OFP(S∗, ρ)| = Ω(nε0).

Forcing the AMQ to fix large number of original absolute false positives to main-

tain adaptivity. From the definition of sustained false-positive rate, the AMQ must fix

an ε fraction of false positives in expectation in each round. If the expected number of

false positives that the AMQ has to fix in each round is high, classic concentration bounds

23With probability 1/2n, the adversary gets unlucky and chooses a set S∗ that does not satisfy this
property, in which case it fails. This is okay, because we only need to show existence of a set S∗ where the
AMQ uses large space w.h.p. over ρ.
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imply that the AMQ must fix close to this expected number with high probability in each

round. This implies that there must be a round where the AMQ fixes a large number of

original absolute false positives. The next lemma formalizes this intuition.

For a given Q, let FORCED(Q,S∗, ρ) be the largest number of query elements (out of Q)

that the AMQ has fixed simultaneously in any state. In particular,24 FORCED(Q,S∗, ρ) =

argmax1≤t′≤t FIX(Lt′ ,S∗, ρ), where Li is the state of the AMQ after each query xi ∈ Q

during an attack consisting of t total queries.

Lemma 9.9. Consider an AMQ of size m ≤ n log 1/ε0 + 4n. With high probability over ρ,

for any set Q satisfying Q ∩OFP(S∗, ρ) = Ω(nε0), there exists a round T (Q, ρ) and a state

LT (Q,ρ) at the beginning of round T (Q, ρ) such that |FIX(LT (Q,ρ),S∗, ρ)| = Ω(nε0/ logε ε0).

In other words,

Pr
ρ

[
|FORCED(Q,S∗, ρ)| = Ω(nε0/ logε ε0)

∣∣∣∣ |Q ∩OFP(S∗, ρ)| = Ω(nε0)

]
≥ 1− 1/poly(n).

Round T (Q, ρ) is reached in at most O(n) total queries.

Proof. We fix Q and set T = T (Q, ρ).

Recall that FPT denotes the set of queries that are false positives in round T , and let

Tf = logε ε0. Since the AMQ has a sustained false-positive rate of ε, we have |FP1| = O(nε).

As ε ≥ ε0 ≥ 1/n1/4, by Chernoff bounds, we have |FPT+1| ≤ ε|FPT |(1 + 1/ log n) with high

probability for all 1 ≤ T ≤ Tf .

Suppose there does not exist a round T < Tf such that the lemma holds, i.e., in each round

T < Tf , |FIX(LT ,S∗, ρ)| ≤ nε0/2 logε ε0, where LT is the state of the AMQ at the beginning

of round T . In round Tf , the AMQ is asked |FPTf−1| ≤ (ε(1 + 1/ log n))Tf−2n = O(nε0)

queries. From our assumption, |OFP(S∗, ρ) ∩ FPTf−1| ≥ nε0(1− 1/2 logε ε0)Tf−1 = Ω(nε0).

For a sustained false-positive rate of ε, it must hold that |FPTf | = O(nεε0) with high

probability. Thus, in round Tf the AMQ must answer “absent” to Ω(n(1 − ε)ε0) = Ω(nε0)

original absolute false positives from the set |(OFP(S∗, ρ)∩FPTf−1)\FPTf |. Let ATf be the

set of original absolute false positives queries that the AMQ says “absent” to in round Tf .

Let LTf ,x denote the state of the AMQ in round Tf just before query x is made. Then

by Observation 9.4, x ∈ FIX(LTf ,x,S∗, ρ) for any x ∈ ATf . We now show that all x ∈ ATf
must simultaneously be in the set of fixed false positives of the state LTf at the beginning of

round Tf . Note that x ∈ OFP(S∗, ρ)∩FPTf−1
and all queries between query x in round Tf−1

and query x in round Tf are distinct from x and were chosen independently from x in round

24The argmax is taken over the size of the sets.
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1. As there can be at most n queries in between query x in consecutive rounds, using Obser-

vation 9.5, the probability that there exists a state Li between LTf−1,q and LTf ,q such that

x /∈ FIX(Li,S∗, ρ) is at most n2/u < 1/n2. Thus, with high probability, x ∈ FIX(LTf ,S∗, ρ)

for any given x ∈ ATf . That is, ATf ⊆ FIX(LTf ,S∗, ρ), and thus, |FIX(LTf ,S∗, ρ)| = Ω(nε0).

Furthermore, round T is reached in n+
∑T

i=1 FPi ≤ n(1−εT )/(1−ε) = O(n) queries.

For simplicity, let ε′0 = ε0/ logε ε0. The next lemma shows that (for most ρ), most query

sets Q satisfy Lemma 9.9 with high probability.

Lemma 9.10. With high probability over ρ, for all but a 1/poly(n) fraction of Q there

exists a round T (Q, ρ) such that an AMQ of size m ≤ n log 1/ε0 + 4n is forced to fix Ω(nε′0)

original absolute false positive queries. In other words, if |OFP(S∗, ρ)| ≥ uε0,

Pr
ρ

[
Pr
Q∈Q

[|FORCED(Q,S∗, ρ)| = Ω(nε′0)] ≥ 1− 1

poly(n)

]
≥ 1− 1/poly(n).

Proof.

Pr
ρ

[
Pr
Q∈Q

[|FORCED(Q,S∗, ρ)| = Ω (nε′0)] ≥ 1− 1

poly(n)

]

≥ Pr
ρ

 Pr
Q∈Q

[
|FORCED(Q,S∗, ρ)| = Ω (nε′0)

∣∣∣∣ |Q ∩ AFP(S∗, ρ)| = Ω(nε0)

]
·

· Pr
Q∈Q

[|Q ∩ AFP(S∗, ρ)| = Ω(nε0)] ≥ 1− 1

poly(n)


≥ Pr

ρ

[
Pr
Q∈Q

[
|FORCED(Q,S∗, ρ)| = Ω (nε′0)

∣∣∣∣ |Q ∩ AFP(S∗, ρ)| = Ω(nε0)

]
≥ 1− 1

poly(n)

]
≥
(

1− 1

poly(n)

)
The second step is from Lemma 9.8, and the final step is from Lemma 9.9.

Local AMQs cannot fix too many original absolute false positives. Next, we show

that for a randomly-chosen y, knowing y /∈ S∗ does not give any information to the AMQ

about which set exact S∗ it is storing.

In particular, a local AMQ may try to rule out false positives that may be correlated

to a query y. For example, an AMQ may (without asymptotic loss of space) partition the

universe into pairs of elements such that if it learns one item in a pair is a false positive, it is

guaranteed that the other is as well. With such a strategy, the AMQ can succinctly fix two

false positives per query instead of one. Could a more intricate strategy allow the AMQ to

fix more false positives—even enough to be an obstacle to our lower bound?
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We rule out this possibility in the following lemma. On a random query, the AMQ is

very unlikely to rule out a given false positive. We use this to make a with-high-probability

statement about the number of fixed elements using Markov’s inequality in our final proof.

Lemma 9.11. Given randomness ρ and set S∗, consider any sequence of queries (x1, . . . , xt)

taken from a uniformly-sampled random set Q ⊂ U of size n, and let L′ be the state of the

AMQ after these queries are executed. For an element y ∈ U , the probability over Q that y is

a fixed false positive after these queries is n2/u. That is, PrQ∈Q [y ∈ FIX(L′,S∗, ρ)] = n2/u.

