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Abstract. In this paper, we study the k-forest problem in the model of
resource augmentation. In the k-forest problem, given an edge-weighted
graph G(V,E), a parameter k, and a set of m demand pairs ⊆ V × V ,
the objective is to construct a minimum-cost subgraph that connects at
least k demands. The problem is hard to approximate—the best-known
approximation ratio is O(min{

√
n,
√
k}). Furthermore, k-forest is as hard

to approximate as the notoriously-hard densest k-subgraph problem.
While the k-forest problem is hard to approximate in the worst-case,
we show that with the use of resource augmentation, we can efficiently
approximate it up to a constant factor.
First, we restate the problem in terms of the number of demands that are
not connected. In particular, the objective of the k-forest problem can be
viewed as to remove at most m − k demands and find a minimum-cost
subgraph that connects the remaining demands. We use this perspective
of the problem to explain the performance of our algorithm (in terms of
the augmentation) in a more intuitive way.
Specifically, we present a polynomial-time algorithm for the k-forest
problem that, for every ε > 0, removes at most m − k demands and
has cost no more than O(1/ε2) times the cost of an optimal algorithm
that removes at most (1− ε)(m− k) demands.

1 Introduction

In the worst-case paradigm, algorithms for NP-hard problems are typically char-
acterized by their approximation ratio, defined as the ratio between the worst-
case cost of the algorithm and the cost of an all-powerful optimal algorithm.
Many computationally-hard problems admit efficient worst-case approximations
[30, 34, 47, 49]. However, there are several fundamental problems, such as k-
densest subgraph [4, 18], set cover [16, 38], graph coloring [6, 7, 48], etc., for
which no algorithm with a reasonable approximation guarantee is known.

Many problems that are hard in the worst-case paradigm admit simple and
fast heuristics in practice. Illustrative examples include clustering problems (e.g.
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k-median, k-means and correlation clustering) and SAT problems—simple algo-
rithms and solvers for these NP-hard problems routinely find meaningful clus-
ters [13] and satisfiable solutions [40] on practical instances respectively. A ma-
jor direction in algorithmic research is to explain the gap between the observed
practical performance and the provable worst-case guarantee of these algorithms.
Previous work has looked at various approaches to analyze algorithms that rules
out pathological worst-cases [8, 15, 36, 50]. One such widely-used approach, es-
pecially in the areas of online scheduling and matching [12, 31, 32, 42], is the
model of resource augmentation.

In the resource-augmentation model, an algorithm is given some additional
power and its performance is compared against that of an optimal algorithm
without the additional power. Resource augmentation has been studied in various
guises such as speed augmentation and machine augmentation (see Section 1.2
for details). Recently, Lucarelli et al. [37] unified the different notions of resource
augmentation under a generalized resource-augmentation model that is based on
LP duality. Roughly speaking, in the generalized resource-augmentation model,
the performance of an algorithm is measured by the ratio between its worst-case
objective value over the set of feasible solutions P and the optimal value which
is constrained over a set Q that is a strict subset of P. In other words, in the
unified model, the algorithm is allowed to be optimized over relaxed constraints
while the adversary (optimum) has tighter constraints.

Duality-based techniques have proved to be powerful tools in the area of
online scheduling with resource augmentation. Since the seminal work of Anand
et al. [1], many competitive algorithms have been designed for online scheduling
problems [2, 14, 25–27, 37, 45]. Interestingly, the principle ideas behind the
duality-based approach in the resource-augmentation setting are general and
can be applied to other (non-scheduling, offline) optimization problems as well.

In this paper, we initiate the use of duality to analyze approximation al-
gorithms with resource augmentation in the context of general optimization
problems. We exemplify this approach by focusing on a problem that has no
reasonable approximation in the worst-case paradigm—the k-forest problem [24].

The k-Forest Problem. In the k-forest problem, given an edge-weighted
graph G(V,E), a parameter k and a set of m demand pairs ⊆ V × V , we need
to find a minimum-cost subgraph that connects at least k demand pairs.

