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Abstract. In this paper we use the repeated-games framework to design
and analyze a master-worker (MW) mechanism, where a master repeat-
edly outsources computational tasks to workers in exchange for payment.
Previous work on MW models assume that all workers are perfectly ratio-
nal and aim to maximize their expected utility. Perfect rationality is a
strong behavioral assumption because it requires that all workers follow
the prescribed equilibrium. Such a model may be unrealistic in a practi-
cal setting, where some agents are not perfectly rational and may deviate
from the equilibrium for short-term gains. Since the correctness of these
MW protocols relies on workers following the equilibrium strategies, they
are not robust against such deviations.

We augment the game-theoretical MW model with the presence of
such bounded-rational players or deviators. In particular, we show how to
design a repeated-games based MW Verifiable Crowd Computing mech-
anism that incentivizes the rational workers (or followers) to effectively
punish such deviators through the use of terminal payments. We show
that the master can use terminal payments to obtain correct answers to
computational problems even in this more general model. We supplement
our theoretical results with simulations that show that our mechanism
outperforms related approaches.

Keywords: Crowd computing · Master-worker computing · Internet
computing · Verifiable computation outsourcing · Repeated games ·
Algorithmic game theory

1 Introduction

Due to the escalation of large data sets and the high cost of supercomputers,
most computation today is not being performed locally, but rather outsourced
either as Cloud Computing, Grid Computing, or to Internet-connected personal
computers (which we refer to as Crowd Computing1). In a Crowd Computing
platform, a client outsources computational tasks to several untrusted workers,

1 The denomination Crowd Computing has been used for different systems. We define
our model in Sect. 3.
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often in exchange for money. Crowd Computing has proven to be a powerful and
cost-effective alternative to setting up an expensive computational infrastructure
locally. However, it also brings up several implementation challenges, the most
prominent one being: how can a client ensure that the computational tasks have
been performed correctly by the untrusted workers?

In this work, we study Crowd Computing in the master-worker (MW) model
where computational tasks are assigned by a centralized entity called master to
agents called workers. Workers are expected to compute the task and return the
result. All communication between master and workers occurs in parallel, that
is, tasks are assigned and the results are returned simultaneously by all workers.

Practical examples of such Crowd Computing systems include
SETI@home [42], Foldit [32,45], and Mechanical Turk [3]. Reliable partic-
ipation in these systems is induced through various incentives. For example, in
Foldit the motivation is to participate in a game, in Mechanical Turk workers
participate for profit compelled by a reputation system, whereas in SETI@home
workers are altruistic volunteers.

Game-theoretical MW Model. Various models of worker-behavior have been
studied in the MW literature in distributed computing, e.g., the workers have
been assumed to be either malicious or honest [20,21,23,34–36,44].

The game-theoretic MW model assumes that all workers are rational and
choose their strategy to maximize their expected utility [13,14,21,22,47]. While
such a model is ideal for capturing the economic incentives that are present in
these systems, it also imposes strong behavioral assumptions on the workers. In
particular, the players are assumed to be perfectly rational. That is, all players
play the prescribed equilibrium strategy. In practice, some strategic agents in
a Crowd Computing system may not follow the equilibrium strategy for any
number of reasons: carelessness, limited rationality (they may not believe in the
expected utility guarantees of a probabilistic mechanism), they may be skepti-
cal of the empty threats sustainining the equilbrium, or they may distrust the
master. We call such players who are not perfectly-rational and may not follow
the prescribed equilibrium as deviators.

There is evidence that even in systems that provide incentives for computing
correctly, such deviators exist [4,26,30]. Since the master obtains the correct
answer to the computational tasks only when all workers follow the equilibrium
prescribed by the chosen incentives, the presence of such bounded-rational play-
ers, or deviators jeopardizes the correctness guarantees of such systems.

In this paper, we provide a principled approach to designing MW mechanisms
for Crowd Computing in the presence of such “bounded rational” deviators. We
say these deviators have bounded rationality to distinguish them from purely
malicious players because while they initially deviate from the equilibrium, once
they are punished by their rational peers, they realize that the threats are cred-
ible, and their utility will be maximized by following the equilibrium. That is,
we assume that after being punished deviators behave as followers.

Master-Worker Model with Deviators. In this work, we augment the
repeated-games-based MW model of Fernández Anta et al. [24] in two ways.
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First, we consider pools of workers that include deviators.2 In particular, we
assume that some players in the system are perfectly-rational in the game-
theoretic sense and, hence, will follow the prescribed equilibrium (we call them
followers) and the rest are deviators, who initially may not follow the equilibrium
strategy. Second, in contrast to the infinitely repeated game studied in [24], we
consider finitely repeated games. That is, the MW interaction lasts for prede-
termined number of rounds (with a possible extension as explained in Sect. 3).