Proof. If y ∈ FIX(L′,S∗), then by Observation 9.5, for any witness set S ′ of y, S ′ ∩Q must

be nonempty. Fix a single witness set S ′. For a given s′ ∈ S ′ and x′ ∈ Q, Pr(s′ = x′) = 1/u.

Taking the union bound over all n2 such pairs (s′, x′) we achieve the lemma.

Final lower bound. We are now ready to prove Theorem 9.3.

Proof of Theorem 9.3. Assume by contradiction that m ≤ n log 1/ε0 + 4n (recall

ε0 = max{1/n1/4, (log2 log u)/ log u}). Applying Observation 9.6 to the state LT (Q,ρ) from

Lemma 9.9 we obtain that 2m ≥ |{FIX(LT (Q,ρ),S∗, ρ) | Q ⊂ U , |Q| = n}|. We lower bound

how many distinct fixed sets the AMQ needs to store for a given ρ.

By definition, FORCED(Q,S∗, ρ) ⊆ FIX(LT (Q,ρ),S∗, ρ). However, the set of fixed

elements cannot be that much bigger than the set of fixed queries. Consider an ar-

bitrary x ∈ U . By Lemma 9.11, x is a fixed false positive with probability at

most n2/u. Thus, EQ∈Q[|FIX(LT (Q,ρ),S∗, ρ),S∗, ρ)|] = n2. By Markov’s inequality,

PrQ∈Q
[
|FIX(LT (Q,ρ),S∗, ρ)| = O(n2)

]
= Ω(1). Then there exists a set25

Q∗ =
{
Q ⊆ U

∣∣ |Q| = n,FIX(LT (Q,ρ),S∗, ρ) = O(n2)
}

such that |Q∗| = Ω(|Q|). Thus,∣∣∣∣{FIX
(
LT (Q,ρ),S∗, ρ

) ∣∣∣∣ Q ∈ Q}∣∣∣∣ ≥∣∣∣∣{FORCED(Q,S∗, ρ)

∣∣∣∣ Q ∈ Q∗, |FORCED(Q,S∗, ρ)| = Ω(nε′0)

}∣∣∣∣/(O(n2)

Ω(nε′0)

)
.

Now, we want to count the number of distinct FORCED(Q,S∗, ρ). Let Z = {Z ⊆
OFP(S∗, ρ) | |Z| = Θ(nε′0)}. We show that with high probability a randomly chosen set

Z ∈ Z belongs to the set of FORCED(Q,S∗, ρ) for some Q (because we choose Q uniformly

25Again, Q∗ is a function of ρ and S; we do not carry this through the notation for simplicity.

128



at random, this probabilistic argument lower bounds the number of such Z immediately).

Recall that |OFP(S∗, ρ)| > uε0.

Pr
Z∈Z

[∃Q ∈ Q∗ with Z ⊆ FORCED(Q,S∗, ρ)] ≥ Pr
Z∈Z

Q∈Q∗,Q⊃Z

[Z ⊆ FORCED(Q,S∗, ρ)}] (13)

≥ Pr
Z∈Z

Q∈Q∗,Q⊃Z

[
Z ⊆ FORCED(Q,S∗, ρ)

∣∣∣∣ |FORCED(Q,S∗, ρ)| = Ω(nε′0)

]
· Pr
Q∈Q∗

[
|FORCED(Q,S∗, ρ)| = Ω(nε′0)

∣∣∣∣ |Q ∩OFP(S∗, ρ)| = Ω(nε0)

]
· Pr
Q∈Q∗

[|Q ∩OFP(S∗, ρ)| = Ω(nε0)] (14)

≥
(

1

/(
n

Ω(nε′0)

))(
1− 1

poly(n)

)(
1− 1

poly(n)

)
. (15)

The first term in step (15) above uses the fact that if the AMQ was forced to fix Ω(nε′0)

queries out of query set Q, then the probability that a randomly chosen Z corresponds to this

forced query set is at most 1/(total number of possible forced subsets of Q). There can be at

most
(

n
Ω(nε′0)

)
such subsets. The second and third term in step (15) follow from Lemma 9.10

and Lemma 9.8 respectively—because |Q∗| = Ω(|Q|), a simple probabilistic argument shows

that the probability over Q ∈ Q∗ rather than Q ∈ Q retains the high probability bounds.

Thus, we can lower bound the total number of distinct forced sets as

∣∣{FORCED(Q,S∗, ρ)
∣∣ Q ∈ Q∗}∣∣ ≥ ( uε0

Ω(nε′0)

)(
1− 1

poly(n)

)/(
n

Ω(nε′0)

)
.

Putting it all together,

2m ≥
(

uε0

Ω(nε′0)

)(
1− 1

poly(n)

)/(
n

Ω(nε′0)

)(
O(n2)

Ω(nε′0)

)
.

Taking logs and simplifying (recall (x/y)y ≤
(
x
y

)
≤ (xe/y)y),

m = Ω

(
nε′0

(
log

u log(1/ε0)

n
−
(

log
n

ε′0
+ log

1

ε′0

)))
.

We have log(u log(1/ε0)/n) − log(n/ε′0) = Ω(log u) because u � n2/ε′0. Because ε is a

constant, ε′0 = Ω(ε0/ log(1/ε0)). Thus, m = Ω
(
nε0 log u
log(1/ε0)

)
.

Using the definition of ε0, we have two cases.

1. If 1/n1/4 ≥ (log2 log u)/ log u, then m = Ω(n log n log u/ log log n).

2. If 1/n1/4 < (log2 log u)/ log u, then m = Ω(n log log u).
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In the first case, we get a contradiction to our assumption that m ≤ n log 1/ε0 + 4n. In the

second, we get that if m ≤ n log log u+ 4n, we obtain a bound of Ω(n log log u).

Matching upper bound. We construct a local AMQ that matches the above space bound.

Lemma 9.12. There exists a local adaptive AMQ that can handle O(n) adaptive queries

using O(min{n log n, n log log u}) bits of space with high probability.

Proof. If log n = O(log log u), we build a standard bloom filter with ε0 = 1/nc for c > 1.

The adversary never queries an original absolute false positive with high probability. (If it

does, the AMQ can store it without affecting the w.h.p. space bound.)

Otherwise, we have log log u = o(log n), and therefore n/ log u = nΩ(1). We build a

standard bloom filter with error rate log log u/ log u; this requires O(n log log u) space.

After O(n) queries we expect O(n log log u/ log u) false positives; from the assumption

on the size of u this is nΩ(1) so Chernoff bounds imply O(n log log u/ log u) false positives

with high probability. We store all false positives in a whitelist. Each requires O(log u) bits.

Thus, the space used is O(n log log u).

9.5 Broom Filter: An Adaptive Bloom filter

We design an adaptive AMQ that is near-optimal on all metrics:

Theorem 9.13. There exists an adaptive AMQ—the broom filter—that, for any sustained

false-positive rate ε and maximum capacity n, attains the following performance:

Constant local work: O(1) worst-case operations for inserts, deletes, and lookups w.h.p.

Near optimal local space: (1 + o(1))n log2
1
ε

+O(n) local space w.h.p.

