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Abstract. We define the range 1 query (R1Q) problem as follows. Given
a d-dimensional (d ≥ 1) input bit matrix A, preprocess A so that for any
given regionR of A, one can efficiently answer queries asking ifR contains
a 1 or not. We consider both orthogonal and non-orthogonal shapes for R
including rectangles, axis-parallel right-triangles, certain types of polygons,
and spheres. We provide space-efficient deterministic and randomized
algorithms with constant query times (in constant dimensions) for solving
the problem in the word RAM model. The space usage in bits is sublinear,
linear, or near linear in the size of A, depending on the algorithm.

Keywords: R1Q, range query, range emptiness, randomized, rectangular,
orthogonal, non-orthogonal, triangular, polygonal, circular, spherical.

1 Introduction

Range searching is one of the fundamental problems in computational geometry
[1, 12]. It arises in application areas including geographical information systems,
computer graphics, computer aided design, spatial databases, and time series
databases. Range searching encompasses different types of problems, such as
range counting, range reporting, emptiness queries, and optimization queries.

The range 1 query (R1Q) problem is defined as follows. Given a d-dimensional
(d ≥ 1) input bit matrix A (consisting of 0’s and 1’s), preprocess A so that one
can efficiently answer queries asking if any given range R of A is empty (does
not contain a 1) or not, denoted by R1QA(R) or simply R1Q(R). In 2-D, the
range R can be a rectangle, a right triangle, a polygon or a circle.

In this paper, we investigate solutions in the word RAM model sharing the
following characteristics. First of all, we want queries to run in constant time, even
for d ≥ 2 dimensions. Second, we are interested in solutions that have space linear
or sublinear in the number of bits in the input grid. Note that while our sublinear
bounds are parameterized by the number of 1s in the grid, this is still larger
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than the information-theoretic lower bounds. For our motivating applications,
information-theoretically optimal space is less important than constant query
times. Third, we are interested in grid inputs [10, 11], viewing the problem in
terms of pixels/voxels rather than a set of spatial points. This grid perspective
enables constant-time operations such as table lookup and hashing. Finally, we
are interested in both orthogonal and nonorthogonal queries, and we require
solutions that are concise enough to be implementable.

Previous Results. The R1Q problem can be solved using data structures such
as balanced binary search trees, kd-trees, quad trees, range trees, partition trees,
and cutting trees (see [5]), which take the positions of the 1-bits as input. It can
also be solved using a data structure of Overmars [11], which uses priority search
trees, y-fast tries, and q-fast tries and takes the entire grid as input. However, in
d-D (d ≥ 2), in the worst case these data structures have a query time at least
polylogarithmic and occupy a near-linear number of bits.

The R1Q problem can also be solved via range partial sum [3,14] and the range
minimum query (RMQ) [2, 6, 7, 15] problems. Though several efficient algorithms
have been developed to solve the problem in 1-D and 2-D, their generalizations
to 3-D and higher dimensions occupying a linear number of bits are not known
yet. Also, there is little work on space-efficient constant-time RMQ solutions for
non-orthogonal ranges.

The R1Q problem can also be solved using rank queries [8, 9]. Again, its
generalization to 2-D and higher dimensions has not yet been studied.

Motivation. We encountered the R1Q and R0Q (whether a range contains a 0)
problems while trying to optimize stencil computations in the Pochoir stencil
compiler [13], where we had to answer octagonal R1Q and octagonal R0Q on
a static 2-D property grid. Stencil computations have applications in physics,
computational biology, computational finance, mechanical engineering, adaptive
statistical design, weather forecasting, clinical medicine, image processing, quan-
tum dynamics, oceanic circulation modeling, electromagnetics, multigrid solvers,
and many other areas (see the references in [13]).

In Fig. 1, we provide a simplified exposition of the problem encountered
in Pochoir. There are two grids of the same size: a static property grid and a
dynamic value grid. Each property grid cell is set to 1 if it satisfies property P
and 0 otherwise. When Pochoir needs to update a range R in the value grid (see
Alg. 1), its runtime system checks whether all or none of the points in R satisfy
P in the property grid, and based on the query result it uses an appropriate
precompiled optimized version of the original code (see Algs. 3, 4) to update
the range in the value grid. To check if all points in R satisfy P, Pochoir uses
R0Q(R), and to check if no points in R satisfy P, it uses R1Q(R).