The presence of deviators in the MW model poses several challenges. First, we
need a mechanism to identify and appropriately punish such deviators. Second, in
a repeated-games framework such a punishment must be levied by the followers,
who incur a short-term utility loss in doing so. Thus, we need a mechanism to
incentivize the followers to punish deviators on behalf of the master. We achieve
this through the use of terminal payments, which are additional payments
provided to the followers at the end of a finitely-repeated game.

Terminal payments in finitely-repeated games has been studied by Goss-
ner [27], who proved a Folk Theorem for such games when players use mixed-
strategies. Gossner introduced these payments precisely to handle the presence
of deviators. We follow Gossner’s model of terminal payments and use them to
compensate followers at the end of the MW protocol.

Finitely-repeated games and terminal payments are particularly appealing
from a practical standpoint in Crowd Computing systems as they better capture
the practice of (a) hiring workers for limited periods, and (b) keeping track of
their behavior and rewarding compliance through payments, respectively. Exten-
sions such as modeling different types of deviators, or collusion among workers
are also interesting, and are left to future work.

1.1 Main Contributions

We summarize the main contributions of our paper below.

– Modeling Deviators. We generalize the repeated-games MW model to allow for
the presence of bounded-rational workers or deviators. Bounded-rationality
is a concept that has gained popularity in the computational applications
of game theory (e.g. see. [5,10–12,16,28,29,43]) because it bridges the gap
between game theory and rational behavior in practice. Our bounded-
rationality models intentional deviations, as opposed to other models where
deviations are accidental (e.g. trembling-hand equilibria [9]).

– Terminal Payments. We show how to implement terminal payments in a
constructive way in the repeated-games model. This notion was previously
only studied in an existential context. In particular, Gossner [27] showed that
a mixed-strategy equilibrium of finitely-repeated games exists in the presence
of terminal payments. In this paper, we construct a mechanism that admits
such an equilibrium in the presence of deviators.

2 The notion of deviators is only considered as part of the simulations in [24]; see
Sects. 2 and 6 for further comparison.
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– Verifiable MW Computing in the Presence of Deviators. As our main result
(Theorem 1) we provide a MW mechanism that is robust against deviating
workers—that is, the master obtains the correct answer in expectation and
asymptotically almost surely under certain mild conditions. We achieve this
through a finitely-repeated MW game and the use of terminal payments.
Thus, our mechanism improves over the work of Fernández Anta et al. [24] in
achieving correctness guarantees in a weaker behavioral model that includes
bounded-rationality.

– Simulation Results. We also compare experimentally the performance of our
mechanism to the previous work of Christoforou et al. [15] and Fernández-Anta
et al. [24]. We compare these approaches on the following metrics: correctness
of the answers obtained by the master and the cost incurred by the master.
On the range of parameters tested, our simulations show that, even for a large
number of tasks, our mechanism outperforms [15] in correctness at a similar
cost. Moreover, our mechanism outperforms [24] in terms of the cost while
providing similar correctness guarantees in a weaker model. We note that the
repeated application of a one-shot verification mechanism was shown to be
worse than [15] in [24]. Consequently, our mechanism outperforms such an
approach and we omit including it in simulations for clarity.

2 Additional Related Work

We discuss the various MW models that have been studied in the literature.

MW with Malicious Workers. Distributed computations in presence of mal-
ice have been well studied (e.g. [20,34,35,44]). In [44], the workers are assumed
to be malicious with some probability. To counter their effect, tasks with known
outcomes are executed to detect malicious workers, which is argued to work bet-
ter than voting techniques. However, later experimental work [34] showed that
it takes a long time to achieve low error rates in practice. In [20], the model
considers malicious workers who may deliberately return an incorrect result in
an effort to harm the master. Workers have a predefined behavior: either they
are malicious or honest. Majority voting is used to cope with malice in one-shot
computations. This work was later extended [35] to many tasks. A distributed
verification mechanism was introduced in [36], however, the model limits malice
to 20% of the workers. None of these models study selfish (rational) behavior.

MW Model with Rational Workers. Distributed computations when work-
ers are selfish (rational in the game-theoretic sense) have also been studied
(e.g. [13,14,21–23]). In [47], all workers are assumed to be rational. Auditing
and majority voting measures are used. If a non-audited computation does
not yield an absolute majority, the task is recomputed to achieve reliabil-
ity. Several works study coexistence of rational and malicious players [1,2,6–
8,13,14,18,19,22,25,40]. For example, protocols in [19] tolerate up to k rational
players that deviate from a NE, follow-up work [1] tolerates up to k colluding
rational players and t Byzantine ones. The BAR model (Byzantine, Altruistic,
and Rational) was introduced in [2] and later used in [37,38].
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The above work applies to one-shot interactions between master and workers.
That is, the system design is oriented to the reliable computation of one task.

Repeated Games and MW. In the repeated-games MW framework, the
master sequentially assigns tasks to the same pool of workers. Christoforou et
al. [15] (and follow-up [39]) use this framework to design a mechanism based
on reinforcement-learning. In their approach, master and workers adjust their
strategies for the next interaction according to the outcome of the previous one.
The mechanism is shown to eventually converge to a state where the master
always obtains the correct results with minimal verification. Depending on sys-
tem parameters such as rewards, penalties and the workers’ aspiration for profit,
the time required for convergence may be long.

