
CS 371 Project 4:

Photon Mapping

Figure 1: Sponza with indirect illumination rendered by photon mapping.

1 Introduction

1.1 Overview

Photon mapping [1995; 1996] is a popular global illumination algorithm with
attractive mathematical properties, especially for simulating caustics. It is popular
for film and game production. For example, it was used for lighting in Halo 3 [Chen
and Liu 2008] and Alice in Wonderland [Martinez 2010]. Henrik Wann Jensen, the
primary inventor of photon mapping, received an academy award (“Oscar”) in 2004
for his algorithmic contribution to film rendering.

A common problem in global illumination is that most light transport paths
traced backward from the eye never reach a light source, and most paths traced
forward from the light sources never reach the eye. Photon mapping is a Monte
Carlo algorithm for tracing both kinds of light paths half-way and then loosely con-
necting them to form full transport paths. It can capture all real-world illumination
phenomena, and is mathematically consistent, meaning that its radiance estimate
converges to the true solution as the number of path samples increase.

CS371 2010 | PROJECT 4: PHOTON MAPPING

1.2 Schedule
This is a challenging, project that builds extends the previous ray tracer project. The
program will only add about 150 lines to your existing ray tracer. However, they
are mathematically sophisticated lines. You will take responsibility for the program
design and experiment design yourself this week; they are not in the specification.

As a reference, my implementation contained 9 files, 400 statements, and 300
comment lines as reported by iCompile. The breakdown of my time on the project
was about: 10% math and design, 5% implementation, 20% testing and debugging,
65% rigging scenes, running experiments, and writing the report.

Start: Tuesday, October 3, 2:00 pm
Checkpoint 1: Thursday, October 4, 2:00 pm
Checkpoint 2: Thursday, October 11, 2:00 pm

Due: Monday, October 15, 12:00 pm

1.3 Rules/Honor Code
I strongly encourage you to talk to other students and share strategies, programming
techniques, documentation references, and test scenes. You should not look at any
other group’s code for this project or use code from other external sources except
for: Jensen’s publications, the pbrt library, RTR3 and FCG textbooks, materials
presented in lecture, and the G3D library (as limited below). You may look at and
use anyone’s source code from last week’s project, with their permission.

During this project, you may use any part of the G3D library and look at all of its
source code, including sample programs. You may use any books, papers, websites,
etc. Use common (academic) sense in selecting resources–just because something
is written down and has the words that you searched for does not mean that it is
correct or relevant to this project. Likewise, you’re responsible for the end to end
correctness of your program, regardless of who originally wrote individual pieces
that you incorporated. Don’t even assume that my code in G3D is correct–you
might have to test, or even patch it.

1.4 Teams
You will choose your own teams this week. E-mail me a list of between three and
six team members (and their Mac login names) and a team name. I will create a
project group for you in SVN within 24 hours of receiving your e-mail.

Note that there is a small amount of math, and translating math into code, that
everyone in your project will want to participate in and understand. There is also a
lot of work rigging scenes and running experiments. That work is best distributed
across the team. This balance is typical of commercial software development and of
scientific research. So, while each of you could probably implement the algorithm
on your own in a day or two, you’ll require a large team to successfully validate
your program and use it to produce the report and compelling images. Consider
this when forming teams and writing schedules.

The command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/371/4-PhotonMap/photon-<group>

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

2 Specification

1. Implement a variant of the photon mapping [Jensen 1996] algorithm: Tip:
G3D::PointHashGrid,

G3D::PointKDTree,

G3D::KDTree

(a) You may use any appropriate spatial data structure for the photon map;
a k-d tree is not required.

(b) Do not implement the separate caustic photon map.

(c) Do not implement the shadow photon map.

(d) Do not implement illumination maps (from Jensen’s 1995 paper).

(e) Do not use a projection map–emit photons within each spotlight’s cone
proportional to the emitted power of that light, but don’t optimize the
direction in which the photons are emitted.

(f) Do not adjust the emitted photons to have power “near 1.0”.

(g) You are not required1 to implement a general path tracer. Just write a
Whitted ray tracer that replaces the “ambient” term with diffuse indirect
illumination gathered from the photon map.

(h) You are not required to grow the photon gather radius until it contains
a constant number of photons. Just fix the radius to a scene-specific
constant.

2. Create a graphical user interface and functionality for:

(a) Setting the number of impulse scattering events traced backwards from
the eye (“maxBackwardBounces”)

(b) Setting the maximum number of photon scattering events from the light
(“maxForwardBounces”) Tip: Debug with fi-

nal gathering disabled be-

cause it is really slow.
(c) Enabling final gathering. When this is disabled, gather diffuse indirect

illumination directly from the photon map.