Pochoir needs time-, space-, and cache-efficient data structures to answer
R1Q. It can also tolerate some false-positive errors. The solutions should achieve
constant query time and work in all dimensions. Although it is worth trading off
space to achieve constant query times, space is still a scarce resource.
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Algorithm 1 : UpdateRange(R)

1: if !R0Q(R) then

2: {all points in R satisfy P.}
3: funcptr ← PUpdatePoint

4: else if !R1Q(R) then

5: {no points in R satisfy P.}
6: funcptr ← NUpdatePoint

7: else
8: {not all points in R satisfy P.}
9: funcptr ← UpdatePoint

10: for each grid point p in R do

11: funcptr(p)

Algorithm 2 : UpdatePoint(p)

1: {update p only if it satisfies P.}
2: if p.property = 1 then
3: p.value← new value

4: do some stuff

Algorithm 3 : PUpdatePoint(p)

1: {p satisfies P. update p.}
2: p.value← new value

3: do some stuff

Algorithm 4 : NUpdatePoint(p)

1: {p doesn’t satisfy P. don’t update p.}
2: do some stuff

Fig. 1. Examples of the procedures in Pochoir that make use of R1Q and R0Q.

Our Contributions. We solve the R1Q problem for orthogonal and non-
orthogonal ranges. Our major contributions as shown in Table 1 are as follows:

1. [Orthogonal Deterministic.] We present a deterministic data structure to answer
R1Q for orthogonal ranges in all dimensions and for any data distribution.
It occupies linear space in bits and answers queries in constant time for any
constant dimension.

2. [Orthogonal Randomized.] We present randomized data structures to answer
R1Q for orthogonal ranges. The structures occupy sublinear space in bits
and provide a tradeoff between query time and error probability.

3. [Non-Orthogonal Deterministic.] We present deterministic data structures to
answer R1Q for non-orthogonal shapes such as axis-parallel right-triangles
(for 2-D) and spheres (for all dimensions). The structures occupy near-linear
space in bits and answer queries in constant time.

We use techniques such as power hyperrectangles, power right-triangles,
sketches, sampling, the four Russians trick, and compression in our data struc-
tures. A careful combination of these techniques allows us to solve a large class of
R1Q problems. Techniques such as power hyperrectangles, table lookup, and the
four Russians trick are already common in RMQ-style operations, while sketches,
power right-triangles, and compression are not.

Organization of the Paper. Section 2 presents deterministic and randomized
algorithms to answer orthogonal R1Qs on a grid in constant time for constant
dimensions. Section 3 presents deterministic algorithms to answer non-orthogonal
R1Qs on a grid, for axis-parallel right triangles, some polygons, and spheres.

2 Orthogonal Range 1 Queries (R1Q)

In this section, we present deterministic and randomized algorithms for answering
orthogonal R1Qs in constant time and up to linear space.
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Shape Space (in bits) Time Comments

Orthogonal (Deterministic)

d-D O
(
(d+ 1)!

(
2

ln 2

)dN)+ |A| O
(
4dd
)

for d dimensions

Orthogonal (Randomized)

1-D (Sketch) O
(√
NN1 logN log 1

δ

)
O
(
ln 1
δ

)
δ ∈

(
0, 1

4

)
; correct for range size ≥√

N/N1, otherwise correct with prob ≥
1− 4δ; extendible to ≥ 2-D

1-D (Sketch) O
(
N1 log2N log1+γ

1
δ

+N
1
c log logN

)
O
(
log c

δ

)
γ, δ ∈

(
0, 1

4

)
, integer c > 1; with prob

≥ 1− 4δ at most 4γ fraction of all query
results will be wrong; extendible to ≥ 2-
D

1-D (Sampling) O (s) + |A| O
(
1
ε ln 1

δ

)
ε, δ ∈ (0, 1), s = Ω (logN); always cor-
rect for range size ≥ (N logN)/s, oth-
erwise correct with prob ≥ 1 − δ when
≥ ε fraction of all range entries are 1;
extendible to ≥ 2-D

Non-Orthogonal (Deterministic)

Right Triangles O
(
N logN +N0 log2N

)
O (1) not extendible to ≥ 3-D

2-D Spheres O
(
N
√
logN

)
O (1) extendible to ≥ 3-D

Table 1. R1Q algorithms in this paper. Here, N = total #bits, N1 = #nonzero bits,
and N0 = #zero bits in the input bit matrix A, and d = #dimensions. If |A| appears in
the space complexity, it means that A must be retained, otherwise it can be discarded.