Our work builds upon the MW model of Fernández Anta et al. [24] and differs
from it in two ways.

First, the MW model in [24] is based on infinitely repeated games [41], while
we design a finitely-repeated MW game. The infinitely-repeated games approach
is shown to improve upon repeated application of one-shot and reinforcement-
learning mechanisms in terms of cost and reliability. However, the correctness of
the model relies heavily on the assumption that the workers are uncertain about
when the game ends. In particular, if the workers in [24] were to know when
the interaction ends, they would stop following the equilibrium (and computing
tasks) and default to cheating. Letting workers know the (possibly extended)
length of the interaction a priori makes the model more realistic.

Second, the model in [24] assumes all players are perfectly rational, while we
allow the presence of deviators. The term “deviators” is used in [24] to analyze
deviations from the equilibrium strategy, but these deviations are never benefi-
cial for the workers. Thus, since all workers are perfectly rational, no worker will
ever deviate. In this paper, we define deviators as players who may not follow the
prescribed equilibrium despite being aware of the consequence to their utility,
perhaps because they do not trust the mechanism or the threats of punishment.
To ensure that the punishment by followers is not just an empty threat, we
incentivize followers to levy the punishment using terminal payoffs. In contrast,
the punishment by peers in [24] is effectively an empty threat because impos-
ing the punishment causes a utility loss to players, and they incur such a loss
indefinitely in the infinitely repeated game.

Repeated Games and Crowdsourcing. More recently, a repeated-games
approach to collect crowd sensor data was presented in [33]. Their mechanism
uses a worker-reputation system, reinforcement learning to update strategies,
and master verification in the presence of both rational and irrational workers.
Their game model is finite but fails to address the deviation from equilibrium of
rational workers when the sequence of task assignments is reaching the end.

Several crowdsourcing models focus on collusion reporting or cheating detec-
tion when there are only two workers [17,46], or considering master-worker inter-
action as a two-player game [31]. Such approaches are often case-by-case and do
not model repeatedly outsourcing many computational tasks.
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3 Preliminaries

We say that a stochastic event holds with high probability (w.h.p.), if it holds
with probability at least 1 − 1/nc, for some constant c > 0, and that it holds
asymptotically almost surely (or a.a.s., for short), if it holds with probability at
least 1 − 1/f(n), where f(n) ∈ ω(1).
Master-Worker Model. We consider a computing platform with a set N of
processing entities called workers, where |N | = n, and a coordinator entity
called master . We call this platform a master-work (MW) system.

The master assigns computing tasks to workers sequentially in rounds. We
assume that the master has an unbounded source of tasks that need to be com-
puted. We consider computation of tasks that have a unique correct answer.
In each round, the master assigns the same computational task to all workers.
Upon receiving the results, the master decides stochastically whether to ver-
ify them (e.g. checking the solutions received or computing the result itself if
needed), or accept the majority. The probability of verification by the master
is denoted as pv. In order to avoid ties, we let n be odd. We assume that the
cost of verification is negligible with respect to computing the task, e.g. NP-hard
problems. If the master verifies the results of the computation, it pays a reward
ρ to the workers that returned the correct result, and charges a fine φ to those
that returned and incorrect result. If the master does not verify, workers in the
majority receive the reward ρ and no worker is fined.

The expected cost of the master is defined as the sum of the expected
verification cost and expected payments, minus the expected fines received (since
they reduce the cost).

As a design decision, our mechanism specifies a reward threshold γ on the
number of workers that will be rewarded. That is, if the number of workers to be
rewarded exceeds the reward threshold, the master does not reward any worker
(regardless of verification). This reward threshold reflects the natural assumption
that the master has a limited budget. Because receiving fines from the workers is
not the goal of the system, this parameter ensures that the cost reduction due to
fines does not increase the budget of the master for rewards. Note the prescribed
equilibrium will ensure that the number of workers following it (the followers)
stay below the threshold γ. In other words, in absence of deviations, the workers
strategic decision stochastically guarantees that the number of correct answers
will be at most γ.

