
Run Generation Revisited: What Goes Up May or May Not Come Down

Michael A. Bender, Samuel McCauley, Andrew McGregor, Shikha Singh, Hoa T. Vu

21

5

13

14

6… 4 7 9 3 15 17 8 1 … 9 15 17 21

Input Stream Output Stream

Memory

5 9 11 7 4 2 30 25 13 6 8 12 17 21

 • Run generation is the first phase of external
memory merge sort.
 • The objective is to scan once through all the data
and output runs (sorted chunks of elements) that are
as long as possible.
 • Longer runs lead to a faster merge phase.
 • Generating runs before sorting is a common
technique used, for example, in Python's Timsort.
 • Classic, well-studied problem in the database
community for over 50 years.
 • Many heuristics have been proposed.
 • We provide a theoretical foundation for run
generation.
 • We show that alternating between sorted and
reverse sorted runs is asymptotically optimal online
strategy, yielding at most twice the minimum number
of runs.
 • We improve performance ratios when the
algorithm has extra resources or foreknowlege.

OPT

Up-Down

Introduction What is Run Generation? Prior Work

Goal: Output the minimum number of runs

 • Input stream arrives over time; can be
stored temporarily in a buffer of size M
 • Buffer gets full -> write an element to
output stream, next element is read into the
slot freed
 • Buffer is always full (except when <M
elements remain)
 • Algorithm decides what to eject based on
contents of buffer, last element written
 • Algorithm can only read (in order) from
input and append to output

 • Replacement Selection [Goetz 1963]: Classic algorithm;
writes repeated maximal up runs
 • Performance on random data: expected run length twice
the size of memory; Knuth's proof by snow plow

However, Replacement selection does poorly on reverse sorted

Problem Definition

3 5 7 8 12 15

23

19

16

16 19 23 8 12 15 3 5 7

1 2 3

Runs of length M on reverse sorted input

M

 • Most recently, Martinez-Palau et al. [VLDB 2010]:
Heuristically choose between starting an up or down run

Up or Down? Up or Down?

Runs are contiguous sorted partitions of the output
 • Up Runs: sorted in increasing order
 • Down Runs: sorted in decreasing order

Maximal Runs
 • Algorithm never skips over elements
 • Algorithm never ends a run until forced to

Crux of Run Generation
 • Wlog, an algorithm must write maximal runs
 • Only decision: Write an up run or a down run?

Alternating Up-Down: Best Possible
 • Deterministically alternating between up and down runs performes
worse than Replacement Selection on random input
 • Expected run length is 1.5M compared to 2M [Knuth 1963]

Our Result
 • We show Alternating Up-Down is 2-competitive on any input
 • Tight Lower Bound: No online deterministic algorithm can do better

Two runs of Up-Down cover at least one run of OPT

Random up-down?
 • No randomized online algorithm can be better than 1.5-competitive

Resource Augmentation Results
 Types of Resource Augmentation
 • Extra Buffer: Algorithm can read into and write from the additional buffer
 • Extra Visibility: Algorithm can only view a fixed number of future elements

Main Idea of Resource Augmentation
• Simulate Greedy: every time pick the direction that leads to a longer run
Greed is Good
 • If the greedy run is at least 3M long, then non-greedy run is shorter than 3M
Our Results
 • We give an algorithm that can match OPT when provided 4M-buffer
 • We give an algorithm which is 1.5-competitive when provided 4M-visibility

7

-4

13

-7

23

5

… 3 12

Extra buffer

…

Regular buffer

… 3 12 5 -7 23

7

-4

13

Extra visibility

…

Summary of Results

* On "nearly sorted" input

Contact Information
Samuel McCauley: smccauley@cs.stonybrook.edu
Shikha Singh: shiksingh@cs.stonybrook.edu
Hoa T. Vu: hvu@cs.umass.edu

1 2 3 4

Competitive Ratio Buffer Size Visibility Online

2 M M Yes

1.5 M 4M Yes

1.75 2M 2M Yes

1 4M 4M Yes

(1+) M N No

1.5* 2M 2M Yes

1* M N No

ε