The algorithms in this paper rely on finding the most significant bit (MSB)
of positive integers in constant time and sublinear space as follows:

Theorem 1. Given integers N ∈ [1, 2w) and r ∈ [1, w] in the word-RAM model
with w-bit words, one can construct a table occupying O

(
N1/r log logN

)
bits of

space to answer MSB queries for integers in [1, N ] in O (1 + log r) time.

2.1 Preliminaries: Deterministic 1-D Algorithm

The input is a bit vector A[0 . . . N − 1], where N ∈ [1, 2w) and w is the word
size. The query R1QA(i, j), where i ≤ j, asks if there exists a 1 in the subarray
A[i . . . j]. For simplicity, assume N is an even power of 2.

Preprocessing. Array A hasM = N
w words. For each p ∈ [0, logM ], we construct

arrays: Lp and Rp, of size M
2p each. Let W (i) denote the ith (i ∈ [0,M − 1]) word

in A. Then, Lp is defined as follows: L0[i] is 0, if W (i) has a 1, 1 otherwise.

Lp(≥1)[i] =

{
Lp−1[2i] if Lp−1[2i] < 2p−1.

2p−1 + Lp−1[2i+ 1] otherwise.

The Rp array can be computed similarly. The array element Lp[i] (and Rp[i])
stores the distance of the leftmost (respectively, rightmost) word that contains
a 1 in the ith block of 2p contiguous words of A, measured from the start (and
end) of the block. The value Lp[i] = 2p (Rp[i] = 2p) means that the ith block of
2p contiguous words of A does not contain a 1.
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Query Execution. To answer R1QA(i, j), we consider two cases: (1) Intra-word
queries: If (i, j) lies inside one word, we answer R1Q using bit shifts. (2) Inter-
word queries: If (i, j) spans multiple words, then the query gets split into three
subqueries: (a) R1Q from i to the end of its word, (b) R1Q of the words between
i’s and j’s word (both exclusive), and (c) R1Q from the start of j’s word to j.

The answer to an inter-word query is 1 if and only if the R1Q for at least one
of the three subqueries is 1. The first and third subqueries are intra-word queries
and can be answered using bit shifts. Let the words containing indices i and j be
I and J , respectively. Then, the second subquery, denoted by R1QL0

(I+1, J−1),
is answered as follows. Using the MSB of J − I − 1, we find the largest integer p
such that 2p ≤ J − I − 1. The query R1QL0

(I + 1, J − 1) is then decomposed
into the following two overlapping queries of size 2p each: R1QL0(I + 1, I + 2p)
and R1QL0(J − 2p, J − 1). If either of those two ranges contains a 1 then the
answer to the original query will be 1, and 0 otherwise. We show below how to
answer R1QL0

(I + 1, I + 2p). Query R1QL0
(J − 2p, J − 1) is answered similarly.

Split L0 into blocks of size 2p. Then, the range R1QL0
(I + 1, I + 2p) can be

covered by one or two consecutive blocks. Let I + 1 be in the kth block. If the
range lies in one block, we find whether a 1 exists in that block by checking
whether Lp[k] < 2p is true. If the range is split across two consecutive blocks, we
find whether a 1 exists in at least one of the two blocks by checking whether at
least one of Rp[k] ≤ (k + 1)2p − I or Lp[k + 1] ≤ I + 2p − (k + 1)2p is true.

2.2 Deterministic d-D Algorithm

For d-D (d ≥ 2) R1Q, the input is a bit matrix A of size N = nd. Here we give
an algorithm for a 2-D matrix of size N = n × n, but the algorithm extends
to higher dimensions. For simplicity, we assume n is a power of 2. The query
R1Q([i1, j1][i2, j2]) asks if there exists a 1 in the submatrix A[i1 . . . j1][i2 . . . j2].

Preprocessing. For each p, q ∈ [0, log n], we partition A into n
2p ×

n
2q blocks,

each of size 2p × 2q called a (p, q)-block. For each (p, q) pair, we construct four
tables of size N

2p+q ×min(2p, 2q) each:
(i) TLp,q: if p ≤ q, TLp,q[i, j][k] indicates that any rectangle of height k ∈ [0, 2p)
starting from the top-left corner of the current block must have width at least
TLp,q[i, j][k] in order to include at least one 1-bit.
(ii) BL, TR,BR: similar to TL but starts from the bottom-left, top-right and
bottom-right corners, respectively.
In all cases, a stored value of max(2p, 2q) indicates that the block has no 1.

