CS 371 Project 7:
Interaction

Figure 1: An interactive world with multiple characters, dynamic effects, and an
integrated heads-up-display for a GUL

1 Introduction

To immerse the player, the ability to explore and affect a virtual world is as crucial
as its appearance. In this project, you’ll extend the real-time rendering system from
the previous week with features that allow a user to interact with the environment
and objects within it through an avatar.

Many students choose to create combat-based video game frameworks (e.g., like
Halo) for this assignment for the same reason that many game designers have: it
is easy to quantify and model the limited interactions in that context. You should
not feel limited to that kind of approach, however, and I encourage exploring more
interesting kinds of interaction such as physics puzzles (e.g., Portal); a creative
construction environment (e.g., Minecraft); and character relationships based on
trading and communication (e.g., Harvest Moon and Skyrim) or joint navigation
(e.g., Uncharted, Prince of Persia, and Ico). If you’re considering a real-time or
interactive final project, consider exploring and building suitable infrastructure for
it in this project.

1.1 Process

The specific features that your program will contain are your choice. This handout
gives a prototype specification. Don’t implement this specification as written, and

CS371 2010 | PROJECT 7: INTERACTION

don’t start working on the implementation until Tuesday.

I intentionally added more features to the interaction project than I think you can
effectively implement in a reasonable (8-12 hours for each member of the team)
amount of time. Your job is to negotiate this down to a feature set that has educa-
tional value and can produce compelling visuals. You can also add new features or
substitute them for the ones here—there may be something you want to learn that is
not covered yet.

I will discuss your new specification with you in class next Monday. You are
responsible for getting me to approve it before then. You can re-negotiate your
specification during the project, but I am more amenable to change before produc-
tion begins.

Just as on the midterm and final, I will evaluate your work against your own
specification, considering both how much you did and how well you did it. So it is
important that you scope the work well. The only elements not open for adjustment
are the deadlines, that the project must build on this week’s, and that it must focus
on interaction.

1.2 Advice

I suggest that you work backwards from the deliverables. For class projects, those
are your education, compelling visual results that communicate technical cor-
rectness, and your personal satisfaction. Every feature has some cost in developer
time. That cost is further magnified by its risk. The net cost of a feature is bal-
anced by its value towards your deliverables. You want to choose a feature set that
maximizes the value produced by your limited development time.

For example, in project 1 (meshes), texture mapping required only a few lines of
code, but made your visuals much more impressive and gave you hands-on experi-
ence with a core graphics technique. It also shifted complexity out of code and into
data. These properties make it a good feature of the assignment. In contrast, I did
not assign texture coordinate generation for the cube and cylinder. Those are much
more difficult to texture than a heightfield. Adding texture coordinates to two more
shapes offered minimal incremental educational value, and would not have made
your results look substantially different—the heightfield is more impressive than a
tube or a cube. So that was a low-value feature and I cut it from the project.

The “constrained movement” section of the specification contains significant ed-
ucational value and is very satisfying to implement. It is also the part that will push
you the farthest from elements that we’ve already studied. Plan it carefully and
consider working on that section early to understand it better.

1.3 Educational Goals

1. Apply geometric algorithms to interaction and simulation problems such as
collision detection and response

2. Practice using the output merger for blending
3. Learn new hardware-accelerated rendering techniques

4. Practice scoping project work

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

5. Practice parallel team software development

1.4 Schedule

This is an easy, pair project that builds on last week’s real-time rendering system.
The project is only easy if you create a reasonable specification and work effectively
as ateam on it. So scale your specification accordingly. Plan for at most eight hours
of work per person on this project once production starts.

Start Preproduction: Thursday, November 1 2:30 pm
Specification Due: Monday, November 5 12:00 pm
Start Production*: ~Wednesday, November 7

Checkpoint: Thursday, November 8, 1:00 pm
Due: Monday, November 12, 12:00 pm

Remember to scope your work appropriately and reserve a substantial portion of
time for the post-production work of creating the report and images.

Take into account that while you are in production on this project, you will also
be in preproduction on your final project.

* You are permitted start working before the production start date, but [assume that
you’ll want to put effort before the start date into project 6, and if you start work
before 1 approve your specification you risk spending time on features for which
you won’t being credited.

1.5 Rules/Honor Code

You may modify these rules as part of your specification.

Work in a group of 1-4 people. You are encouraged to talk to other students and
share strategies and programming techniques. You should not look at any other
group’s code for this project or use code from other external sources except for the
G3D library and code from your textbook. You may use any student’s code from
the previous projects this semester with his or her permission. During this project,
you may use any part of the G3D library and look at all of its source code, including
sample programs.

For this project, I want you to primarily work in parallel with your teammates
instead of pair programming when writing new code. You should commit code to
SVN under your own account. Working effectively in this environment requires
careful planning and division of labor, as well as code organization—avoid merge
conflicts and broken builds by planning the development process. You may debug
and work on postproduction (scenes and report) by pair programming.

You may share data files and can collaborate with other groups to create test and
visually impressive scenes. If you share a visually impressive scene with another
group, ensure that you use different camera angles or make other modifications to
distinguish your image of it.