Computing a task involves a cost for the workers, which is assumed to be
the same value c for all. For each round of task assignments, the strategy of the
workers is defined by their probabilistic choice to either compute the result of the
task or to return a default incorrect answer to avoid the cost of computing, albeit
risking to be fined. For each worker i ∈ N , let the probability of computing
the task be denoted as pζi

, and let p
�ζi

= 1 − pζi
be the probability of not

computing.
The above protocol is followed for each round of task assignments. We sum-

marize the notation in Table 1.
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Table 1. System parameters

ρ : reward
φ : fine
c : worker computing cost

pζi
: worker i probability of computing

pv : master probability of verifying

γ : reward threshold
T : number of rounds
N : set of workers (|N | = n)
nf : number of followers
nd : number of deviators (nd = n − nf )

Repeated Game Model. We model the interactions in the MW system as
a finitely repeated game with mixed strategies and terminal payoffs [27]. That
is, the master assigns T computing tasks sequentially, each to the same set of n
workers. The strategic choice for each worker i ∈ N is the value of the probability
of computing pζi

.
In each round of task assignments, the master and workers proceed as in

the MW model above. The master computes an equilibrium where the work-
ers expected utility is maximized and sends the equilibrium parameters and
its computation to the workers. We assume that among n workers, there are
nf followers and nd = n − nf deviators. The followers are rational in the
game-theoretical sense and choose their strategies according to the prescribed
equilibrium. The deviators, on the other hand, may not trust the mechanism
and may choose a different strategy. The deviators motivation to steer away
from equilibrium is to go unnoticed while reducing costs or increasing utilities.
That is, they are not Byzantine malicious.

Upon detecting deviations, the followers change to a minmax strategy
(defined below) that yields the lowest payoff that followers can force upon a
deviator. The purpose of changing to a minmax strategy is to penalize the devi-
ators for not following the equilibrium. This change of strategy lasts for a period
of P rounds, which is called a peer-punishment period. P is large enough
to counter any extra utility that may be obtained by the deviators. Followers
compute the value P based on the detected deviation.

Without loss of generality, we assume that deviations are detected on or
before the (T − P )th round, and that only one period of peer-punishment is
needed throughout the whole computation. Otherwise, should a deviation occur
after some round Tlate such that Tlate+P > T , or more than one peer-punishment
period be needed, the master could assign more tasks3 to extend the interaction
period to Tlate+P , or to make T much larger than the sum of all punishment peri-
ods needed respectively. Intuitively, one would expect that deviators “learn the
lesson” after being punished—they confirm that deviating is indeed not worth-
while as any utility gain from deviating is nullified by the punishments. Also, we
limit the number of deviations as an arbitrary number of deviations indicates
malicious intent rather than bounded rationality. Furthermore, the deviators do
not know whether subsequent deviations will cause punishments, and a single
punishment is sufficient to establish the credibility of such a threat.

3 Recall the assumption that the master has access to an unbounded number of com-
putational tasks.



66 L. Dong et al.

After the T rounds of task assignments are completed, the master pays a
terminal payoff to followers to compensate them for the utility loss during
the peer-punishment period, and the interaction between the master and the
workers terminates.

Even though the master-worker interaction lasts a finite number of rounds,
the above framework allows us to model the worker behavior as in an infinitely
repeated game. That is, workers choose strategies taking into account long-term
interaction. Indeed, the player behavior in infinitely repeated games is well-
motivated even for finitely repeated games except in the last few rounds [41],
and by introducing terminal payoffs (and extending the interaction beyond T
rounds if needed) the long-term choice of strategies is not affected.

We now define the game formally. Let G1〈N, (Ai), (�i)〉 be a normal-form
(one-round) game with set of players N , where |N | = n. For each player i ∈ N ,
Ai = {ζ,��ζ} is the action space (compute or not compute) of player i ∈ N , and
�i is the preference relation on the space of all workers actions A = ×i∈NAi =
{ζ,��ζ}N . The preference relation of player i is represented by a utility function
ui , in the sense that ui(a) ≥ ui(b) whenever a �i b, for a, b ∈ A. The utility
function ui is based on the rewards and fines scheme defined in the MW model.
That is, for #ζ =

∑
j∈N :Aj=ζ 1 and #��ζ =

∑
j∈N :Aj=�ζ

1,

ui =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−c, if Ai = ζ and #ζ > γ,
ρ − c, if Ai = ζ and n/2 < #ζ ≤ γ,
pvρ − c, if Ai = ζ and #ζ < n/2,
−pvφ, if Ai = ��ζ and #��ζ > γ,
(1 − pv)ρ − pvφ, if Ai = ��ζ and n/2 < #��ζ ≤ γ,
−pvφ, if Ai = ��ζ and #��ζ < n/2.

(1)

The expected utility of the workers in the normal-form game depends on the
random choices of the master and other players. Following [41], we define the
extended game G2〈N, (Si), (ui)〉 that differs from G1 in that Si is the mixed
strategies space of player i ∈ N . Let ui : S → R be the expected utility
function of player i, where the expected value represents player i’s preferences
over the space S = ×i∈NSi.

The overall expected utility is based on the expected utility in each of the
T rounds and the terminal payoffs. We define the repeated game with terminal
payoffs implemented by our mechanism as G(T,W, ω)〈N, (Si), (ui)〉. We redefine
the expected utility function ui : ST → R, that is, a function whose expected
value represents player i’s preferences over the space ST . W ⊆ R

N is the terminal
payoffs set, and ω : HT → W is the terminal payoffs function applied to HT ,
where Ht is the set of t-tuples of elements of S, for t ∈ [1, T ]. That is, HT is
the history of mixed-strategy actions at round T . We refer to the model as a
strategic game for simplicity.