The k-forest problem is a generalization of the classic k-MST (minimum
spanning tree) and the k-Steiner tree (with a common source) problems, both of
which admit constant factor approximations. In particular, k-MST and k-Steiner
tree can be approximated up to a factors of 2 and 4 respectively [11, 20]. On the
other hand, the k-forest problem has resisted similar attempts—the best-known
approximation guarantee is O(min{

√
n,
√
k}) [22].

Hajiaghayi and Jain [24] show that the k-forest problem is roughly as hard
as the celebrated densest k-subgraph problem. Given a graph G and a parameter
k, the densest k-subgraph problem is to find a set of k vertices which induce the
maximum number of edges. The densest k-subgraph problem has been studied
extensively in the literature [3–5, 17, 18, 33, 44] and is regarded to be a hard
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problem. Hajiaghayi and Jain [24] show that if there is a polynomial time r-
approximation for the k-forest problem then there exists a polynomial time 2r2-
approximation algorithm for the densest k-subgraph problem. The best known
approximation guarantee for the densest k-subgraph problem is O(n1/4+ε) [4].
Hajiaghayi and Jain [24] point out that an approximation ratio better than
O(n1/8) for k-forest (which implies an approximation ratio better than O(n1/4)
for densest k-subgraph) would require significantly new insights and techniques.

1.1 Our Approach and Contributions

We give the first polynomial-time constant-factor algorithm for the k-forest prob-
lem in the resource-augmentation model.

Our algorithm is based on the primal-dual algorithm by Hajiaghayi and
Jain [24] for a closely-related problem, the prize collecting generalized Steiner
tree (PCGST) problem. The k-forest problem is a Lagrangian relaxation of
the PCGST problem [24]. Hajiaghayi and Jain [24] give a 3-approximation
primal-dual algorithm for the PCGST problem. However, their algorithm is
not Lagrangian-multiplier preserving [49], which makes it difficult to derive a
constant-factor approximation for the k-forest problem. In this paper, we over-
come the challenge posed by the non-Lagrangian-multiplier-preserving nature of
the primal-dual algorithm by Hajiaghayi and Jain [24], to obtain a constant-
factor approximation for the k-forest problem, by using resource augmentation.

The primal-dual approach is particularly well-suited to analyze algorithms
with resource augmentation. In particular, the resource augmentation setting
can be viewed as a game between an algorithm and the optimal (or the adver-
sary) where the adversary is subject to tighter constraints. To apply this notion
to the k-forest problem, we need a constraint to play this game between the
algorithm and the adversary. A natural approach is to choose the number of de-
mands connected as the comparative constraint. That is, the algorithm chooses
to connect at least k “cheap” demands out of the total m demands while the
adversary’s requirement is higher—to connect slightly more than k demands.
An alternate approach is to constrain the number of demands that each algo-
rithm is allowed to ignore or remove, that is, the algorithm can remove up to
m−k “costly” demands while the adversary can remove slightly fewer demands.
Note that with respect to exact and approximate solutions (without any resource
augmentation), both approaches are equivalent.

In this paper, we use the framework of PCGST [24] and obtain our result
by choosing the number of demands that can be removed as the constraint to be
augmented. In particular, our algorithm for the k-forest problem can remove up
to m − k demands whereas the adversary can only remove up to b(1 − ε)(m −
k)c demands. This tighter cardinality constraint allows the dual to “raise” an
additional amount (depending on ε) to “pay” for the primal cost. We exploit
this property to bound the cost of the algorithm’s output and that of a dual
feasible solution to derive the approximation ratio. We show the following.
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Theorem 1. There exists a polynomial-time algorithm for the k-forest problem
that, for any ε > 0, removes at most (m− k) connection demands and outputs a
subgraph with cost at most O(1/ε2) times the cost of the subgraph output by the
optimal algorithm that removes at most b(1− ε)(m− k)c demands.