Query Execution. Given a query [i1, j1][i2, j2], we find the largest integers p
and q such that 2p ≤ j1 − i1 + 1 and 2q ≤ j2 − i2 + 1. The original query range
can then be decomposed into four overlapping (p, q)-blocks, which we call power
rectangles, each with a corner at one of the four corners of the original rectangle,
as in Fig. 2(a). If any of these four rectangles contains a 1, the answer to the
original query will be 1, and 0 otherwise. We show below how to answer an R1Q
for a power rectangle.
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2p

2q

2q

2p

(i1, i2)

(j1, j2)

(a) (b)

Fig. 2. Rectangles: (a) Query rectangle split into four possibly overlapping power
rectangles. (b) Power rectangle divided into four regions by four split rectangles.

We consider the partition of A into preprocessed (p, q)-blocks. It is easy to see
that each of the four power rectangles of size 2p × 2q will intersect at most four
preprocessed (p, q)-blocks. We call each rectangle contained in both the power
rectangle and a (p, q)-block a split rectangle (see Fig. 2(b)). The R1Q for a split
rectangle can be answered using a table lookup, checking if the table values of
the appropriate (p, q)-blocks are inside the power rectangle boundary, as shown
in Fig. 2(b). The proof of the following theorem will be given in the full paper.

Theorem 2. Given a d-D input grid of size N = nd, each orthogonal R1Q on
the grid can be answered deterministically in O

(
4dd
)
time after preprocessing

the grid in Θ (N) time using O
(

(d+ 1)! (2/ ln 2)
d
N
)
bits of space. In 1-D, the

space can be reduced to O (N/ logN) bits.

2.3 Randomized Algorithms

In this section, we present randomized algorithms that build on the deterministic
algorithms given in Sections 2.1 and 2.2. We describe the algorithms for one
dimension only. Extensions to higher dimensions are straightforward.

Sketch Based Algorithms. Our algorithms provide probabilistic guarantees
based on the Count-Min (CM) sketch data structure proposed in [4]. Let N1 be
the number of 1-bits in the input bit array A[0 . . . N−1] for any data distribution.
Then, the (preprocessing) time and space complexities depend on N1 while the
query time remains constant.

A CM sketch with parameters ε ∈ (0, 1] and δ ∈ (0, 1) can store a summary
of any given vector a = 〈a0, a1, . . . , an−1〉 with ai ≥ 0 in only d eεedln

1
δ e log ||a||1

bits of space, where ||a||1 (or ||a||) =
∑n−1
i=0 ai, and can provide an estimate âi

of any ai with the following guarantees: ai ≤ âi, and with probability at least
1−δ, âi ≤ ai+ε||a||1. It uses t = dln 1

δ e hash functions h1 . . . ht : {0 . . . n− 1} →
{1 . . . b} chosen uniformly at random from a pairwise-independent family, where
bucket size b = d eεe. These hash functions are used to update a 2-D matrix
c[1 : t][1 : b] of bt counters initialized to 0. For each i ∈ [0, n−1] and each j ∈ [1, t]
one then updates c[j][hj(i)] to c[j][hj(i)] + ai. After the updates, an estimate âi
for any given query point ai is obtained as min1≤j≤t c[j][hj(i)].
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Preprocessing. In the deterministic algorithms we first compressed the input
array by converting each word into a single bit, and then constructed L0 and R0

arrays from the compressed array. In the current algorithm we build the L0 and
R0 arrays directly from the uncompressed input. For p ∈

[
0, 12 log (N/N1)

]
, the

Lp and Rp arrays are stored as CM sketches while p ∈
[
1
2 log (N/N1) + 1, logN

]
the arrays are stored directly as in the deterministic case. Each Lp[i] is added as
(Lp[i] + 1) mod (2p + 1) to the CM sketch (similarly for Rp[i]). Thus a nonzero
entry (of value at most 2p) is added to the CM sketch provided the corresponding
block contains a 1, otherwise nothing is added. As a result for any given Lp
summation of all entries added to the CM sketch is at most N1 × 2p, and we set
ε = 1

2×N1×2p for that sketch.