The minmax strategy is a follower mixed strategy (i.e., a choice of proba-
bility of computing) such that the payoff of the deviators is minimized, regardless
of their strategy. The minmax payoff vi is the lowest expected payoff of devi-
ator i that the followers can force upon i. It is well-known (refer to Proposition
144.3 in [23]) that, for any enforceable payoff profile, that is, any payoff profile



Verifiable Crowd Computing: Coping with Bounded Rationality 67

Algorithm 1: Master algorithm with paramters γ =
⌈
n/2 + 2

√
n ln lnn

⌉
,

q = 1
2n

(∑γ−1
j=n−γ

(
n−1

j

)
+ (1 − pv)

(
n−1

(n−1)/2

))
, and pv = c/φ. Messages are

sent to (and received from) all workers.
1 send pζ , q, and certificate
2 for T times do
3 send a computational task
4 upon receiving all answers do
5 verified ← true, with probability pv or false, with probability 1 − pv

6 if verified then
7 verify the answers
8 fine the incorrect workers
9 if correct count ≤ γ then

10 reward workers that were correct

11 else
12 accept the answer of the majority
13 if majority count ≤ γ then
14 reward workers in the majority

15 send list 〈answer, count〉 and verified

16 verify complete-information certificate received
17 send payoffs according to ω(HT )

where the expected utility for each worker is at least the minmax payoff, there
exists a Nash equilibrium payoff profile that all workers will follow due to long-
term rationality. We assume that followers aim for Pareto efficiency (refer
to Sect. 1.7 in [41]), that is, an equilibrium mixed strategy corresponding to an
enforceable payoff profile that maximizes the workers expected utility.

4 Algorithmic Mechanism

In this section we describe the mechanism that implements the MW computing
platform. The algorithm for the master (refer to Algorithm 1) follows the model
defined in Sect. 3 in Lines 2 to 14. After computing the equilibrium pζ based
on the parameters defined for the system (reward, fine, etc.), in Line 1 the
master sends the value of pζ to workers together with a certificate showing the
calculation of such equilibrium, and a parameter q that is a function of the
number of workers n, the cost c, and the fine φ. In Line 15, the master sends
a list of the answers received and the number of each, which the workers will
use to detect deviations. Based on the complete-information certificate received
from workers (i.e. HT , rounds of punishment, correct answers, etc.), the master
computes the terminal payoffs and sends to followers in Lines 16 and 17.
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Algorithm 2: Algorithm for each follower i. Messages are sent to (and
received from) the master.
1 receive pζ , q, and verify certificate
2 sumδ ← 0, sumu ← 0, r ← 0, t ← 0, p ← pζ

3 while t ≤ T do
4 t ++

// computation phase
5 receive computing task
6 action ← ζ, with probability p or �ζ, with probability 1 − p
7 if action = ζ then result ← computed task else result ← fabricated

bogus result
8 send result

// deviation-detection phase
9 receive list〈answer, count〉 and verified

10 for each (answer, count) in list do
11 if action = �ζ then verify answer
12 if answer is correct and count �= npζ then
13 sumδ ← sumδ + (npζ − count)2

14 sumu ← sumu + udeviator(count, verified)
15 r ++

// peer-punisment phase
16 if sumδ ≥ npζ(1.6r + lnn) then // Lemma 2
17 P ← (sumu − ρq + c)/(ρq) // Lemma 4
18 sumδ ← 0, sumu ← 0, r ← 0, p ← 1
19 execute computation phase P times
20 p ← pζ , t ← t + P

21 send complete-information certificate
22 receive terminal payoff

5 Analysis

In our analysis, we relate the system parameters to the utility of workers and
the correctness of the master. First, we show bounds on the mixed strategy
equilibrium, that is, a probability of computing, in which workers maximize their
expected utility (refer to Lemma 1). Then, we proceed to analyze our mechanism
to handle deviations. Specifically, we prove that the deviation detection method
is correct w.h.p. (refer to Lemma 2), and we provide bounds on the length of the
peer-punishment period and on the terminal payoffs that compensate followers
for their loss of profit during such period (refer to Lemma 4). In our final theorem,
we connect all the aspects of our mechanism showing additionally that the master
achieves correctness in expectation and a.a.s. under some conditions.

Due to space restrictions, we defer some proofs to the full version of this
paper.

To simplify exposition, we define the following probability functions and use
them throughout the analysis.
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p′
1 =

γ∑

j=n+1
2

j

n − j

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) ,

p′
2 =

n−1
2∑

j=1

j

n − j

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) , and

p′
3 =

n−1
2∑

j=n−γ

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) .

5.1 A Pareto-Efficient Repeated Game Equilibrium

Recall that, for any enforceable payoff profile, that is, any payoff profile where
the expected utility for each worker is at least the minmax payoff, there exists
a Nash equilibrium payoff profile that all workers will follow due to long-term
rationality (refer to Proposition 144.3 in [23]). To ensure Pareto efficiency, we
identify a strategy profile that maximizes the workers expected utility (refer to
Sect. 1.7 in [41]).