O(1) remote accesses: O(1) accesses to the remote representation R for each false pos-

itive and each delete. For each insert, there are O(1) accesses to

R with probability at most ε.

The broom filter is a single-hash-function AMQ, which means that the AMQ stores

fingerprints for each element in S. In Chapter 9.5, we say what fingerprints we store, and

how they establish the sustained false-positive rate of broom filters. In Chapter 9.5.1, we

show how to maintain the fingerprints space-efficiently and in O(1) work per operation.

We begin our proof of Theorem 9.13 by describing how to modify a single-hash-function

AMQ to achieve adaptivity. In particular, known single-function AMQs (i.e., [22, 60, 118])

work by storing a fingerprint for each element in S. In this section, we say what fingerprints
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we store and how they can be used to guarantee a sustained false-positive rate of ε; in

Chapter 9.5.1 we describe how to maintain the fingerprints efficiently.

9.5.1 Extending Fingerprints Using Adaptivity Bits

The broom filter has a hash function h : U → {0, . . . nc} for some constant c ≥ 4. Storing

an entire hash takes c log n bits, however, we can only afford approximately log2(1/ε) bits

per element. Instead, for set S = {y1, y2, . . . , yn}, the broom filter stores a set of fingerprints

P = {p(y1), p(y2), . . . , p(yn)}, where each p(yi) is a prefix of h(yi), denoted p(yi) v h(yi).

Queries. A query for x returns “present” iff there exists a y ∈ P such that p(y) v h(x).

The first log n+ log(1/ε) bits of a fingerprint comprise the baseline fingerprint , which is

subdivided as in a quotient filter [22, 119]. In particular, the first q = log n bits comprise

the quotient , and the next r = log(1/ε) bits the remainder . The remaining bits (if any)

comprise the adaptivity bits .

Using the parts of the fingerprint. The baseline fingerprint is long enough to guarantee

that the false-positive rate is at most ε. We add adaptivity bits to fix false positives, in

order to achieve a sustained false-positive rate of ε. Adaptivity bits are also added during

insertions. We maintain the following invariant:

Invariant 9.14. No fingerprint is a prefix of another.

By this invariant, a query for x can match at most one such p(y) ∈ P . We show that we

can fix a false positive by adding adaptivity bits to the single p(y), for which p(y) v h(x).

Thus, adding adaptivity bits during insertions reduces the number of adaptivity bits added

during false positives, which allows us to achieve O(1) work and remote accesses.

There is also a somewhat subtler reason why adaptivity bits are added during insertions—

in order to defeat deletion-based timing attacks, which we discuss shortly.

Maintaining the fingerprints. Here we describe what the broom filter does on a call to

Adapt. In this section we drop (L,R) and ρ from the function notation for simplicity.

We define a subroutine of Adapt which we call Extend(x,P). This function is used to

maintain Invariant 9.14 and to fix false positives.

Observe that on a query x there exists at most one y for which p(y) v h(x), by Invari-

ant 9.14. If such a y exists, the Extend(x,P) operation modifies the local representation by

appending adaptivity bits to p(y) until p(y) 6v h(x). (Otherwise, Extend(x,P) does noth-

ing.) Thus, Extend performs remote accesses to RevLookupP , where RevLookupP(x)
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returns the (unique) y ∈ S such that p(y) v h(x). RevLookupP is a part of R, and can

be implemented using a dictionary.

We can define Adapt(x) as follows:

• Queries. If a query x is a false positive, we call Extend(x,P), after which x is no longer

a false positive.

• Insertions. When inserting an element x into S, we first check if Invariant 9.14 is violated,

that is, if there exists a y ∈ S such that p(y) v h(x).26 If so, we call Extend(x,P),

after which p(y) 6v h(x). Then we add the shortest prefix of h(x) needed to maintain

Invariant 9.14.

• Deletions. Deletions do not make calls to Adapt. We defer the details of the deletion

operation until after we discuss how to reclaim bits introduced by Adapt. For now we

note the näıve approach of deleting an element’s fingerprint is insufficient to guarantee a

sustained false-positive rate.

Reclaiming bits. Each call to Adapt adds bits, and so we need a mechanism to remove

bits. An amortized way to reclaim bits is to rebuild the broom filter with a new hash function

every Θ(n) calls to Adapt.

This change from old to new hash function can be deamortized without losing a factor

of 2 on the space. We keep two hash functions, ha and hb; any element y greater than frontier

z is hashed according to ha, otherwise, it is hashed according to hb. At the beginning of

a phase, frontier z = −∞ and all elements are hashed according to ha. Each time we call

Adapt, we delete the smallest constant c > 1 elements in S greater than z and reinsert them

according to hb. (Finding these elements requires access to R; again this can be efficiently

implemented using standard data structures.) We then set z to be the value of the largest

reinserted element. When z reaches the maximum element in S, we begin a new phase by

setting ha = hb, picking a new hb, and resetting z = −∞. We use this frontier method for

deamortization so that we know which hash function to use for queries: lookups on x ≤ z

use hb and those on x > z use ha.

Observation 9.15. A hash function times out after O(n) calls to Adapt.

Because every call to Adapt introduces an expected constant number of adaptivity bits,

we obtain the following lemma.

Lemma 9.16. In any phase, Adapt introduces O(n) adaptivity bits into the broom filter

with high probability.

26This step and the following assume x does not already belong to S. If it does, we don’t need to do
anything during insertions.
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Proof. By Observation 9.15, for some constant c1, there are c1n false positives before the

entire AMQ gets rehashed. Constant c1 is determined by the number of elements that get

rehashed per false positive, and so can be tuned.

Each time there is a false positive, there is a collision with exactly one element by

Invariant 9.14. Conditioned on the fact that there is a collision, the probability that it

can be resolved by extending fingerprints by i bits is 2−i. Whenever an element is rehashed,

its adaptivity bits get thrown out. Thus, by Chernoff bounds, the number of adaptivity bits

in the data structure at any time is O(c1n) w.h.p.

If we did not have deletions, then Observation 9.15 and Lemma 9.16 would be enough

to prove a bound on total size of all fingerprints—because adaptivity bits are removed as

their hash function times out. We will see that supporting deletions involves introducing

adaptivity bits via a second mechanism. We will show that this second mechanism also

introduces a total of O(n) adaptivity bits per phase.

Deletions and adaptivity bits. It is tempting to support deletions simply by removing

fingerprints from P , but this does not work. To see why, observe that false positives are elim-

inated by adding adaptivity bits. Removing fingerprints destroys history and reintroduces

false positives. This opens up the data structure to timing attacks by the adversary.

We describe one such timing attack to motivate our solution. The adversary finds a

false positive x and the element y ∈ S that collides with x. (It finds y by deleting and

reinserting random elements until x is once again a false positive.) The attack then consists

of repeatedly looking up x, deleting y, then inserting y. This results in a false positive on

every lookup until x or y’s hash function changes.

Thus, the broom filter needs to remember the history for deleted elements, since they

might be reinserted. Only once y’s hash function has changed can y’s history be forgotten.

A profligate approach is to keep the fingerprints of deleted elements as “ghosts” until the

hash function changes. Then, if the element is reinserted, the adaptivity bits are already

there. Unfortunately, remembering deleted elements can blow up the space by a constant

factor, which we cannot afford.