Query Execution. Given a query R1QA(i, j), we use the MSB of j − i+ 1 to
find the largest value of p with 2p ≤ j − i+ 1, and then follow the approach for
answering case (b) of inter-word queries described in Section 2.1. If 2p >

√
N/N1,

we use Lp and Rp arrays to answer the query correctly, otherwise we use the Lp
and Rp values obtained from the corresponding CM sketches.

Error Bound. If the query range is larger than
√
N/N1, the answer is always cor-

rect. For smaller queries we use CM sketches. Recall that for p ∈
[
0, 12 ln(N/N1)

]
,

we store each Lp (and Rp) as a CM sketch with parameter ε = 1
2×N1×2p . Hence,

the estimated value L̂p[i] of an entry Lp[i] returned by the CM sketch is between
Lp[i] and Lp[i] + ε||Lp|| ≤ Lp[i] + 0.5 with probability at least 1 − δ. In other
words, with probability at least 1− δ, the CM sketch returns the correct value. In
order to answer an R1Q we need to access at most four CM sketches. Hence, with
probability at least (1− δ)4 ≥ 1− 4δ, the query will return the correct answer.

Theorem 3. Given a 1-D bit array of length N containing N1 nonzero en-
tries, and a parameter δ ∈

(
0, 14
)
, one can construct a data structure occupying

O
(√
NN1 logN log

(
1
δ

))
bits (and discard the input array) to answer each R1Q

correctly in O
(
ln 1

δ

)
worst-case time with probability at least 1− 4δ. For query

ranges larger than
√
N/N1 the query result is always correct.

By tweaking the algorithm described above slightly, we can reduce the space
complexity even further at the cost of providing a weaker correctness guarantee.
We assume that we are given an additional parameter γ ∈

(
0, 14
)
. The required

modification is described below.
For each p ∈ [0, logN ], we store the Lp and Rp arrays as CM sketches. How-

ever, instead of adding a value v directly to a CM sketch, we now add a (1 + γ)
approximation of v. More precisely, we add dlog1+γ (1 + v)e instead of v. Hence,
for a given Lp, the summation of all entries added to its CM sketch is at most
N1dlog1+γ (1 + 2p)e, and so we set the parameter ε to 1/

(
2N1dlog1+γ (1 + 2p)e

)
for that sketch. The total space used by all CM sketches can be shown to be
O
(
N1 log3N log1+γ (1/δ)

)
. We store a lookup table of size O

(
log2N

)
for con-

versions from dlog1+γ (1 + v)e to v, and an MSB table of size O
(
N1/c log logN

)
for some given integer constant c > 1.
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We first show that for any given p ∈ [0, logN ] at most 2γ fraction of the queries
of size 2p can return incorrect answers. Consider any two consecutive blocks of size
2p, say, blocks i ∈ [0, N2p − 1) and i+ 1. Exactly 2p different queries of size 2p will
cross the boundary between these two blocks. The answer to each of these queries
will depend on the estimates of Rp[i] and Lp[i+1] obtained from the CM sketches.

Under our construction the estimates are R̂p[i] ≤ (1 + γ)Rp[i] ≤ Rp[i] + γ · 2p
and L̂p[i + 1] ≤ (1 + γ)Lp[i + 1] ≤ Lp[i + 1] + γ · 2p. Hence, at most γ · 2p of
those 2p queries will produce incorrect results due to the error in estimating
Rp[i], and at most γ · 2p more because of the error in estimating Lp[i+ 1]. Thus
with probability at least (1 − δ)2, at most 2γ fraction of those 2p queries will
return wrong results. Recall from Section 2.1 that we answer given queries by
decomposing the query range into two overlapping query ranges. Hence, with
probability at least (1− δ)4 ≥ 1− 4δ, at most 2γ+ 2γ = 4γ fraction of all queries
can produce wrong answers.

Theorem 4. Given a 1-D bit array of length N containing N1 nonzero entries,
and two parameters γ ∈

(
0, 14
)
and δ ∈

(
0, 14
)
, and an integer constant c > 1, one

can construct a data structure occupying O
(
N1 log3N log1+γ

(
1
δ

)
+N1/c log logN

)
bits (and discard the input array) to answer each R1Q in O

(
log c

δ

)
worst-case

time such that with probability at least 1 − 4δ at most 4γ fraction of all query
results will be wrong.