Lemma 1. Consider any MW system with n > 1 workers where nf = n, nd = 0,
pv = c/φ, γ =

⌈
n/2 + 2

√
n ln lnn

⌉
such that γ < n, and φ ≥ c(|p′

2| − |p′
3|)/(p′

1 −
|p′

3|) for any 0 ≤ p ≤ 1/2. Then, the following holds.

– The mixed strategy equilibrium of G is such that all workers use the same
probability of computing pζ , and such probability is in the range 1/2 < pζ ≤
γ/n.

– The maximum expected utility that any worker i ∈ N can obtain with a mixed
strategy equilibrium of G is E(ui) = ρq − c, where q is in the range

1
2n

⎛

⎝
γ−1∑

j=n−γ

(
n − 1

j

)

+ (1 − pv)
(

n − 1
(n − 1)/2

)
⎞

⎠ ≤ q ≤ 1.

5.2 Deviation-Detection Method

In this section, we establish a method for the followers to detect deviations from
the prescribed equilibrium, and if so move to a peer-punishment phase. Using
Chernoff bounds, the following lemma bounds the number of correct answers
that should be obtained w.h.p. when workers follow an equilibrium. Based on
those bounds, we provide a test that keeps track of such deviations over possibly
many rounds. Thus, either if strong deviations occur over a few rounds, or slight
deviations occur over many rounds, or both, the deviation is detected w.h.p.
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Lemma 2. For any MW system where all workers use the same pζ such that
pζ > 1/2, let Xt be the number of correct answers in round t. For any sequence
of rounds (not necessarily contiguous) of task assignments t1, . . . , tr, such that
Xt 
= npζ for all t ∈ {t1, . . . , tr}. For any constant ξ > 0, the following holds
with probability at least 1 − 1/nξ:

∑tr

t=t1
(Xt − npζ)2 < npζ(1.6r + ξ lnn).

Lemma 2 gives a method of detection for the followers. Namely, for any
sequence of r rounds, possibly not contiguous, where the number of correct
answers is not npζ , keep track of what is the difference with respect to npζ . If
pζ < 1, some workers do not compute the task, but they need to know how many
correct answers were received to decide on the peer punishment. They can do
so by verifying which, if any, of the answers sent by the master are correct, and
use the corresponding count to compute the total number of correct answers.
Then, whenever the inequality proved in Lemma 2 is not true, followers move to
a peer-punishment phase.

5.3 Deviation Punishment and Terminal Payoffs

In this section we analyze conditions on the system parameters that enable
deviation peer-punishment. That is, what is the minmax strategy that followers
should use, and what is the duration of the peer-punishment phase. Recall that
the minmax strategy is a follower mixed strategy, i.e. a choice of probability
of computing, such that the payoff of deviators is minimized, independently of
what the deviators do, for each round of peer-punishment. We define vi as the
lowest expected payoff that can be forced upon worker i by other workers. That
is, for mixed strategies σi and σ−i of worker i and workers in N \{i} respectively,
we have vi = minσ−i

maxσi
E(ui).

Lemma 3. For any MW system with nf = n − 1 followers and a deviator i, if
all followers use pζ = 1, it is vi = max(−c,−pvφ).

Lemma 3 states that the minmax strategy for MW systems where nf = n−1
is pζ = 1. Indeed, as long as the number of followers exceeds the reward threshold,
if followers use the same minmax strategy, deviators receive the same minmax
payoff. We establish this observation in Corollary 1.

Corollary 1. For any MW system with nf > γ followers and nd = n − nf

deviators, if all followers follow the strategy pζ = 1, then the minmax payoff
vi = max(−c,−pvφ).

Lemma 4 relates the length of the peer-punishment phase to the extra pay-
off attained by a deviator until it is detected, and the utility loss from being
punished.

Lemma 4. For any MW system with nf > γ followers and nd = n − nf

deviators, pv = c/φ, γ =
⌈
n/2 + 2

√
n ln lnn

⌉
such that γ < n, and φ ≥
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c(|p′
2| − |p′

3|)/(p′
1 − |p′

3|), or any 0 ≤ p ≤ 1/2. If deviations from the equilib-
rium are detected in rounds t1, . . . , tr, then the following holds.

(i) If followers use the minmax strategy for P ≥
∑tr

t=t1
uj(t)−ρq+c

ρq−c+min(c, pvφ)
, rounds of

peer-punishment, where q = 1
2n

(∑γ−1
j=n−γ

(
n−1

j

)
+ (1 − pv)

(
n−1

(n−1)/2

))
, and uj(t)

is the utility obtained by any deviator j in each round t in t1, . . . , tr, then any
utility gain by deviators during the t1, . . . , tr rounds of deviation from the pre-
scribed equilibrium, is lost in those P rounds of peer-punishment.