Instead, we remember the adaptivity bits and quotient from each deleted element’s

fingerprint—but we forget the remainder. Only once the hash function has changed do we

forget everything. This can be accomplished by including deleted elements in the deamor-

tized rehashing strategy of reclaiming bits. (with deletions, we increase the requirement on

adaptivity bits reclaimed at once to c > 2).

Now when a new element x gets inserted, we check whether there exists a ghost that

matches h(x). If so, then we give x at least the adaptivity bits of the ghost, even if this is
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more than needed to satisfy Invariant 9.14. This scheme guarantees the following:

Property 9.17. If x is a false positive because it collides with y, then it cannot collide with

y again until x or y’s hash function times out (even if y is deleted and reinserted).

Sustained false-positive rate. We now establish the sustained false-positive rate of

broom filters. We begin by introducing notation:

Definition 9.18. Hashes h(x) and h(y) have a soft collision when they have the same

quotient. They have a hard collision when they have the same quotient and remainder. Hash

h(x) and fingerprint p(y) have a full collision if p(y) v h(x).

Lemma 9.19. The probability that any query has a hard collision with any of n fingerprints

is at most ε.

Proof. The probability that any query collides with a single fingerprint is 2−(logn+log (1/ε)) =

ε/n. Applying the union bound, we obtain the lemma.

Lemma 9.20. The sustained false-positive rate of a broom filter is ε.

Proof. We need to establish that any query on any x has Pr[∃y ∈ S |
x has a full collision with y] ≤ ε, regardless of the previous history. Any previous query

that is a negative or a true positive has no effect on the data structure. Furthermore, dele-

tions do not increase the chance of any full collision, so we need only consider false positives

and insertions, both of which induce rehashing.

We say that x ∈ U and y ∈ S are related at time t if (1) there exists t′ < t such that x was

queried at time t′ and y was in S at t′, and (2) and between times t′ and t, the hash functions

for x and y have not changed. Suppose x is queried at time t. Then, by Property 9.17, if x and

y are related at time t, then Pr[x is a false positive at time t] = 0. If x and y are not related

at time t, then Pr[x has a full collision with y] ≤ Pr[h(x) has a hard collision with h(y)].

Finally, by Lemma 9.19, we get Pr[x is a false positive at time t] ≤ ε.

Space bounds for adaptivity bits. We first prove that at any time there are O(n)

adaptivity bits. Then we bootstrap this claim to show a stronger property: there are Θ(log n)

fingerprints associated with Θ(log n) contiguous quotients, and these fingerprints have a total

of O(log n) adaptivity bits w.h.p. (thus they can be stored in O(1) machine words).

For the analysis, we partition adaptivity bits into two classes: extend bits , which are

added by calls to Extend, and copy bits , which are added on insertion due to partial

matches with formerly deleted items. As some bits may be both extend and copy bits, we
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partition adaptivity bits by defining all the adaptivity bits in a fingerprint to be of the same

type as the last bit, breaking ties in favor of extend. If an item is deleted and then reinserted,

its bits are of the same type as when it first got them. (So if an item that gets extend bits

is deleted and reinserted with the same adaptivity bits, then it still has extend bits.)

Lemma 9.21. At any time, the broom filter has O(n) adaptivity bits with high probability.

Proof. Lemma 9.16 bounds the number of extend bits. We still need to bound the number

of copy bits. We do so using a straightforward application of Chernoff bounds.

The number of quotients that have at least k extend bits is O(n/k). This is because

the total number of extend bits is O(n). Therefore, the probability that h(x) accumulates

k extend bits is O(1/(k2k). (This is the probability that h(x) matches a quotient with k

extend bits times the probability that those extend bits match.)

Thus, the expected number of copy bits from length-k strings is O(n/2k), for 1 ≤ k ≤
Θ(log n). By Chernoff, these bounds also hold w.h.p. for k ≤ (log n)/ log log n; for k >

(log n)/ log log n Chernoff bounds give that there are O(log n) bits from length-k strings

w.h.p. Thus, the total number of adaptivity bits is O(n), w.h.p.

Lemma 9.22. There are Θ(log n) fingerprints associated within a range of Θ(log n) con-

tiguous quotients, and these fingerprints have a total of O(log n) extend bits w.h.p.

Proof. As long as there are O(n) adaptivity bits and Θ(n) elements in the broom filter, then

no matter how the adaptivity bits are distributed: the first time that x is queried or inserted

with hash function h, the probability that Adapt is called is Θ(ε). Thus, by Chernoff

bounds, before the phase ends, there are O(n/ε) distinct elements not in S that are ever

queried and O(n/ε) distinct elements that are ever inserted into S.

We can now calculate an upper bound on the number of adaptivity bits at any time t.

Recall that at the very beginning of phase `, there is a unique hash function h` that is in use,

because h`−1 has expired, and h`+1 has not been used yet. Any extend adaptivity bits that

are in the broom filter at time t in phase ` were generated as a result of collisions generated

by h`−1, h`, or h`+1.

Now consider all elements that were ever inserted or queried any time during phase `−1,

`, or ` + 1 with h`−1, h`, or h`+1. If we took all these elements, and inserted them one at

a time into S, calling Adapt to resolve any collisions, this scheme would generate all the

extend adaptivity bits that are present at time t (and more).

It thus suffices to show that even with this overestimate, the fingerprints associated within

a range of Θ(log n) contiguous quotients have a total of O(log n) extend bits w.h.p. Call

the Θ(log n) quotients under consideration the group. Define 0/1-random variable Xi = 1 iff
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element xi lands in the group and induces a call to extend. Thus, Pr[Xi = 1] ≤ O(ε log n/n).

There are O(n/ε) elements inserted, deleted, and/or queried in these rounds. Thus, by

Chernoff bounds, the number of elements that land in this quotient group is O(log n/ε), and

at most O(log n) of them get adaptivity bits with high probability.

Next we calculate the number of bits it takes to resolve the collisions. There are O(log n)

elements that land in this group. We can model this as a balls and bins game, where elements

land in the same bin if they share the same quotient and remainder. Let random variable

Ki represent the number of elements in the ith nonempty bin. Then the expected number

of bits that get added until all collisions are resolved is 2
∑O(logn)

i=1 log(Ki). By the convexity,∑O(logn)
i=1 log(Ki) = O(log n), regardless of the distribution of the elements into buckets.

To achieve concentration bounds, we upper bound this process by a different process.

Each time we add a bit, there is a probability of at least 1/2 that it matches with at most

half of the remaining strings. Thus, the number of adaptivity bits is stochastically dominated

by the number of coin flips we need until we get Θ(log n) heads, which is Θ(log n) w.h.p.

Lemma 9.23. There are Θ(log n) fingerprints associated within a range of Θ(log n) con-

tiguous quotients, and these fingerprints have a total of O(log n) adaptivity bits w.h.p.

Proof. We established the bound on extend bits in Lemma 9.22; now we focus on copy bits.

Consider any time t when there are n elements in the broom filter, and consider any

group of Θ(log n) contiguous quotients. By Chernoff bounds, Θ(log n) of these n elements

have hashes that have a soft collision with one of these quotients w.h.p. By Lemma 9.21,

there are a total of O(log n) extend bits in this range. We now show that there are also a

total of O(log n) copy bits.