Alternate LP Rounding Approach. In this paper, we use the primal-
dual algorithm for the PCGST problem [24]. There also exists a LP-rounding
based algorithm for the PCGST problem. In Section A, we show that a similar
rounding scheme gives a constant apporximation for the k-forest problem as
well. However, the rounding approach involves solving an LP of exponential size,
which while being polynomial-time is still a signficant overhead on the running
time. In contrast, our primal-dual algorithm is (a) light-weight and faster than
the rounding scheme for dense graphs, making it practically appealing, and (b)
gives a general framework which may prove useful for problems which do not
admit rounding based solutions. We compare the two approaches in Section A.

Bi-criteria Approximation vs. Resource Augmentation. Although the
result can be seen as a bi-criteria approximation, its interpretation is more mean-
ingful in the sense of resource augmentation. While in multi-criteria optimization
one tries to balance the qualities of different criteria, in resource augmentation
the purpose is to design effective algorithms by violating some constraints by a
factor as small as possible. Hence, the fact that an algorithm can approximate a
hard problem with a small perturbation on the constraints would be an evidence
to explain the performance of the algorithm in practice.

Augmentation Parameter: Demands Removed vs. Demands Con-
nected. While the approach of connecting at least k demands is equivalent to
rejecting up to m− k demands with respect to exact and approximate solutions
(without resource augmentation), there is a notable distinction between them in
the presence of augmentation. In particular, allowing the adversary to remove
up to (1 − ε)(m − k) demands (compared to m − k demands removed by the
algorithm), means we require the adversary to connect at least k + ε(m − k)
demands (compared to the k demands connected by the algorithm).

In this paper, we provide augmentation in terms of m − k, the number of
demands that can be removed, because it leads to a more intuitive understanding
of our algorithm’s performance. In particular, our algorithm is scalable in terms
of the parameter m−k, that is, it is a constant-factor approximation (depending
on ε) with a factor (1 + ε) augmentation. On the other hand, in terms of the
parameter k, our algorithm is a constant-factor approximation (depending on ε)
with a factor

(
1 + m−k

k · ε
)

augmentation, which is arguably not as insightful.
We leave the question of obtaining a constant-factor approximation with a better
augmentation in terms of k as an interesting open problem.

1.2 Additional Related Work

k-Forest and Variants. The k-forest problem generalizes both k-MST and k-
Steiner tree. Chudak et al. [11] discuss the 2-approximation for k-MST [20]
and give a 4-approximation for k-Steiner tree. Segev and Segev [43] gave a
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O(min{n2/3,
√
m} log n)-approximation for the k-forest problem, which was im-

proved by Gupta et al. [22] to a O(min
√
n,
√
k)-approximation. Gupta et al.

[22] also reduce a well-studied vehicle-routing problem in operations research,
the Dial-a-Ride problem [9, 19, 23] to the k-forest problem. In particular, they
show that an α-approximation for k-forest implies an O(α log2 n)-approximation
algorithm for the Dial-a-Ride problem.

Lagrangian Multiplier Preserving (LMP). This property [49] is desired
when one designs algorithms in the prize-collecting settings. It is standard to
transform a LMP algorithm to the one dealing with cardinality constraints. The
illustrative examples consist of the algorithms for the k-median problem [29], k-
MST problem [20], k-Steiner tree [11], partial covering problems [35]. Recall that
the HJ algorithm is not LMP and that represents a difficulty to design algorithm
for the k-forest problem.

Resource Augmentation and Duality. Kalyanasundaram and Pruhs [31]
initiated the study of resource augmentation with the notion of speed augmenta-
tion, where an online scheduling algorithm is compared against an adversary with
slower processing speed. Phillips et al. [42] proposed the machine augmentation
model in which the algorithm has more machines than the adversary. Choudhury
et al. [10] introduced the rejection model where an online scheduling algorithm is
allowed to discard a small fraction of jobs. Many natural scheduling algorithms
can be analyzed using these models and these analyses have provided theoret-
ical evidence behind the practical performance of several scheduling heuristics.
Recently, Lucarelli et al. [37] unified the different notions under a generalized
resource-augmentation model using LP duality. To the best of our knowledge,
such duality-based techniques have not been used in the context of approxima-
tion algorithms with resource augmentation.