(d) Number of final gather rays.

(e) Enabling explicit direct illumination (vs. handling direct illumination
via the photon map)

(f) Enabling shadow rays when direct illumination is enabled

(g) Enabling real-time visualization of the stored photons over the wire-
frame (see Section 4.3).

(h) Setting the photon gather radius r, RenderSettings::photonRadius

(i) Setting the number of photons emitted

(j) Displaying the photon trace time

(k) Displaying the number of photon rays traced

(l) Displaying the number of photons stored (which may be either larger
or smaller than the number of photons emitted).

(m) All features from the Recursive Rays tracer project
1“not required” implies, “but may, if you wish to explore this idea”

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

3. Document the interfaces of your source code using Doxygen formatting.
Overview documentation is especially important this week because I am not
giving you a design for the program. Be sure to highlight all key classes in
the overview.

4. Devise, create, and render the following scenes:

(a) The required three classic scenes described in the report.

(b) As many custom scenes as needed to demonstrate correctness or ex-
plore errors and performance. I recommend sharing these between
groups, with appropriate credits.

(c) A custom scene that mimics an actual photograph as closely as possible.
Your goal is for the viewer to consider the images indistinguishable
when viewed quickly.

(d) A visually compelling scene of your own creation, as described in sec-
tion 2.2. Render many variation that explore significantly different
lighting (including skybox) and camera viewpoints. Variations are in-
expensive to create compared to creating the scene and the program
in the first place. For each shot, show a reference image from which
you have mimicked the composition, lighting, and camera angle. The
content of the reference image need not be exactly similar. For exam-
ple, George Lucas directed all of the X-wing combat shots in Star Wars
to match classic WWII films of Japanese Zero fighters, but obviously
added color and changed the setting.

5. Produce the report described in section 2.2, and maintain a development jour-
nal throughout the process. The images in your report should be a subset of
those used in the journal.

2.1 Checkpoints
Present your project to me at each of the checkpoints. Your presentation should
take five minutes and be rehearsed. I want to understand your design, the current
status of your program, and problems that you are currently encountering. Your
presentation does not need to be “fancy”–you aren’t giving a public talk, you’re
explaining the status of a project to a peer who understands the basic idea. However,
it should be professional and concise. This is the kind of presentation that you’ll
give regularly to your manager, director, or graduate advisor after you graduate.

You can use presentation software, or simply scroll through your report, journal,
and documentation, since they should contain exactly the information that you’d
use to describe the program. I can comprehend pictures, diagrams, short lists, and
method overview documentation in this context. I can’t comprehend prose or code
during a short presentation.

You will create your own schedule and team management structure and decide
what are reasonable milestones for each checkpoint. Keep in mind that the more of
the specification that you have covered (even without refinement), the more likely
that you’ll have encountered the details on which you’d like my advice.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

(a) Cardiod caustic from a metal
ring rendered by Henrik Wann
Jensen using photon mapping.

(b) Cornell box photographic
reference image by Francois
Sillion

(c) Sponza atrium ren-
dered by Matt Pharr and
Greg Humphreys using
photon mapping.

Figure 2: Classic global illumination test scenes.

2.2 Report
In addition to overview documentation, specifically address the following in your
report. As always, I recommend sketching out the report before implementing code,
and then updating it as you progress. (Observe that the format of the reports has
been migrating towards that of a computer graphics research paper...)

1. Algorithm: Give pseudo-code for the entire photon mapping algorithm, sim- Tip: Parts of the pho-

ton mapping algorithm

will be presented in lec-

ture the Wednesday after

the project starts, however

you can begin now be-

cause the handout and pa-

pers contain all of that in-

formation and more.

ilar to the way that you did last week.

• This should be about 30 lines long and include LaTeX equations.

• I recommend using either nested HTML lists (...)
inside a Doxygen \htmlonly....\endhtmlonly block.

• The details you need are in this document, Jensen’s notes [2007], and
McGuire and Luebke’s appendix [2009].

• Use actual (and anticipated actual) names of RayTracer methods and
members in the code so that they will be linked correctly when you re-
ally implement them. With careful use of \copydoc and \copybrief
you can avoid typing the documentation twice.

• Be sure to give all important algorithmic details for the implementation
of photon emission and gathering.

2. Theoretical Analysis: Tip: CS371 proofs should

be mathematically rigor-

ous, in the same way as in

CS361 or a math course.

(a) Prove that the emitted photons collectively represent the total emitted
power of the lights (i.e., the sum of G3D::Light::emittedPower
over all lights), ∑

P∈photons
ΦP =

∑
E∈lights

ΦE (1)

(b) Explain why depositing photons at multiple points along a path doesn’t
“double count” the same energy and result in an image that is too bright.