(ii) To compensate the followers for their loss while using the minmax strat-
egy, it is enough for the master to pay terminal payoffs of ω ≥ P (ρ − c +
min(c, pvφ)).

5.4 Mechanism Properties

We now establish our main result in the following theorem.

Theorem 1. Consider the mechanism specified in Algorithms 1 and 2 under
the models of Sect. 3, where the reward threshold is γ =

⌈
n/2 + 2

√
n ln lnn

⌉

such that γ < n, the set of workers has at least nf > γ followers, the probability
of verification is pv = c/φ, and the fine is φ ≥ c(|p′

2| − |p′
3|)/(p′

1 − |p′
3|), for any

0 ≤ p ≤ 1/2. Then, the following holds.

1. The mixed-strategy equilibrium is some probability pζ where 1/2 < pζ ≤ γ/n.
2. Deviators are detected w.h.p.
3. The expected utility of each follower for T rounds is at least

T

⎛

⎝ ρ

2n

⎛

⎝
γ−1∑

j=n−γ

(
n − 1

j

)

+ (1 − pv)
(

n − 1
(n − 1)/2

)
⎞

⎠ − c

⎞

⎠ .

4. The expected cost of the master is at most T (npζρ − pv(1 − pζ)φ).
5. In each round of peer-punishment, the master obtains the correct answer, and

in each round of task assignments without deviations or peer-punishment,
(a) in expectation the master obtains the correct answer,
(b) if pζ ≥ 1/2 +

√
n ln lnn the master obtains the correct answer a.a.s., and

(c) if pζ ≤ 1/2 +
√

n ln lnn the master pays less than γρ in rewards a.a.s.

Proof. Claims 1 to 3 follow from Lemmas 1 and 2, and the correctness of the
mechanism shown in Lemma 4.

For Claim 4, given that during punishment periods followers use pζ = 1 and
nf > γ, no worker is rewarded, the worst case cost is incurred when there is no
deviation. Thus, the claimed upper bound on the expected cost is a straightfor-
ward application of the payment model specified in Sect. 3 for T rounds of task
assignments without deviations.

We prove Claim 5 as follows. From Corollary 1, we know that during rounds
of peer punishment followers use pζ = 1. Given that nf > γ > n/2, the master
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obtains the correct answer during those rounds. For any round without devia-
tions or peer-punishment, let the random variable Xζ be the number of workers
that compute. Then, the following holds.

a) It is E(Xζ) = npζ . Hence, given that pζ > 1/2 as shown in Lemma 1, it
follows that the master obtains the correct answer in expectation.
b) Let δ =

√
n ln lnn/E(Xζ). Then,

1 − δ = 1 −
√

n ln lnn

npζ
= 1 −

√
n ln lnn

n/2 +
√

n ln lnn
=

n

2E(Xζ)
.

Given that 0 < δ < 1, by Chernoff bound:

Pr(Xζ ≤ n/2) = Pr(Xζ ≤ E(Xζ)(1 − δ))

≤ exp(−E(Xζ)δ2/2) = exp
(

− ln lnn

2pζ

)

=
(

1
lnn

) 1
2pζ ≤ 1√

lnn
.

Thus, Pr(Xζ ≤ (n − 1)/2) ≤ 1/
√
lnn. Therefore, the master obtains the

correct answer a.a.s.
c) Let δ = γ/E(Xζ) − 1. Given that 0 < δ < 1, by Chernoff bound Pr(Xζ ≥
γ) ≤ exp(−E(Xζ)δ2/3) and

exp(−E(Xζ)δ2/3) = exp
(

− ln lnn

3pζ

)

=
(

1
lnn

) 1
3pζ ≤ 1

3
√
lnn

.

Thus, Pr(Xζ ≥ γ) ≤ 1/ 3
√
lnn. Therefore, the master pays less than γρ in

rewards a.a.s.

6 Simulations

In this section, we present our simulations of the master and worker algorithms
(Algorithms 1 and 2) in the presence of deviators. To compare the performance
of our approach, we also simulated the reinforcement-learning-based mechanism
in [15], and the mechanism based on infinitely-repeated games in [24].

Throughout this section, we refer to our finitely-repeated game with termi-
nal payoffs mechanism as FRG. We refer to the evolutionary dynamics based
approach of the mechanism in [15] as ED, and to the infinitely-repeated games
approach in [24] as IRG.

Simulation Design. To the best of our knowledge, the impact of deviators on
the gaurantees of ED and IRG has not been theoretically analyzed. In ED, work-
ers update their probability of computing pζ in each round based on the previous
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round’s pζ , payment received, and some measure of their profit aspiration. It is
assumed that all workers comply with the mechanism. On the other hand, in
IRG it is assumed that, all rational workers will follow the equilibrium because
of the threat of punishment.