2 Primal-Dual Algorithm for k-Forest

In this section, we present an efficient primal-dual algorithm for the k-forest
problem in the resource-augmentation model.

In the k-forest problem, given an undirected graph G(V,E) with a nonneg-
ative cost ce on each edge e ∈ E, a parameter k, and m connection demands
J = {(s1, t1), (s2, t2), . . . , (sm, tm)} ⊆ V × V , the objective is to construct a
minimum-cost subgraph of G which connects at least k demands. To overcome
the non-Lagrangian-multiplier-preserving barrier [24] and to take advantage of
resource augmentation, we restate the problem as follows—given an undirected
graph G(V,E) with a nonnegative cost ce on each edge e ∈ E, a parameter
k, and m connection demands J = {(s1, t1), (s2, t2), . . . , (sm, tm)} ⊆ V × V ,
the objective is remove up to (m − k) demands and construct a minimum-cost
subgraph of G that connects the remaining demands.

We use the algorithm by Hajiaghayi and Jain [24] for the prize-collecting
generalized Steiner tree (PCGST) problem and refer to it by the shorthand
HJ. In the prize-collecting generalized Steiner tree (PCGST) problem, given an
undirected graph G(V,E), with a nonnegative cost ce on each edge e ∈ E,
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m connection demands J = {(s1, t1), (s2, t2), . . . , (sm, tm)} and a nonnegative
penalty cost πi for every demand i ∈ J , the goal is minimize the cost of buying
a set of edges and paying a penalty for the demands that are not connected by
the chosen edges. Without loss of generality, we can assume that J ⊂ V ×V , as
the penalty for demands that need not be connected can be set to zero.

Next, we restate the LP for the PCGST problem in terms of the k-forest
problem and reproduce the relevant lemmas [24].

2.1 Hajiaghayi and Jain’s LP for k-forest

Fix a constant 0 < ε < 1. Set ε̃ = ε/2 and set r = (1 − ε̃)(m − k). Let xe be
a variable such that xe = 1 if edge e ∈ E is included in the subgraph solution.
Similarly, let zi be a variable such that zi = 1 if si, ti are not connected in the
subgraph solution. We restate the integer program for the PCGST problem [24]
in terms of the k-forest problem in the resource augmentation model as (Pε̃).

min
∑
e∈E

cexe (Pε̃)

(yS)
∑
e∈δ(S)

xe + zi ≥ 1 ∀i, ∀S ⊂ V : S � i

(λ)
∑
i,j∈V

zi ≤ (1− ε̃)r

xe, zi ∈ {0, 1} ∀e ∈ E,∀i

For a set S ⊂ V , the notation S � i stands for |{si, ti} ∩ S| = 1. For a given
non-empty set S ⊂ V , δ(S) denotes the set of edges defined by the cut S, that
is, δ(S) is the set of all edges with exactly one endpoint in S. Thus, the first
constraint says that for every cut S � i, there is at least one edge e ∈ δ(S)
such that either edge e is included in the solution or demand i is removed. The
second constraint says that the total number of demands removed is no more
than (1 − ε̃)r. Note that the optimal value of (Pε̃) is a lower bound on the
optimal solution that removes at most (1− ε)(m− k) demands. This is because
we have slightly relaxed the upper bound of the number of demands removed to
be (1− ε̃)r = (1− ε̃)2r ≥ (1− ε)(m− k).

The dual (Dε̃) of the relaxation of (Pε̃) follows.

max
∑

S⊂V,S�i
yi,S − (1− ε̃)rλ (Dε̃)∑

S:e∈δ(S),S�i

yi,S ≤ ce ∀e ∈ E

∑
S:S�i

yi,S ≤ λ ∀i

yi,S ≥ 0 ∀S ⊂ V : S � i
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Hajiaghayi and Jain [24] formulate a new dual (DHJ
ε̃ ) equivalent to (Dε̃) based on

Farkas lemma. This new dual resolves the challenges posed by raising different
dual variables associated with the same set of vertices of the graph in (Dε̃).
We refer the readers to the original paper [24] for a detailed discussion on the
transformation and proofs.

