Online List Labeling with Predictions

Shikha Singh

Williams College

Joint work with

Samuel McCauley, Benjamin Moseley and Aidin Niaparast

Algorithms with Predictions

- Worst-case is analysis often too pessimistic
- Growing line of work to analyze beyond-worst case performance of algorithms
- Focus on "instances we are more likely to see"
 - Future instances look like the past

Algorithms with Predictions

Data Structures with Predictions

framework to reason about predictions

Learning-Augmented Model

- Introduced recently to give a general theoretical framework for analyzing learned algorithms
- Design and Analysis Goal:
 - Performance bounds as a function of error in prediction
 - Do well on both extremes (perfect and totally erroneous)
 - Degrade gracefully in between
- Essentially want low or no overhead of using predictions

Motivating Example [Kraska et al. SIGMOD '18]

- Binary search over a sorted array of *n* numbers
- Worst case: $O(\log n)$ time look up

Motivating Example [Kraska et al. SIGMOD '18]

- Train a predictor $\tilde{r}(x)$ to predict x's location in array based on past data
 - $\tilde{r}(x)$ might be wrong, hopefully not too much
- "Warm start" your search at $\tilde{r}(x)$
 - Repeatedly double until you find *x*

Motivating Example [Kraska et al. SIGMOD '18]

- Analysis: Define prediction error $\eta = |\tilde{r}(x) r(x)|$
 - New lookup cost: $O(\log \eta)$
- (Best). Perfect prediction: O(1) cost
- (Worst). Completely erroneous: $O(\log n)$
- (Intermediate). Degrades gracefully with error

Problems Studied in this Model

- Applied to online algorithms [Lavastida Moseley Vassilvitskii '20]
- Warm-starting offline optimization problems
 - Bipartite matchings [Dinitz Im Lavastida Moseley Vassilvitskii '21]
 - Shortest paths [Chen Silwal Vakilian Zhang '22]
 - Convex optimization [Sakaue Oki '22]
 - Flows [Davies Moseley Vassilvitskii Wang '23]

Learned Data Structures Literature

Learned Replacements of Data Structures

Lehmann Sanders Vinciguerr '23], etc.

Learned Adaptations of Data Structures

Learned **count-min sketch**

[Hsu Indyk Katabi Vakilian '19]

Learned Data Structures Literature

Our Goal

Apply the new learning-augmented model to data structures

Focus on a fundamental data structures problem:

Online list labeling

Online List Labeling Problem

- *n* items arrive one by one (from a totally ordered universe)
- Must be stored in **sorted order** in an array of size m = cn
- Define label(x) as x's slot in array
- **Cost**: Minimize # relabels (element movements) per insert

List Labeling Data Structure

- Insert(x) : must store it between pred p_x and succ s_x
- Might have to move things around to make room

List Labeling Data Structure

- Insert(x) : must store it between pred p_x and succ s_x
- Might have to move things around to make room

List Labeling Data Structure

- Insert(x) : must store it between pred p_x and succ s_x
- Might have to move things around to make room
 - Must be careful: greedy approach $\Omega(n)$ per insert

Why List Labeling?

- Fundamental building block in many data structures
 - Cache-oblivious B trees [Bender Demaine Farach-Colton '00, Bender Demaine, Iacono Wu '02, Brodal Fagerberg Jacob '02] etc.
 - Graph data structures [Wheatman Burns '21, Wheatman Xu '18, Wheatman Xu '21, Pandey Wheatman Xu Buluc '21] etc.
- Studied for over four decades under various names
 - Sequential file maintenance [Willard '82, '86]
 - Order maintenance [Dietz '82, Dietz Slator '87]
 - Sparse tables [Itai, Konheim, Rodeh '81]
 - Packed-memory arrays [Bender, Demaine, Farach-Colton '00]
- We call any data structure for this problem a list labeling array (LLA)

List Labeling: State of the Art

• Deterministic LLAs:

Ω(log *n*) lower bound [Bulánek Koucky Saks '13]

- O(log² n) amortized [Itai Konheim Rodeh '81] and worst-case LLA [Willard '82, '86], simplified by [Bender Cole Demaine Farach-Colton Zito '02], [Katriel '02], [Bender Fineman Gilbert Kopelowitz Montes '17]
- Best possible for deterministic LLAs [Bulánek Koucky Saks '12]
- Randomized LLAs:
 - Recent breakthrough: O(log^{3/2} n) expected amortized [Bender Conway Farach-Colton Komlós Kuszmaul Wein '22] extends HI PMA [Bender Berry Johnson Kroeger McCauley Phillips Simon Singh Zage '16]
- Specialized LLAs:
 - Adaptive PMA [Bender Hu '07] and Rewired PMAs [DeLeo Boncz '19]

List Labeling in Learned Indices

- Directly motivated by work on learned indices
- Back to the original motivation from [Kraska et al. 2018]

Sorted array

List Labeling in Learned Indices

- To support dynamic learned indices:
 - Need to efficiently maintain a dynamic sorted array!