In our experimental evaluation, we assume that 40% of workers are deviators
in all three mechanisms. In FRG, the deviators and followers proceed as described
in our model. In ED, the deviators and followers start with a different pζ , and
they converge over time. In IRG, we follow the simulations in [24] and assume
that the deviation is readily detected after one round (optimal detection), and
that the deviators become followers after one round of punishment (optimal effect
of peer punishment). For consistency we assume that deviations occur only once
in all three mechanisms.

In the IRG mechanism, the expected utility of the workers is computed
at equilibrium of the infinitely-repeated game. Hence, for this comparison, we
assume that workers in the IRG mechanism do not know that the interaction
is finite (once the number of task assignments desired by the master is com-
pleted, the interaction stops). Note that if the workers in the IRG mechanism
do know the length of interaction, its correctness collapses. Comparing our app-
roach against a stronger but less realistic execution of IRG [24] only strengthens
the results of our evaluation.

We provide preliminary simulations based on the following system parame-
ters. We evaluate all mechanisms for n = 9, 99, and 999 workers and the number
of rounds of task assignments in the range T ∈ [20, 1000]. The payoffs scheme is
evaluated for ρ = 10, φ = 10, and c = 2. The master’s probability of verification
is set to pv = c/φ = 0.2.

For FRG, we approximate the probability of computing of the followers at
equilibrium as pζ = 0.55. For the deviators, we use pζ = 0.9, to model their
motivation to compute to avoid being fined by the master.

For ED, we set the worker aspiration for profit a = 0.1, learning rate α = 0.01,
the master tolerance to error τ = 0.5. We set initial probabilities pζ = 0.5 for the
followers and pζ = 0.9 for deviators, and the probability of verification pv = 0.2.

We configured the parameters of IRG as follows (using the notation in [24]).
The reward WBA = ρ = 10, the fine WPC = φ = 10, and the cost of computing
WCT = c = 2. The additional master parameters in [24] are set as follows. Cost
of verification MCV , profit from being correct MBR and cost of being wrong
MPW are all set to 0; whereas the cost of accepting an answer is MCA = ρ = 10.
In [24], the followers use pζ = 0.9 and the deviators pζ ≤ 0.5. We simulate the
same pζ = 0.9 for followers; for the deviators, we set pζ = 0.5 which is the most
favorable choice for IRG.

These parameters choices satisfy the analysis of our work and [24]. A broader
range of simulation parameters is left to the full version.

The simulation code was written in Python 3.6 and executed on a PC. The
results presented are the average of 10 executions of each mechanism.

Discussion of Results. The results of our simulations can be seen in Figs. 1, 2,
and 3. In Fig. 1, we compare the mechanisms with respect to the ratio of the
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Fig. 1. Comparison of FRG, ED and IRG: number of correct answers obtained divided
by the total number of task assignments vs. number of task assignments.

Fig. 2. Comparison of the cost incurred by the Master in FRG, ED and IRG.

number of tasks for which the master obtains the correct answer to the total
number of task assignments. In Fig. 2, we compare the cost incurred by the
master for each mechanism. In Fig. 3, we plot the utilities of each worker in our
FRG mechanism and show that they obtain positive utilities from participating.

We observe in Figs. 1 and 2 that for any T up to 400 task assignments FRG
performs much better than ED in correctness, at similar costs incurred by the
master. In other words, FRG outperforms ED, unless the number of task assign-
ments is very large. The number of task assignments T is a design choice in the
mechanism. That is, the master may configure the platform to run for T = 400
task assignments, and hire a new pool of workers for each batch of computations.

Compared to IRG, the cost incurred by the master in FRG is much smaller, at
a slightly reduced correctness rate. Note that the correctness guarantees achieved
by IRG in our simulations is optimistic, because we assume that the players are
unaware of the number of rounds. Thus, we conclude that for a wide range of
parameters, FRG outperforms ED, and achieves similar correctness with much
lower cost incurred by the master compared to IRG (assuming that the workers
are unaware of the finite nature of the game).
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Fig. 3. Workers utility in the FRG mechanism. The x axis is the worker IDs.

Finally, in Fig. 3 we show that the expected utility of each worker is positive
for each of the n values tested and for T = 200 (other values of T gave similar
results). This confirms the feasibility of the mechanism—by participating, the
workers receive non-negative utility.

7 Conclusion

In this paper, we design a finitely-repeated MW mechanism to perform verifiable
crowd-computing in the presence of deviators, workers who are not perfectly
rational and may not follow the prescribed equilibrium. This model better reflects
real-world crowd-computing applications, where non-compliant workers exist [4,
26,30], and contracts often have a prespecified length of interaction.

We use the notion of terminal payments to incentivize the followers (rational
workers who follow the equilibrium) to punish such deviators. We prove that
the master is able to obtain correct answers from such a mechanism always in
expectation, and asymptotically almost surely under certain mild conditions.

Finally, we simulate our mechanism and compare it with previous approaches:
ED [15] and IRG [24]. Our simulations show that our mechanism outperforms
ED in terms of correctness, and IRG in terms of the cost incurred by the master.
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