Note that S is a family of subsets of V if S = {S1, S2, . . . , S`} where Sj ⊂ V
for 1 ≤ j ≤ `. For a family S, if there exists S ∈ S such that S � i, we denote it
by S � i. The new dual (DHJ

ε̃ ) is stated below.

max
∑
S⊂V

yS − (1− ε̃)rλ (DHJ
ε̃ )∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑
S∈S

yS ≤
∑
i,S�i

λ ∀ family S

yS ≥ 0 ∀S ⊂ V

We use the HJ algorithm (along with the construction of dual variables) for the
PCGST problem. We set the penalty of every request to a fixed constant λ. We
reproduce the relevant lemmas in terms of k-forest. See [24] for proofs.

For S ⊂ V , let yS(λ)’s be the dual variables constructed in HJ algorithm with
penalty cost λ. Let y(λ) be the vector consisting of all yS(λ)’s.

Lemma 1 ([24]). Let r(λ) be the number of demands removed with the penalty
cost λ by the HJ algorithm. Then, r(λ) · λ ≤

∑
S yS(λ).

Lemma 2 ([24]). Let F be the set of edges in the subgraph solution output by
the HJ algorithm. Then

∑
e∈F ce ≤ 2

∑
S yS(λ).

2.2 Algorithm for k-Forest

Let HJ(λ) denote a call to the primal-dual algorithm of Hajiaghayi and Jain [24]
for the PCGST problem with a penalty cost λ for every request. For a given
value λ, let r(λ) be the number of demands removed by the algorithm HJ(λ).
Similar to the classic k-median algorithm [29], we do a binary search on the
value of λ, and call the HJ as a subroutine each time. We describe our algorithm
for k-forest next and refer to it as algorithm A.

1. Let cmin = min{ce : e ∈ E}. Initially set λ1 ← 0 and λ2 ←
∑
e∈E ce.

2. While (λ2 − λ1) > cmin/m
2, do the following:

(a) Set λ = (λ1 + λ2)/2.
(b) Call HJ(λ) and get r(λ) (the number of demands removed).

i. If r(λ) = r, then output the solution given by HJ(λ).
ii. Otherwise, if r(λ) < (1− ε/2)r then update λ2 ← λ;

iii. Otherwise, if r(λ) > r then update λ1 ← λ.
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3. Let α1 and α2 be such that α1r1 + α2r2 = r, α1 + α2 = 1 and α1, α2 ≥ 0.
Specifically,

α1 =
r − r2
r1 − r2

and α2 =
r1 − r0
r1 − r2

(1)

If α2 ≥ ε̃, then return the solution HJ(λ2). Else, return the solution HJ(λ1).

Observe that the algorithm A always terminates: either it encounters a value
of λ such that r(λ) = r in Step 2(b)i or returns a solution depending on the final
values of λ1 and λ2 in Step 3.

2.3 Analysis

Let Optu be the cost of an optimal solution that removes at most u demands.
Assume that cmin ≤ Opt(1−ε̃)r, because otherwise the optimal solution is to not
select any edge e ∈ E. The algorithm outputs the solution either in Step 2(b)i
or in Step 3. First, consider the case that the solution is output in Step 2(b)i.

Lemma 3. Suppose that A outputs the solution given by HJ(λ) in Step 2(b)i for
some λ. Let F be the set of edges returned by HJ(λ). Then,∑

e∈F
ce ≤

2

ε̃
·Opt(1−ε̃)r.