You may copy and paste from this document’s electronic form to form all or
portions of your specification.

After Monday, Nov. 5 at 12 pm you may not modify the specification.dox
file or image files related to it without my prior approval for your specific edits.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

2 Specification

Do not implement this specification in the form that it appears below. Modify it
and submit the result to me as your proposal. You must format your proposed speci-
fication as a detailed, numbered nested list in Doxygen, saved as specification.dox
in your root SVN directory. The nested numbering is for reference when grading.
Each numbered item should therefore correspond to one explicit task that I can
check for correctness and completeness. Compare your previous project evalua-
tions and to the specifications for an example of how that works.

You must create your own checkpoint definition and report specification as
well. When writing your report, be sure to give evidence that you have completed
each task from your specification. The best way to do this is to include images that
could not have been produced without that task operating (mostly) correctly and
leave Doxygen links explaining where in your codebase I can find the correspond-
ing source.

This specification has more detail than the typical ones because it incorporates
information that I usually reserve for implementation advice as well as being too
ambitious for one week of work. Look up the documentation, think through the im-
plementation and debugging and presentation, and then decide what is reasonable.

For each numbered element of the specification, note which team member will be
responsible for implementing it. List them in the order that you plan to implement
the features.

1. Dynamic Entitys

(a) Create a new DynamicEntity subclass of VisibleEntity that uses
its own logic instead of PhysicsFrameSpline for motion and anima-
tion.

(b) Create anew subclass of Scene that to recognizes and instantiate DynamicEntitys
appropriately.

(c) Create a TriTree named m_collisionTree inside the scene and
populate it from the non-dynamic (i.e., static) Entitys, as if you were
going to ray trace them.

(d) Create a PlayerEntity subclass of DynamicEntity that has state
for its desired velocity and orientation.

1. In its simulation method, create an actual velocity and orientation
from these subject to maximum acceleration constraints, and then
update the position from them.

ii. Extend your testing scene with a PlayerEntity that uses an
MD?2 model.

iii. Use the App: :onUserInput method to set the desired velocity
and heading based on keyboard input. You may want to directly
extract information from the FirstPersonManipulator when
the debug camera is disabled (by pushing the F2 key). You should
now have a character that can fly around.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

Figure 2: Left: regular particles reveal their 2D nature at intersections with the
ground. Right: soft particles fade out coverage near intersections.

2. Particle System

(a)

(b)

(©)

(d)

(e)

()

(@

Create a ParticleSystem class that supports spawning and of point
particles (you’ll need to do some research and look in the textbooks for
more information) with constant velocity. Do not make this an Entity.

Create a debugging visualization of your particle system that draws
each particle as a point.

Add the particle system to your App (not your Scene subclass) and
invoke its simulate and render methods. Be sure to render after every-
thing else in the scene, and do not write to the depth buffer. Pass the
depth buffer and light (...and shadow map) into the render method for
later use.

Extend your particle system to render in a more interesting way by
creating a rectangular billboard of some fixed size around each point
that faces towards the camera. You can perform the point-to-billboard
computation on either the CPU or the GPU, but should choose one for
your own specification.

In App: : onUserInput, create smoke 3m in front of the camera along
its look vector whenever then spacebar is held down. You should be
able to create nice plumes of smoke with this.

Extend ParticleSystem.vrt and ParticleSystem.pix with tex-
ture map. The .a channel of the texture becomes the .a channel of
gl_Fragbatal[0], which controls the alpha blending.

Add lighting and shadows to the particles (particles receive, but do not
cast shadows) as if they were visible surfaces. Note that the particle has
no natural “normal”, so you need to devise a solution for shading.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

(h) The particles create a line wherever they intersect geometry, revealing
their flat 2D nature (Fig. 2. To disguise this, implement the soft particle
algorithm:

i. Read the depth buffer value at texel position

vec2 ¢ = gl_FragCoord.xy * g3d_sampler2DInvSize (depthBuffer);

This is a number on the range [0, 1] that is the z/w value for the
post-division, post-projective point.

ii. Compare the depth buffer value to g1_FragCoord. z, which is the
particle’s z /w value. Where they are close, the particle is about to
enter a surface, so reduce its alpha value. I chose to just scale their
absolute distance by 20, clamp it to [0, 1], and modulate the alpha
channel by this “hardness” value.

3. Constrained Movement
Objects should be constrained by gravity and by collisions. Gravity is trivial
to model: if an object is not touching the ground, set its desired velocity
to be negative along the ¢ axis. For collisions, you must find the geometry
that an object will intersect if it moves by its desired velocity and select an
appropriate actual velocity that prevents the collision.

(a) Implement methods on Scene to find the triangles that intersect:

i. A moving ball (sphere)
ii. A static ball (sphere)
iii. A static (axis-aligned) box
iv. Aray,usinga Tri::Intersector

(b) Abstract each dynamic entity as a bounding sphere. Constrain their mo-
tion so that they can only move slightly less distance than would cause
that sphere to interpenetrate triangles in the world that are detected ef-
ficiently using the methods from the previous step.