Our scheme for handling adaptivity bits of deleted elements can be described in terms

of balls and bins—there are Θ(log n) bins, one for each quotient. Each string of adaptivity

bits belongs in a bin. Some bins can have multiple strings (but by standard balls-and-

bins arguments, the fullest bin has O(log n/ log log n) strings of adaptivity bits). When a

new element x is inserted, it lands in the bin determined by h(x). Then p(x) inherits the

adaptivity bits in the bin iff h(x) matches those adaptivity bits. (Thus any given string of

adaptivity bits started out as extend bits, even if it got copied many times as copy bits.)

We now bound the number of adaptivity bits by considering a variation that adds more

bits than our scheme. For each element inserted into a bin, we keep appending copy bits

as long as there is a match with some string of adaptivity bits in the bin. Once there is

a mismatch with every string, we stop. Thus, while our scheme adds copy bits only on

complete matches, we allow prefix matches while still retaining good bounds.

We again overestimate the bounds by assuming that the adaptivity bits are adversarially
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(rather than randomly) divided into bit strings and that the bit strings are adversarially

distributed among the bins.

Let random variable Ki denote the number of adaptivity bit strings in the bin where the

ith element lands. Then, Pr[Ki ≥ X] < O(1/X). This follows from Markov’s inequality

and Lemma 9.22. Since w.h.p., the total number of adaptivity bits is at most O(log n), the

expected number of bits in a bin, and therefore the expected number of strings, is O(1).

By the previous claim,

Pr[Ki ≥ X] ≤ Pr[we flip a coin and get at least log(X)−O(1) tails before any head].

Therefore, the probability that
∑c logn

i=1 log(Ki) = d log n is at most the probability that we

flip a coin d log n times and get at most c log n heads. For a suitable choice of constants c

and d, this is polynomially small. Thus,
∑Θ(logn)

i=1 log(Ki) = O(log n).

Next we bound the total number of adaptivity bits that the elements inherit. Element

xi lands in a bin with Ki adaptivity bit strings. Each time a bit is added, with probability

at least 1/2, the number of adaptivity strings that still match with h(xi) decreases by half.

Specifically, suppose that k adaptivity strings still match xi. With probability at least 1/2,

after the next bit reveal, at most bk/2c still match. So after an expected ≤ 2 log(Ki) bits,

no adaptivity bit strings still match xi. Once again this game is modeled as flipping a coin

until until we get Θ(log n) heads, and by Chernoff, only Θ(log n) are needed w.h.p.

Implementing Fingerprints and their Updates

In Chapter 9.5, we showed how to use fingerprints to achieve a sustained false-positive rate

of ε (Lemma 9.20). In this section we give space- and time-efficient implementations for

the fingerprint operations that are specified in Chapter 9.5. We explain how we store and

manipulate adaptivity bits, quotients, and remainders.

We describe two variants of our data structure, because there are two ways to manage

remainders, depending on whether log(1/ε) ≤ 2 log log n, the small-remainder case (Chap-

ter 9.5.2), or log(1/ε) > 2 log log n, the large-remainder case (Chapter 9.5.3).

Bit Manipulation within machine words. Next we show how to implement a variety

of primitives on machine words in O(1) time using word-level parallelism. The upshot is

that from now on, we may assume that the asymptotic complexity for any operation on the

broom filter is simply the number of machine words that are touched during the operation.

This section explains that we can store and maintain small strings (fingerprints or meta-

data) compactly within words, while retaining O(1) lookup (e.g., prefix match), insert, and
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delete. Based on this section, we can just focus on where (i.e., in which word) data is stored,

and we use lemma Lemma 9.24 as a black box and assume that we can do all manipulations

within machine words in O(1) time. (For simplicity, we assume that machine words have

Θ(log n) bits, since words cannot be shorter and it does not hurt if they are longer.)

Lemma 9.24. Consider the following input.

• A “query” bit string q that fits within a O(1) O(log n)-bit machine words.

• “Target” strings s1, s2, . . . , s` concatenated together so that s = s1 ◦ s2 ◦ · · · ◦ s` fits within

O(1) O(log n)-bit machine words. The strings need not be sorted and need not have

the same length.

• Metadata bits, e.g., a bit mask that indicates the starting bit location for each si.

Then the following operations take O(1) time. (Query results are returned as bit maps.)

1. Prefix match query. Given a range [j, k], find all si such that i ∈ [j, k] and si is a prefix

of q.

2. Prefix-length query. More generally, given a range [j, k], for each si such that i ∈ [j, k],

indicate the length of the prefix match between q and si.

3. Insert. Given an input string ŝ and target rank i, insert ŝ into s as the new string of

rank i.

4. Delete. Given a target rank i, delete si from s.

5. Splice, concatenate, and other string operations. For example, given i, concatenate si

with si+1. Given i and length x, remove up to x bits from the beginning of si.

6. Parallel inserts, deletes, splices, concatenations, and queries. Multiple insert, delete,

query, splice, or concatenate operations can be supported in parallel, e.g., remove x

bits from the beginning of all strings, and indicate which strings still have bits.

Proof. These operations can be supported using standard compact and succinct data-

structures techniques, such as rank, select, mask, shift, and sublinear-sized lookup tables.

Insertion, deletion, concatenation, etc., are handled using selects, bit-shifts, masks, etc.

We first explain how to find a string si that is a prefix match of q for the special case

that q has length at most log n/8. We partition s into chunks such that each chunk has size

log n/8. Now some sj are entirely contained within one chunk and some straddle a chunk

boundary. As only O(1) strings can straddle a boundary, we can search each of them serially.

In contrast, there may be many strings that are entirely contained within a chunk, and

these we need to search in parallel. We can use lookup tables for these parallel searches.

Since there are at most 2logn/8 = n1/8 input choices for query string q and at most n1/4

input choices for the concatenated target strings (metadata bits and s), a lookup table with

precomputed responses to all possible queries still takes o(n) bits.
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The remaining operations are supported similarly using rank, select, and lookup tables.

For example, the more general case of querying larger q is also supported similarly by dividing

q into chunks, comparing the chunks iteratively, and doing further parallel manipulation on

s, also using lookup tables. In particular, since we compare q in chunks, we have to remove

all strings si that already do not have a prefix in common with q as well as those shorter

strings where no prefix is left.

Encoding adaptivity and deletion bits. We store adaptivity bits separately from the

rest of the fingerprint. By Lemma 9.23, all of the adaptivity bits in any range of Θ(log n)

quotients fit in a constant number of words. Thus, all of the searches and updates to (both

copy and extend) adaptivity bits can be achieved in O(1) time by Lemma 9.24.

Encoding quotients. Quotients and remainders are stored succinctly in a scheme similar

to quotient filters [22,119]; we call this high-level scheme quotienting .

Quotienting stores the baseline fingerprints succinctly in an array of Θ(n) slots, each

consisting of r bits. Given a fingerprint with quotient a and remainder b, we would like to

store b in position a of the array. This allows us to reconstruct the fingerprint based on

b’s location. So long as the number of slots is not much more than the number of stored

quotients, this is an efficient representation. (In particular, we will have a sublinear number

of extra slots in our data structure.)

The challenge is that multiple fingerprints may have the same quotient a, and thus con-

tend for the same location. Linear probing is the standard technique for resolving collisions:

slide an element forward in the array until it finds an empty slot. Linear probing does not

immediately work, however, since the quotient is supposed to be reconstructed based on

the location of a remainder. The idea of a quotient filter is to maintain a small number of

metadata bits per array slot (e.g., between 2 and 3) along with linear probing. The metadata

bits encode the target slot for a remainder even when it is shifted to a different slot.