Proof. Since the solution is output in Step 2(b)i, the number of demands removed
is r(λ) = r. By weak duality, the value of Opt(1−ε̃)r is lower bounded by the
objective cost of (DHJ

ε̃ ) with dual variables y(λ). That is,

Opt(1−ε̃)r ≥
∑
S⊂V

yS − (1− ε̃)rλ ≥ ε̃ ·
∑
S⊂V

yS ≥
ε̃

2
·
∑
e∈F

ce

where the last two inequalities follow from Lemma 1 and 2 respectively. ut

Next, consider the case that the solution is output in Step 3. Let F1 and
F2 be the sets of edges returned by HJ(λ1) and HJ(λ2), respectively. Let r1 and
r2 denote the number of demands removed by HJ(λ1) and HJ(λ2) respectively.
Then, we have λ2−λ1 ≤ cmin/m

2. As cmin ≤ Opt(1−ε̃)r, at the end of the while
loop we have λ2 − λ1 ≤ cmin/m

2 ≤ Opt(1−ε̃)r/m
2. Furthermore, r2 < r < r1.

Consider the dual vector (y∗, λ∗) defined as

(y∗, λ∗) = α1(y(λ1), λ1) + α2(y(λ2), λ2)

where the coefficients α1 and α2 are defined in Step 3 of algorithm A. Then,
(y∗, λ∗) forms a feasible solution to the dual (DHJ

ε̃ ) as it is a convex combination
of two dual feasible solutions.

We bound the cost of algorithm A by bounding the cost of the dual (DHJ
ε̃ ).

Lemma 4. α1

∑
e∈F1

ce + α2

∑
e∈F2

ce ≤ 4
ε̃ ·Opt(1−ε̃)r.
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Proof. The cost of the dual (DHJ
ε̃ ) lower bounds the cost of an optimal algorithm

that removes at most (1− ε̃)r demands. That is,

Opt(1−ε̃)r ≥
(∑

S

yS(λ∗)− (1− ε̃)rλ∗
)

= α1

(∑
S

yS(λ1)− (1− ε̃)r1λ∗
)

+ α2

(∑
S

yS(λ2)− (1− ε̃)r2λ∗
)

= α1

(∑
S

yS(λ1)− (1− ε̃)r1λ1
)
− α1(1− ε̃)r1(λ∗ − λ1)

+ α2

(∑
S

yS(λ2)− (1− ε̃)r2λ2
)

+ α2(1− ε̃)r2(λ2 − λ∗)

≥ α1

(∑
S

yS(λ1)− (1− ε̃)r1λ1
)

+ α2

(∑
S

yS(λ2)− (1− ε̃)r2λ2
)
−m(λ∗ − λ1)

(2)

≥ ε̃
[
α1

1

ε̃

(∑
S

yS(λ1)− (1− ε̃)r1λ1
)

+ α2
1

ε̃

(∑
S

yS(λ2)− (1− ε̃)r2λ2
)]
−

Opt(1−ε̃)r

m
(3)

= ε̃α1

[(
1

ε̃
− 1

)(∑
S

yS(λ1)− r1λ1
)

+
∑
S

yS(λ1)

]
+ ε̃α2

[(
1

ε̃
− 1

)(∑
S

yS(λ2)− r2λ2
)

+
∑
S

yS(λ2)

]
−

Opt(1−ε̃)r

m

≥ ε̃
(
α1

∑
S

yS(λ1) + α2

∑
S

yS(λ2)

)
−

Opt(1−ε̃)r

m
(4)

≥ ε̃

2

(
α1

∑
e∈F1

ce + α2

∑
e∈F2

ce

)
−

Opt(1−ε̃)r

m
(5)

Inequality (2) holds because λ1 ≤ λ∗ ≤ λ2, r1 < m, 0 ≤ α1, α2 ≤ 1 and
0 < ε̃ < 1. Inequality (3) follows from the definition of the penalty costs, that is,
λ∗ − λ1 ≤ λ2 − λ1 ≤ Opt(1−ε̃)r/m

2. Inequality (4) follows from Lemma 1 and
the fact that 1/ε̃− 1 > 0. Finally, Inequality (5) uses Lemma 2.

Rearranging the terms of Inequality (5) proves Lemma 4, that is,

α1

∑
e∈F1

ce + α2

∑
e∈F2

ce ≤
2

ε̃
· m+ 1

m
·Opt(1−ε̃)r ≤

4

ε̃
·Opt(1−ε̃)r.

ut

We are now ready to prove the main theorem.
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Proof of Theorem 1. We analyze algorithm A. Lemma 3 is sufficient for the case
that A outputs the solution in Step 2(b)i. Now suppose that A outputs the
solution in Step 3.