(c) Extend your simulation to make dynamic entities slide along triangles
that they collide with rather than stopping abruptly. You will need this
to make objects able to move along the floor once gravity is added, but it
also dramatically improves the feel when moving near a wall. Note that
you will have to make your collision response system iterative, since
responding to the first collision changes an object’s motion, and that can
change other collisions that will happen in the same time frame. There
are two common methods for sliding: one cancels all velocity in any
direction that would cause a collision. The other cancels that velocity,
but then increases velocity in other directions so that the magnitude of
the velocity vector is preserved. Choose one and explain why.

(d) Add gravity to your simulation.

(e) Prevent collisions between dynamic entities (still treating them as spheres).

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

4. Hit-Scan and Decals
Hit scan weapons in games instantly determine their hit position by a ray
trace, rather than creating a projectile. These were initially introduced for
laser weapons, but are today typically used to model bullets, which would
reach their target before the next frame was simulated.

(a)

(b)

(©)

(d)

Create the ability to “fire” a weapon by tracing a ray from the player
character into the world when a key is pressed. Use debugDraw to
display a sphere at that location while the firing key is held down for
debugging purposes. This ray cast should only involve the TriTree of
static objects.

Draw the laser beam between the player and the hit location. This can
be done using Draw calls or an explicit RenderDevice: :apply call,
but do not create a new Entity.

Spawn new particles at the hit location, as if the laser were burning into
the wall. Optionally, maintain a list of hit locations and continually
spawn particles at each of them for a short period of time so that the
burning continues after the beam is turned off.

To further mark the impact, games typically overlay decals that give
the appearance of changing the world texture without actually modi-
fying it as shown in Figure 3. Create a DecalSystem that is like the
particle system in maintaining a number of small objects, but since it
doesn’t need to animate them can be much simpler and assume a single
Texture is applied to all decals. The decal system should operate as
follows:

i. Find all static triangles within a small radius of the intersection
point, i.e., find the intersection of a ball (solid sphere) and the
world.

ii. Add those triangles to the decal list. Assign new texture coordi-
nates to them based on the distance from the point intersected by
the original hit scan in the plane of the triangle intersected by the
hit scan. You will need to construct an (arbitrary) set of orthogonal
axes in that plane to correspond to the u and © axes of your texture
space.

iii. When rendering, shade the decals as if they were visible geome-
try. Note that you can re-use your direct illumination pixel shader
(don’t even make a copy of the file!), provided it handles the alpha
channel properly. Remember to turn on “c, 1 — «” blending on the
RenderDevice or you will see black in the o = 0 areas.

5. Ambient Occlusion Drop Shadows
Create a system to draw drop shadows under dynamic entities to simulate
ambient occlusion and make their position clear when they are entirely in
shadow. This is almost identical to the DecalSystem, except that the decals
move every frame. Find all triangles under an entity in a radius proportional

http://graphics.cs.williams.edu/courses/cs371

Figure 3: Bullet holes
rendered as decals on
curved surfaces and ge-
ometry with varying ori-
entations.

Tip: | debug the tex-
ture coordinates for
decals and drop shad-
ows by using them

as the color, like this:

8 & e

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

Figure 4: Testing the drop shadow with a temporary texture, and the final result.

to the size of the entity, create some proxy geometry, and apply a dark decal
to it. Remember to update these every frame!

6. HUD and Inventory

(a) Add state to the player for health, points, and four tool slots. Three of
the tool slots should initially be empty and the first should initially hold
the hit-scan laser tool.

(b) Display the health and points state on screen in App: : onGraphics2D
using GFont : :draw2D. You may augment this with bars or replace it
with icons.

(c) Display the currently available tools. You can either use RenderDevice: : setViewport
to create a small viewport and render them in 3D as part of the inventory
or use 2D icons with Draw: : fastRect2D.

(d) Implement tool switching. Use the numbers 1-4 on the keyboard to
select different tools, and highlight the currently active tool.

(e) Targeting is hard in a 3rd person view. To improve this, continuously
cast rays forward from the player character and display a 2D crosshair
at the corresponding intersection point in 3D. GCamera: :project
implements the 3D to 2D projection you need.

7. Items

(a) Create a new ItemEntity subclass of DynamicEntity. These are
objects that can be picked up and dropped by the player.

(b) Extend the scene description file to allow instantiating TtemEntitys
with varying properties. For example, one might be a health vial and
another might be a new tool. I chose to create a small subclass hierarchy
for this.

(c) Detect collisions between the bounding box of the player and the bound-
ing box of an ItemEntity. When this occurs, remove the ItemEntity
from the scene and update the player’s state accordingly.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 7: INTERACTION

(d) Distinguish the multiple tool items in their use. Be creative: you can
make tools like a jetpack, medical pack, various kinds of non-hitscan
range and melee weapons, night vision, etc. At this point your system
has enough complexity that adding features with this kind of impact
should take little code (although the debugging and testing might still
be substantive).

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

	Introduction
	Process
	Advice
	Educational Goals
	Schedule
	Rules/Honor Code

	Specification