As-is, the quotient filter does not achieve constant time operations, independent of ε.

This is because when the remainder length r = log(1/ε) = ω(1), and the fingerprint is stored

in a set of Ω(log n) contiguous slots, there can be ω(1) locations (words) where the target

fingerprint could be. (This limitation holds even when the quotient filter is half empty, in

which case it is not even space efficient enough for Theorem 9.13.)

Nonetheless, the quotient filter is a good starting point for the broom filter as it allows us

to maintain a multiset of baseline fingerprints subject to insertions, deletions, and queries.

In particular, some queries will have a hard collision with multiple elements.27 We need to

27Given this subtlety, we did not manage to get the single-hash function bloom filters of Pagh et al. [118]
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compare the adaptivity bits of the query to the adaptivity bits of each colliding element. The

quotienting approach guarantees that these adaptivity bits are contiguous, allowing us to

perform multiple comparisons at once using word-level parallelism. Specifically, Lemma 9.22

ensures that the adaptivity bits for O(log n) quotients fit into O(1) machine words.

9.5.2 Broom Filter Design for the Small-Remainder Case

In this section we present a data structure for the case that r = O(log log n). This data

structure is simple, yet for this range of r its performance dominates all other known AMQs.

High level setup. Our data structure consists of two levels: a primary level and a sec-

ondary level. Each level is essentially a quotient filter; however, we slightly change the insert

and delete operations for the primary level in order to ensure constant-time accesses.

As in a quotient filter, the primary level consists of n(1 + α) slots, where each slot has a

remainder of size r = log(1/ε) = O(log log n). Parameter α denotes the subconstant extra

space we leave in our data structure; thus the primary level is a quotient filter, with space

parameterized by α (and with slightly modified inserts, queries, and deletes). We require

α ≥
√

(9r log log n)/ log n; a simpler choice like α = 1/ log log n works fine.

The secondary level consists of another quotient filter with Θ(n/ log n) slots. This data

structure uses a different hash function h2. Thus, an element x has two fingerprints p1(x) and

p2(x). The internals of the two levels are maintained entirely independently: Invariant 9.14 is

maintained separately for each level, and adaptivity bits do not carry over from the primary

level to the secondary level.

How to perform inserts, queries and deletes. To insert y ∈ S, we first try to store the

fingerprint p1(y) in the primary level. This uses the technique described in Chapter 9.5.1:

we want to store the remainder in the slot determined by the quotient. If the slot is empty,

we store the remainder of p1(y) in that slot. Otherwise, we begin using linear probing to

look for an empty slot, updating the metadata bits accordingly; see [22, 119].

However, unlike in previous quotienting-based data structures, we stop our probing for an

empty slot early: in the primary level, the data structure only continues the linear probing

over O((log n)/r) slots (and thus O(1) words). If all of these slots are full, the item gets

stored in the secondary level. In Lemma 9.26 we show that it finds an empty slot in O(1)

words in the secondary level w.h.p.

or the backyard hashing construction of Arbitman et al. [5] to interface with adaptivity bits. Instead we used
techniques (e.g., not cuckoo-ing) that permit the same element to be explicitly duplicated multiple times.
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We always try to insert into the primary level first. That is, even if x is deleted from the

secondary level while reclaiming bits, we still attempt to insert x into the primary level first.

Queries are similar to inserts—to query for y, we calculate p1(y) and search for it in the

primary level for at most O((log n)/r) slots; if this fails we calculate p2(y) and search for it

in the secondary level.

Lemma 9.25. The number of elements that get inserted into the secondary level is

O(n/ log2 n) with high probability.

Proof. Partition the primary level into primary bins of (1+α)(log n)/r consecutive slots. An

element is inserted into the secondary level only if it is inserted into a sequence of Ω((log n)/r)

full slots; for this to happen either the primary bin containing the element is full or the bin

adjacent to it is full. We bound the number of full primary bins.

In expectation, each bin is (initially) hashed to by (log n)/r elements. Thus, by Chernoff

bounds, the probability that a given primary bin is hashed to by at least (1 + α)(log n)/r

elements is at most exp(−(α2 log n)/(3r)) ≤ 1/ log3 n.

Thus, in expectation, n/ log3 n primary bins are full. Since these events are negatively

correlated, we can use Chernoff bounds, and state that O(n/ log3 n) primary bins are full

with high probability.

Each primary bin is hashed to by O(log n) elements in expectation (even fewer, in fact).

Again by Chernoff, each primary bin is hashed to by O(log n) elements with high probability.

Putting it together, even if all O(log n) elements hashed into any of the O(n/ log3 n)

overflowing primary bins (or either adjacent bin) are inserted into the secondary level.

Lemma 9.26. With high probability, all items in the secondary level are stored at most

O(log n/r) slots away from their intended slot.

Proof. Partition the secondary level into secondary bins of Θ(log n/r) consecutive slots.

Thus, there are Θ(nr/ log2 n) secondary bins. The lemma can only be violated if one of

these bins is full.

By Lemma 9.25, we are inserting O(n/ log2 n) elements into these bins. By classical

balls and bins analysis, because there are more bins than balls, the secondary bin with the

most balls has O((log n)/ log log n) = O((log n)/r) elements with high probability. Thus, no

secondary bin ever fills up with high probability.

Performance. The O(1) lookup time follows by definition in the primary level, and by

Lemma 9.26 in the second level. The total space of the primary level is O((1+α)n log(1/ε))+
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O(n), and the total space of the second level is O((n log(1/ε))/ log n). We guarantee adap-

tivity using the Adapt function defined in Chapter 9.5, which makes O(1) remote memory

accesses per insert and false positive query.

9.5.3 Broom Filter Design for the Large-Remainder Case

We now present a data structure for the the large-remainder case, log(1/ε) > 2 log log n.

Here is how this case differs from the previous one. Large remainders are harder to store

efficiently since only a small number can fit in a machine word. E.g., we are no longer

guaranteed to be able to store the remainders from all hard collisions in O(1) words w.h.p.

However, large remainders also have advantages. We are very likely to be able to search

using only a small portion of the remainder—a portion small enough that many can be

packed into O(1) words. In particular, we can “peel off” the first 2 log log n bits of the

remainder, filter out collisions just based on those bits, and we are left with few remaining

potential collisions. We call these partial collisions .

So we have an initial check for uniqueness, then a remaining check for the rest of the

fingerprint. This allows us to adapt the small-remainder case to handle larger remainders

without a slowdown in time.

Data structure description. As before, our data structure consists of two parts. We

refer to them as the primary level and the backyard . This notation emphasizes the structural

difference between the two levels, and emphasizes the relationship with backyard hashing [5].

Unlike the small-remainder case, we use only a single hash function.

The primary level consists of two sets of slots: signature slots of size 2 log log n, and

remainder slots of size r − 2 log log n. As in Chapter 9.5.2, the number of remainder slots

is (1 + α)n and the number of signature slots is (1 + α)n, where α ≥
√

18 log2 log n/ log n.