Note that (1− ε̃)r ≥ (1− ε)(m− k) ≥ b(1− ε)(m− k)c, therefore, we have,

Opt(1−ε̃)r ≤ Optb(1−ε)(m−k)c.

We consider two cases based on the value of α2.
Case 1: α2 ≥ ε̃. A returns F2 which is a feasible solution since the number of
demands removed is r2 ≤ r. We bound the cost of solution F2 using Lemma 4:∑

e∈F2

ce ≤
1

ε̃
α2

∑
e∈F2

ce ≤
1

ε̃

(
α1

∑
e∈F1

ce + α2

∑
e∈F2

ce

)
≤ 4

ε̃2
·Opt(1−ε̃)r ≤

4

ε̃2
·Optb(1−ε)(m−k)c.

Case 2: α2 < ε̃. A outputs F1 as the solution. Since α1 + α2 = 1 by definition,
we have α1 > 1− ε̃. Using equation (1), we have:

r − r2 ≥ (1− ε̃)(r1 − r2)⇒ r − ε̃r2 ≥ (1− ε̃)r1 ⇒ r1 ≤
1

(1− ε̃)
· r = (m− k)

where the last equality uses r = (1− ε̃)(m− k). Thus, F1 is a feasible solution.
We bound the cost of solution F1, applying Lemma 4 again:∑

e∈F1

ce ≤
1

1− ε̃
α1

∑
e∈F1

ce ≤
1

1− ε̃

(
α1

∑
e∈F1

ce + α2

∑
e∈F2

ce

)
≤ 4

ε̃2
·Opt(1−ε̃)r ≤

4

ε̃2
·Optb(1−ε)(m−k)c

where the third inequality holds since (1− ε̃) ≥ 1/2 ≥ ε̃.
The two cases together prove the approximation and augmentation factors

of A in Theorem 1 (recall that ε̃ = ε/2). ut
We now analyze the exact running of algorithm A.

Lemma 5. The running time of algorithm A is O
(
n6 log( 1

εm)T
)
, where T is

the maximum number of bits required to represent the edge weights of the graph.

Proof. In the HJ algorithm the main loop of the algorithm terminates in O(n)
steps and the most expensive part of the computation in each iteration involves
linear number of maxflow computations where the graph is a bipartite graph
with vertices corresponding to active components on one side and V × V on the
other side. As the number of active components in the HJ algorithm is at most n,
we get that the bipartite graph at any time step has at most n2+n vertices and at
most n3 edges. Moreover, the maxflow computation in a (unweighted) bipartite
graph is equivalent to computing maximum (cardinal) matching. The latter can
be computed in time O(

√
|V | · |E|) [39] where V and E are the set of vertices

and edges in the graph. Thus, the overall running time of the HJ algorithm is
O(n6). See [24] for details.

Algorithm A makes O
(
log( 1

εm
2
∑

e ce
cmin

)
)

calls to the HJ algorithm. Thus, the

running time of A is O
(
n6 · log(m/ε) · T

)
. ut

10



3 Conclusion

The model of resource augmentation has been widely-used and has successfully
provided theoretical evidence for several heuristics, especially in the case of on-
line scheduling problems. Surprisingly, for offline algorithms, not many scalable
approximation algorithms have been designed, despite the need of effective al-
gorithms for hard problems.

In this paper, we initiate the study of hard (to approximate) problems in
the resource-augmentation model. We show that the k-forest problem can be
approximated up to a constant factor using augmentation. It is an interesting
direction to design algorithms in the resource augmentation model for other hard
problems which currently admit no meaningful approximation guarantees.
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A Alternate LP Rounding Based Algorithm

In this section, we describe a conceptually simple rounding algorithm for the
k-forest problem. Fix a arbitrarily small constant ε > 0.