Sampling Based Algorithm. Suppose we are allowed to use only O (s) bits
of space (in addition to the input array A), and s = Ω (log2N). We are also
given two constants ε ∈ (0, 1) and δ ∈ (0, 1). We build Lp and Rp arrays for each
p ∈

[
log N

s + log logN, logN
]
, and an MSB lookup table to support constant

time MSB queries for integers in [1, s/ logN ]. Consider the query R1QA(i, j). If
j − i + 1 ≤ w, we answer the query correctly in constant time by reading at
most 2 words from A and using bit shifts. If j − i+ 1 ≥ 2log

N
s +log logN = N logN

s ,
we use the Lp and Rp arrays to correctly answer the query in constant time. If

w < j − i+ 1 < N logN
s , we sample d 1ε ln

(
1
δ

)
e entries uniformly at random from

A[i . . . j], and return their bitwise OR. It is easy to show that the Lp and Rp
tables use O (s) bits in total, and the MSB table uses o (s) bits of space. The
query time is clearly O

(
1
ε ln

(
1
δ

))
.

Error Bound. If at least an ε fraction of the entries in A[i . . . j] are nonzero
then the probability that a sample of size d 1ε ln

(
1
δ

)
e chosen uniformly at random

from the range will pick at least one nonzero entry is ≥ 1− (1− ε)
1
ε ln ( 1

δ ) ≈ 1− δ.

Theorem 5. Given a 1-D bit array of length N , a space bound s = Ω (logN),
and two parameters ε ∈ (0, 1) and δ ∈ (0, 1), one can construct a data struc-
ture occupying only O (s) bits of space (in addition to the input array) that in
O
(
1
ε ln

(
1
δ

))
time can answer each R1QA(i, j) correctly with probability at least

1 − δ provided at least an ε fraction of the entries in A[i . . . j] are nonzero. If
j − i+ 1 ≤ w or j − i+ 1 ≥ N logN

s , the query result is always correct.
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Fig. 3. Right Triangular R1Q. (a) Preprocessing. (b) Query Execution. Each black grid
point contains a 1 while each white grid point contains a 0.

3 Non-Orthogonal Range 1 Queries (R1Q)

In this section, we show how to answer R1Q for non-orthogonal ranges, such as
axis-parallel right triangles, spheres and certain type of polygons, given an input
matrix of size N = n× n.

3.1 Right Triangular R1Q

A right triangular query R1Q(ABC) asks if there exists a 1 in an axis-parallel
right triangle ABC defined by three grid points A, B, and C. In the rest of the
paper, right triangles will mean axis-aligned right triangles.

Preprocessing. For every grid point (x, y) containing a 0, for each p ∈
[
0, logN2

]
,

we store the coordinates of 8 other grid points for 8 different orientations. For
example, consider Fig. 3(a) in which each black grid point corresponds to a 1,
and each white point corresponds to a 0. For the point P = (x, y) in the figure,
we show the eight black points (i.e., LC , LCC , RC , RCC , UC , UCC , DC and
DCC) we store for a given p. For example, LC is a black point that lies to the
left of P within a horizontal distance of 2p from it (in terms of the number of
grid points including P ) such that PLC makes the smallest angle θLC in the
clockwise direction with the horizontal line passing through P . The significance
of LC is that no right triangle with a horizontal base of length 2p that has one
endpoint at (x, y), another endpoint to the left of (x, y), and whose hypotenuse
makes a smaller nonnegative angle than θLC in the clockwise direction with the
horizontal line can contain a 1. Similarly, other points are identified.

Query Execution. We show how to answer a right triangular R1Q in Θ (1) time.
Say, we want to answer R1Q(ABC) (see Fig. 3(b)). Let 2p be the largest power
of 2 not larger than |AB|, and 2q be the largest power of 2 not larger than |CB|.
Find grid points D and E on AB and CB, respectively, such that |AD| = 2p

and |CE| = 2q. Suppose the horizontal line passing through D intersects BC at
G, and the vertical line passing through E intersects BC at H. Observe that
G and H are not necessarily grid points. We assume w.l.o.g. that none of the
vertices A, B and C contains a 1 (as otherwise we can answer the query trivially
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(a, b)

(c, d)

(a, d)

(c, b)

A B

C
D

E

F

G

(a) (b) (c)

Fig. 4. Black grid points contain 1’s and white grid points contain 0’s. Polygon in (a)
satisfies Prop. 1. Polygons in (b) and (c) do not satisfy Prop. 1. Still, R1Q can be
answered for (c).

in constant time). Observe that we can answer R1Q(ABC) if we can answer R1Q
for triangles ADG and CEH, and the rectangle BDFE. R1Q for the rectangle
can be answered using our deterministic algorithm described in Section 2.2. R1Q
for a right triangle of a particular orientation with height or base length equal
to a power of two can be answered in constant time. This is done by checking
whether the point stored (from preprocessing) with the appropriate endpoint of
the hypotenuse for that specific orientation is inside the triangle or not.