Gapped Arrays

- Past work on learned indices used a **greedy** list labeling data structure: a gapped array [Ding et al. SIGMOD '20]
 - $\Omega(n)$ element movements per insert in worst case
- Assume uniform random insertions
 - $O(\log n)$ w.h.p. [Bender Farach-Colton Mosteiro '06]

Main Question

- How to leverage the learning-augmented framework to design a learned LLA that guarantees:
 - Best possible performance on extremes: best & worst predictions
 - Performance degrades gracefully with error

$$\eta = 0 \qquad \qquad \eta = \infty$$

List Labeling Prediction Model

- *n* elements arrive one by one
 - For simplicity, ignore deletes for now
- Final rank of element x is r(x) after all n elements arrive
- Each insert x arrives with a **predicted rank** $\tilde{r}(x)$
 - Assigned adversarially based on past inserts/predictions
- Prediction error $\eta_x = |r(x) \tilde{r}(x)|$
- Maximum error as $\eta = \max \eta_x$

List Labeling with Predictions

Our Results

- [Today's talk] A Learned List Labeling Array that
 - Uses existing worst-case LLAs as a blackbox
 - Guarantees $C(\eta)$ amortized cost where C(n) is the amortized cost of black-box LLA
 - **Optimal** for **any error** η among deterministic LLAs
 - Empirically outperforms state-of-the-art LLAs
- [Aside] Stochastic predictions
 - Improved bounds in terms of mean and variance of unknown distribution from which error is sampled

learnedLLA: Description

- At any time, partitioned into ℓ actual LLAs P_1, \ldots, P_ℓ
- Each LLA is **assigned** contiguous **ranks** and **slots** that partition {1,...,n} and {1,...,m} respectively

learnedLLA: Insert Idea

- If new insert's predicted rank **agrees with** pred and succ placement, insert into LLA containing predicted rank
- If it **conflicts** with pred (succ), insert into the LLA of pred/succ

learnedLLA: Example Insert

- $\tilde{r}(x)$ is **assigned to red** LLA, but pred(x) is **stored in** green LLA
 - Insert *x* to green LLA
- If green LLA more than half full, merge with grey, orange, red

learnedLLA: Example Insert

- $\tilde{r}(x)$ is **assigned to red** LLA, but pred(x) is **stored in** green LLA
 - Insert *x* to green LLA
- If green LLA more than half full, merge with grey, orange, red

learnedLLA: Insertion

- $i_x \leftarrow \text{LLA}$ whose assigned ranks contain \tilde{r}_x
- i_p (resp i_s) \leftarrow LLA whose assigned ranks contain p_x (resp s_x)

Insertion:

- If $i_p > i_x$: insert x into i_p
- Else if $i_s < i_x$: insert x into i_s
- Else: insert x into i_x
- If LLA inserted to more than half full
 - Merge with "sibling" LLA

Let **blackbox LLA** handle actual slot within

Only case that uses the **predicted rank**

Idea: Some element must have error ∝ size of overfull LLA

- Key lemma: If P is an actual LLA, then it contains some element x with high enough error: $\eta_x \ge |P|/2$
 - 3x elements as # assigned ranks
 - Some elem responsible for pushing others to this LLA

- Key lemma: If P is an actual LLA, then it contains some element x with high enough error: $\eta_x \ge |P|/2$
 - 3x elements as # assigned .anks
 - Responsible for pushing other Largest LLA size = $O(\eta)$

• **Total cost** = Relabels within LLAs + Relabels during merges

Dominated by cost of final LLAs

Linear cost; lower order term

• Total cost = Relabels within LLAs + Relabels during merges

At most $C(\eta)$ amortized cost of each final LLA; all *n* partitioned across final LLAs

Lower Bound Idea

- Easier to see that can't do better when $\eta = 0$ or $\eta = n$
- **Question.** How to prove optimality for intermediate error?
- Idea. Apply classic lower bound [Bulánek Koucky Saks '12] to each n/η subproblems of size η
- Challenge. Can't force big LLA to only use assigned slots

n/η subproblems

Experiments

- LearnedLLA outperforms PMA, APMA on numerous real data
- Inherits performance of APMA when using it as blackbox

^		
Am	ortized	COST

	Gowalla	Gowalla	MOOC	AskUbuntu	email-Eu-core
LLAs	(LocationID)	(Latitude)			
PMA	7.14	14.56	19.22	24.56	21.49
APMA	7.38	15.63	16.70	10.84	21.43
LearnedLLA + PMA	3.36	6.06	11.99	14.27	16.55
LearnedLLA + APMA	3.36	6.15	12.13	8.49	16.55

Conclusion

- Learning-augmented framework provides a "worst case" way to reason about learned algorithms
- Only been applied to online algorithms/optimization problems
- Online list labeling structure was very amenable to this model
- **Exciting future direction**: opportunity to exploit this model for other data structures
 - Main challenge: what to predict and what not to predict
 - E.g. how to handle insert + query workloads?
- **Open problem from earlier**: How to tackle average case error?