Since the appropriate slot is found while traversing the signature slots, we only need to store

metadata bits for the signature slots, not for the remainder slots. The signature slots are

stored contiguously, thus O(log n/ log log n) slots can be probed in O(1) time.

Each item is stored in same the remainder slot as in the normal quotient filter. The

signature slots mirror the remainder slots; however, only the first 2 log log n bits of the

remainder are stored, the rest are stored in the corresponding remainder slot.

The front yard. To insert an element y, we first we try to insert p(y) in the front yard. We

first find the signature slot corresponding to the quotient of p(y). We then search through

at most O(log n/ log log n) signatures to find a partial collision (a matching signature) or
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an empty slot. We use metadata bits as usual—the metadata bits guarantee that we only

search through signatures that have a soft collision with p(y).

If we do find a partial collision—a signature that matches the first 2 log log n bits of the

remainder of p(y)—we insert p(y) into the backyard. If there is no empty slot, we insert p(y)

into the backyard. If we find an empty slot but do not find a partial collision, we insert p(y)

into the empty slot; this means that we insert the signature into the empty signature slot,

and insert the full remainder of p(y) into the corresponding remainder slot. We update the

metadata bits of the signature slots as in [22,119].

Querying for an element x proceeds similarly. In the front yard, we find the signature slot

corresponding to the quotient of p(x). We search through O(log n/ log log n) slots, looking

for a matching signature. If we find a matching signature, we look in the corresponding

remainder slot to see if we have a hard collision; we return “present” if so. If we do not find

a matching signature, or if the corresponding remainder slot does not have a hard collision,

we search for p(x) in the back yard.

The back yard. The back yard is just a compact hash table that can store O(n/ log n)

elements with O(1) worst-case insert and delete time.28 One example of such a data structure

is by Demaine et al. [53], though there exist other options, such as the backyard hashing

scheme of Arbitman et al. [5]. When we store an element y in the back yard, we store its

entire hash h(y). Thus, w.h.p. there are no collisions in the back yard. Since the back yard

has a capacity for Θ(n/ log n) elements, and each hash has size Θ(log n), the back yard takes

up Θ(n) bits, which is a lower-order term.

Lemma 9.27. With high probability, O(n/ log2 n) elements are stored in the back yard.

Proof. An element is stored in the backyard only if 1. it is in a sequence of Ω(log n/ log log n)

full slots, or 2. it has a partial collision with some stored element.

The number of elements that are in a sequence of full slots is O(n/ log2 n) with high

probability; this follows immediately from Lemma 9.25 with r = 2 log log n.

A query element x has a partial collision with an element y if they have the first

log n+ 2 log log n bits of their fingerprint in common. Thus, x and y collide with probability

1/(n log2 n); thus x has a partial collision with 1/ log2 n stored elements in expectation. The

lemma follows immediately from Chernoff bounds.

28Such a scheme would suffice for the secondary level of the small-remainder case as well. However, the data
structure we described for the small remainder case is simpler and likely faster in practice. That scheme does
not appear to work for the large-remainder case without significant modifications because the cost analysis
breaks down on the second level. Investigating the practical tradeoffs of how to store the secondary level
would be interesting future work.
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Performance. The back yard requires O(n) total space, since each hash is of length

O(log n). The front yard requires (1 + α)nr space for all primary slots, plus O(n) extra

space for the adaptivity bits.

Inserts, deletes, and queries require O(1) time. The search for partial collisions involves

O(log n/ log log n) signature slots, which fit in O(1) words; these can be searched in constant

time using Lemma 9.24. We look at a single remainder slot, which takes O(1) time. If

needed, any back yard operation requires O(1) time as well.

9.6 How to Turn any AMQ into an Adaptive AMQ

In this section, we describe how to take an AMQ and modify it to achieve a sustained false-

positive rate of ε. Our construction is not quite black box, it’s a “grey box”—we make small

structural changes to the AMQ, but leave most of its workings intact. This construction

does not require accesses to remote representation R of S during insertions, just deletions.

Our construction arranges multiple copies of the AMQ in a hierarchical layout. The high

level idea of the data structure is that if a query x results in a false positive at some level,

then we move the elements in S that collide with x to the copy of the AMQ at the next

level. In the case of Bloom filters and quotient filters, the cost for this data structure over

the original AMQ is an extra 1 + O(ε) factor in space usage.

Adaptive Bloom filter. We demonstrate our technique using a Bloom Filter. The data

structure consists of d levels (we set d later). Each level consists of a Bloom filter augmented

with an extra bit for each cell, denoting whether the cell is alive or dead. (This extra bit

and the resulting changes to Lookup are the “grey box” part of the construction.) We

call the Bloom filters B0, . . . , Bd. Bloom filter Bi has ki randomly chosen hash functions

hi,0, hi,1, . . . , hi,ki−1. Each hash function is selected independently of all other hash functions

at all other levels.

Bloom filter B0 has error rate ε0 = ε and k0 = log(1/ε) hash functions. We specify the

parameters of subsequent levels below. At initialization, B0 contains all n elements of S. All

other Bloom filters B1 . . . Bd are empty, and all cells in all levels are alive.

We now define the lookup operation in Figure 20, which includes a subroutine to fix x if

x is a false positive. Lookup(x) begins with a call to Lookup(x, 0).

Allocating space for each Bi based on εi. We begin by specifying the false-positive

probability εi at each level. Let ε0 = ε, and for i > 0, let εi = ε2
i−1. Let ni be the number of

elements that are ever stored in Bi (that is, ni includes elements that are marked dead and
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Lookup(x, i):

• If ∃ j such that Bi[hi,j(x)] = 0, re-
turn “absent”.

• If Bi[hi,j(x)] = 1 ∀j, and no dead
cells, then if x is a false positive inBi,
Adapt(x, i), and return “present”.

• Else, Lookup(x, i+ 1).

Adapt(x, i):

• Pick a random j from {0, . . . , ki−1}.

• Mark hi,j(x) as dead in Bi.

• For all y ∈ S with hi,j(y) = hi,j(x):

– Insert y in Bi+1, that is,
Insert(y, i+ 1).

Figure 20: Algorithms for Lookup and Adapt in an adaptive Bloom filter.

inserted into Bi+1). Thus, n0 = n. An element is moved to the next level if a false positive

collides with it, so E[ni] = εi−1ni−1. We ensure that ni, the number of elements actually in

Bi, is not much bigger than its expectation; if this is violated, we rebuild. Specifically, we

guarantee (by Chernoff bounds) that ni ≤ E[ni](1 + 1/ log n) with high probability.

We can now compute the space requirement mi of each level as follows:

mi = ni−1(εi−1 log e)(1 + 1/ log n) log(1/εi) ≤ n(εi−1 log e)(1 + 1/ log n) log(1/εi−1).

Finally, let d = log log log n − log log 1/ε + O(1) be the smallest integer such that nd ≤
n/(3 log n) with high probability.

When the number of elements nd is sufficiently small we change technique. There are

a variety of solutions we could plug in. For example, we could store the hashes in an

open-chaining power-of-two-choices hash table. Since the remainders are so large, we can

afford the overhead of a pointer-based data structure and still only incur O(n) bits of space

overhead. This would give O(log log n)-time lookups and updates at the last level, which

does not change the ultimate cost of operations. Theorem 9.28 show that this hierarchical

construction is adaptive and efficient.