Theorem 6. Given a 2-D bit matrix of size N =
√
N ×

√
N containing N0 zero

bits, one can construct a data structure occupying O
(
N logN +N0 log2N

)
bits

in O
(
N1.5

)
time (and discard the input matrix) to answer each axis-aligned right

triangular R1Q with the three vertices on the grid points in O (1) time.

3.2 Polygonal R1Q

Consider a simple polygon with its vertices on grid points satisfying the following.

Property 1. For every two adjacent vertices (a, b) and (c, d), one of the two right
triangles with the third vertex being either (a, d) or (c, b) is completely inside
the polygon.

It can be shown that such a polygon can be decomposed into a set of possibly
overlapping right triangles and rectangles with only grid points as vertices that
completely covers the polygon (see Fig. 4(a)). Examples of polygons that do not
satisfy the constraint are given in Fig. 4(b, c), but we can still answer R1Q for
the polygon in (c). A simple polygon with k vertices satisfying propery 1 can be
decomposed into O (k) right triangles and rectangles and hence can be answered
in O (k) time.

3.3 Spherical R1Q

The spherical R1Q problem is defined as follows. Given a d-dimensional (d ≥ 2)
input bit matrix A, preprocess A such that given any grid point p in A and a
radius r ∈ R+, find efficiently if there exists a 1 in the d-sphere centered at p of
radius r. Here, we present the algorithm for 2-D. The approach can be extended
to higher dimensions.

A nearest 1-bit of a grid point p is called a nearest neighbor (NN) of p. We
preprocess A by computing and compresssing the NNs of all grid points in A
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(only one NN per grid point). We then answer a spherical R1Q by checking
whether a NN of the given center point is inside the circle of given radius.

Preprocessing. We store the locations of the NNs of the grid points of A in a
temporary NN matrix that occupies O (N logN) bits, but can be compressed to
occupy O

(
N
√

logN
)

bits as follows.

We divide the grid into
√

(logN)/6×
√

(logN)/6 blocks. We store the NN
position for all points on the boundary of each block. The interior points will
be replaced with arrows (→,←, ↑, ↓) and bullets (•) as follows. If a grid point
p contains a 1 then p is replaced with a •. An arrow at a grid point gives the
direction of its NN. If we follow the arrows from any interior point, we end up in
either a boundary point or an interior point containing a 1. For any given block
the matrix created as above will be called a symbol matrix representing the block.

Two blocks are of the same type if they have the same symbol matrix. Each
symbol can be represented using only three bits. Since each block has (logN)/6

symbols, there are 2
3 logN

6 =
√
N possible block types. For each block type we

create a position matrix that stores, for each grid point within a block, the pointer
to its NN if the NN is an interior point, or a pointer to a boundary point if the
NN is an exterior or boundary point. The boundary point will have stored its
own NN position in the input array.

We can now discard the original input matrix, and replace it with the follow-
ing compressed representation. For each block in the input matrix we store its
block type (i.e., a pointer to the corresponding block type) followed by the NN
positions of its boundary points. For each block type we retain its position matrix.

Query Execution. We can answer a spherical R1Q by checking whether the
NN position of the center point is inside the query sphere. The approach of
finding the NN position is as follows. We find the block to which the given point
belongs and follow the pointer to its block type. We check the position stored
at the given point in the position matrix. If it points to an internal point, then
that point is the correct NN. If it points to a boundary point, we again follow
the pointer stored at the boundary point to get the correct NN.

Theorem 7. Given a 2-D bit array of size N , one can construct a data struc-
ture occupying O

(
N
√

logN
)
bits (and discard the input array) to answer each

spherical R1Q in O (1) time.

Acknowledgments. We like to thank Michael Biro, Dhruv Matani, Joseph S.
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