1. Solve the LP (P0). Let (x∗, z∗) be a optimal fractional solution.
2. Remove all the demands i such that z∗i > 1 − ε. Let L be the set of the

remaining demands.
3. Apply the Goemans-Williamson primal-dual algorithm [21] on the set of

remaining demands L and return the solution.

This algorithm is polynomial since there is a standard separation oracle based
on the maximum flow to solve the the LP (P0). Specifically, the separation oracle
for the constraint

∑
e∈δ(S) xe + zi ≥ 1 can be done as follows. Given a solution

(x, z), construct a network flow problem on the given graph G in which the
capacity of each edge e is xe. Then, for every i, verify if the maximum flow from
si to ti is at least 1 − zi. If not, then the minimum cut S separating si and ti
gives the violated constraint

∑
e∈δ(S) xe+zi < 1. Otherwise,

∑
e∈δ(S) xe+zi ≥ 1

by the maxflow-mincut theorem. Hence, given a solution (x, z), one can find a
violated constraint in polynomial time if it exists.

However, as it involves solving an LP of exponential size, in practice it is less
performant than the primal-dual one presented in the main part of this paper.

Proposition 1. The algorithm removes at most (1+ε)(m−k) demands and has
cost at most O(1/ε) that of the optimal solution that removes (m− k) demands.

Proof. By the constraint
∑
i zi ≤ r = (m − k) of (P0), the number of variables

z∗i ’s such that z∗i > 1 − ε is at most (m − k)/(1 − ε) ≈ (1 + ε)(m − k). So the
number of removing demands is at most (1 + ε)(m − k). As z∗i ≤ 1 − ε for all
remaining demands i ∈ L, x∗ is now a feasible solution of the following LP.
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min
∑
e∈E

cexe∑
e∈δ(S)

xe ≥ ε ∀i ∈ L,∀S ⊂ V : S � i

xe ≥ 0 ∀e ∈ E

This is exactly the LP relaxation of the classic Steiner Forest problem by scaling
up the constraints by factor 1/ε. The Goemans-Williamson primal-dual algo-
rithm [21] gives a 2 approximation for the latter problem. As x∗ is a feasible
solution of the LP above, the returned solution has cost at most 2/ε ·

∑
e∈E cex

∗
e.

So the proposition follows. ut

Running time of the rounding solution. The running time of the round-
ing scheme follows the analysis of Jain [28]. In particular, they show that the
separation oracle for the problem can be implemented in time O(nM(m,n))
time, where M(m,n) is the running time of maximum flow compuation in the
the graph G = (V,E) with n vertices and m edges. This can be plugged in
into the running time of Vaidya’s algorithm [46] to solve the LP relaxation.
This gives us the running time of finding the optimal solution of the LP as
O(m2n(T + logm)M(m,n) + m2(T + logm)P (m)), where P (m) is the time to
multiply two m×m matrices.

Rounding vs. Primal-Dual Approach for the k-Forest Problem. To
compare the two approaches, we first compare their running times.

Using the Orlin maxflow algorithm [41], we have M(m,n) = mn. Hence, the
complexity of the rounding algorithm is O(m3n2T ) whereas the running time of
the primal-dual based Algorithm A is O

(
n6 · log(m/ε) · T

)
using Lemma 5.

Thus, for sufficiently dense-graphs—in particular when m > n4/3 log n—the
primal-dual algorithm outperforms the rounding algorithm.

Second, we note that the rounding approach requires solving an exponetial-
size LP, which in general is not practical. Light-weight algorithms such as greedy
or primal-dual routinely outperform exponential-size rounding-based algorithms.

Finally, the primal-dual approach establishes a general technique which can
prove useful in solving other non-Langrangian-multiplier preserving optimization
problems that may not admit efficient rounding based solutions.
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