Theorem 9.28. For any ε and any sequence of up to n queries, there exists a hierarchical

construction that takes a (nonadaptive) Bloom filter and generates an adaptive AMQ—the

adaptive Bloom filter—that maintains a sustained false-positive rate of ε with high probability.

The adaptive Bloom filter guarantees:

• O(1) cost in expectation and O(log log n) w.h.p. for inserts,

• O(log(1/ε)) cost in expectation and O(log log n) w.h.p. for lookups,

• (1 +O(ε))(log e) n log(1/ε) space w.h.p.,

• O(1) accesses to the remote representation R of S for each (true of false) positive and
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each delete.

Proof. We first show that the total number of levels d = O(log log n). After O(log log n)

levels, we have εi ≤ 1/(3 log n(1 + 1/ log n)), so ni ≤ n/(3 log n) with high probability, at

which point we switch to an alternative scheme by construction.

Now we bound the total space. Since εi = ε2
i−1, we have εi log(1/εi) ≤ εi−1 log(1/εi−1) if

εi−1 ≤ 1/2. In particular, if ε ≤ 1/4, then εi log(1/εi) ≤ (1/2)εi−1 log(1/εi−1). Recall that

by our definition of d, 1/ log n = O(εi) for all i. Then

d∑
i=0

mi ≤ (log e)(n log 1/ε)

(
1 + ε(1 + 1/ log n) + (1 + 1/ log n)

d∑
i=2

εi−1 log 1/εi−1

)
= (log e)(n log 1/ε)(1 +O(ε)).

We also store extra metadata bits. If we store these bits explicitly, we incur an additional

space cost of (log e)(n log(1/ε)) in B0 alone, effectively doubling the space. By the above

analysis, this is only a problem for B0—the metadata bits in the recursive Bloom filters do

not affect our asymptotics. However, we only set ni bits in Bi−1; in particular, we only set

O(εn) bits in B0. Since we only set few bits, we can compress the metadata bits for B0

while retaining fast query time using standard techniques. For example, we can divide B0

into O(εn) ranges of size (1/ε) log(1/ε), storing the dead bits within each range. This takes

O(εn log(1/ε)) total bits. (Since each range has O(log(1/ε)) expected dead bits, this only

adds O(log(1/ε)) to our expected query time.)

Each query at level i takes log(1/εi) time. Since a query at level i reaches level i + 1

with probability at most εi, the total expected cost over all levels is (ignoring constants for

simplicity) log(1/ε)+
∑d

i=1 εi log(1/εi) ≤ 2 log(1/ε). The worst-case cost of a query is for one

that reaches level d. Since log(1/εi) ≥ 2 log(1/εi), the cost of this query is mostly incurred

at level d itself, giving a cost of O(log(1/εd)) = O(log log n).

The sustained false-positive rate follows from the independence of the hash functions in

each Bi, that is, if x is a false positive in Bi, one of its cells is marked dead; the probability

that x is a false positive in Bi+1 is ≤ ε.

Extending to other AMQs. The above strategy can be used to construct an adaptive

AMQ from any nonadaptive AMQ in which we can fix a false positive by marking (as dead)

O(1) elements of S in expectation and then inserting them to the next level.

This strategy works particularly well for single-hash nonadaptive AMQs that represent S
by storing h(S) losslessly. Construct a hierarchy of filters with decreasing false-positive rates

as described above. Whenever the adversary discovers a false positive x that collides with
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some set of elements Y stored in the ith level, mark h(x) as dead and insert the elements of

Y into the (i+ 1)st level. This requires O(1) access to S in order to invert the hash function

used at level i. In general, the new AMQ will have log log n levels, and take the same space

as the underlying nonadaptive AMQ plus lower order terms. It will support insertions and

queries with the same cost as the underlying AMQ in expectation and a factor of at most

O(log log n) slower than the underlying AMQ with high probability.

However, if the underlying nonadaptive AMQ supports O(1)-time insertions and lookups,

we can improve the performance of this construction toO(log∗ n)-time insertions and lookups.

In particular, we set ε0 = ε, as before. At level 1, we set ε1 = 2
− log(1/ε)√

ε = ε
1√
ε . For i ≥ 2, we

set εi = ε1/(εi−1). Thus, d = O(log∗ n) with high probability. As in the adaptive Bloom filter,

we set the size of the ith filter by bounding E[ni] ≤ εni−1
E[ni−1](1 + 1/ log n). That is, we

set mi ≤ nεi−1(1 + 1/ log n)(log 1/εi +O(1)). Thus the total space used is∑
i

mi = (n log (1/ε) +O(n))(1 + 1/ log n)(1 +
√
ε+ ε1/

√
ε + . . .) = n log(1/ε) +O(n).

The following theorem summarizes the performance of this construction.

Theorem 9.29. Given ε and a sequence of up to n queries, there exists a construction that

turns a O(1)-expected time and n log(1/ε) + O(n) space nonadaptive AMQ, into a adaptive

AMQ with a sustained false-positive rate of ε with high probability. This AMQ guarantees:

• O(1) cost in expectation and O(log∗ n) w.h.p. for inserts,

• O(1) cost in expectation and O(log∗ n) w.h.p. for lookups,

• n log(1/ε) +O(n) space w.h.p.,

• O(1) accesses to the remote representation R of S for each false positive and each deletion.
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dictionaries using little space. In Proceedings of the 7th Latin American Symposium

on Theoretical Informatics (LATIN), pages 349–361, 2006.

[54] Fan Deng and Davood Rafiei. Approximately detecting duplicates for streaming data

using stable bloom filters. In Proceedings of the SIGMOD International Conference on

Management of Data, pages 25–36, 2006.

[55] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lockwood.

Deep packet inspection using parallel bloom filters. In Proceedings of the 11th Sympo-

sium on High Performance Interconnects, pages 44–51, 2003.

[56] Benoit Donnet, Bruno Baynat, and Timur Friedman. Improving retouched bloom filter

for trading off selected false positives against false negatives. Computer Networks,

54(18):3373–3387, 2010.

[57] John Duggan. An extensive form solution to the adverse selection problem in

principal/multi-agent environments. Review of Economic Design, 3(2):167–191, 1998.

[58] David Eppstein and Michael T Goodrich. Straggler identification in round-trip data

streams via newton’s identities and invertible bloom filters. Transactions on Knowledge

and Data Engineering, 23(2):297–306, 2011.

152



[59] David Eppstein, Michael T Goodrich, Michael Mitzenmacher, and Manuel R Torres.

2-3 cuckoo filters for faster triangle listing and set intersection. In Proceedings of the

36th SIGMOD Symposium on Principles of Database Systems (PODS), pages 247–260.

ACM, 2017.

[60] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo

filter: Practically better than Bloom. In Proceedings of the 10th International on

Conference on Emerging Networking Experiments and Technologies, pages 75–88, 2014.

[61] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scalable

wide-area web cache sharing protocol. Transactions on Networking, 8(3):281–293, 2000.

[62] Uri Feige and Joe Kilian. Two prover protocols: low error at affordable rates. In

Proceedings of the 26th Annual Symposium on Theory of Computing (STOC), pages

172–183, 1994.

[63] Uriel Feige and Joe Kilian. Making games short. In Proceedings of the 29th Annual

Symposium On Theory of Computing (STOC), pages 506–516, 1997.
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