(c) Prove that Lo in equation 8 has radiance units.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

(d) Prove that your rendering algorithm is mathematically consistent (i.e.,
that it converges to the true solution as the number of rays and photons
approach infinity).

(e) BSDF Diagrams. Create a set of BSDF diagrams as 2D schematics of
the 3D shape for a fixed angle of incidence, as we commonly draw in
lecture. Show the BSDF for red, green, and blue wavelengths (in the
appropriate colors) either side-by-side or overlaid on the same image.
To save time, I recommend that you draw them by hand on paper or a
black/whiteboard and just include the images. Show BSDFs for the fol-
lowing materials. You may wish to include a photograph of the material
to support your diagrams.

i. Aluminum foil
ii. Opaque purple plastic

iii. Green cloth
iv. Green glass

3. Experimental Analysis (“Results”):

(a) Show a screenshot of the specified user interface.

(b) Render the following classic global illumination test scenes, attempt-
ing to match the reference images as closely as possible: Tip: ifs/ring.ifs

i. Metal ring from by Jensen [2001] shown in Figure 2(a), http://
graphics.ucsd.edu/˜henrik/images/caustics.html

ii. Cornell box photographic reference by Francois Sillion shown in
Figure 2(b), http://www.graphics.cornell.edu/online/
box/compare.html

iii. Sponza atrium from Pharr’s and Humphreys’s book shown in Fig-
ure 2(c), http://www.pbrt.org/scenes_images/sponza-phomap.
jpg

In doing so, you are attempting to replicate the results of a experiment,
which is one of the cornerstones of scientific research.

(c) Show one image comparing a photograph to a rendered scene (this is
one of your custom scenes). In this case you’re performing a new ex-
periment instead of replicating an existing one. You can choose an
existing photograph–for example, of the real Sponza atrium–or take a
photograph yourself. It is a good idea to choose a scene for which
you already have a 3D model or for which it would be easy to create a
model. Your choice of scene should also be one that takes advantage
of photon mapping, and the viewpoint and lighting should be such that
a human observer immediately understands that your result is correct
(e.g., rendering the inside of a black box does not satisfy this part of
the report). If you use a pre-existing photograph, ensure that it is a real,
unretouched photograph.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.ucsd.edu/~henrik/images/caustics.html
http://graphics.ucsd.edu/~henrik/images/caustics.html
http://www.graphics.cornell.edu/online/box/compare.html
http://www.graphics.cornell.edu/online/box/compare.html
http://www.pbrt.org/scenes_images/sponza-phomap.jpg
http://www.pbrt.org/scenes_images/sponza-phomap.jpg
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

(d) Show other images of custom scenes to demonstrate correctness in spe-
cific cases and to support your discussion, as needed. You may collab-
orate with other groups on this step.

(e) Show one “teaser” image of a custom scene intended to impress the
viewer at the top of your report. Plan to spend at least four hours just
creating the scene for this image. This is the scene for which you should
also experiment with many variations.

4. Feedback

(a) How many hours per-person did you spend, on average, on required
elements of this project? This should include time spent in lab sessions.
It should not include time spent on assigned reading or lecture.

(b) How many hours did you spend making your scene interesting, adding
features, or exploring the algorithm beyond the minimum required to
implement the specification?

Tip: Your analysis is the

most important part of

your report. Render a lot

of different images, cre-

ate plots and tables of

data, and take the time

to explore the behavior of

the photon mapping algo-

rithm.

Sample questions: Below are the kinds of questions that you should be asking
yourself and discussing in your report. Don’t answer these questions specifically–
instead, pose and answer your own questions, which may overlap with these. Be-
gin each part of the discussion with either an explicit question in boldface or an
appropriate section title, such as “performance.” Aspire to the kinds of result anal-
ysis presented in scientific papers. See McGuire and Luebke [McGuire and Luebke
2009] for examples of exploring parameter space, comparing, and presenting dense
data.

• How do your results compare, quantitatively and qualitatively with the input
and output of previously published images in the papers that we’ve read?

• What illumination effects and types of paths are visible in each result? Con-
clude that the images confirm correctness or specific errors.

• Are errors due to approximations in the algorithm, the data, or errors in your
implementation?

• How do the input parameters affect the quality and performance of results?

• How much time is spent in forward and backward trace steps?

• How expensive is the radiance estimate compared to the trace time?

• What set of parameters gives the best quality for limited execution time. E.g.,
if photons are less expensive to trace than primary rays, maybe it makes sense
to trace more photons and fewer primary rays.

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

3 Photon Mapping

The algorithm consists of two phases: a forward photon trace outward from the
light sources and a backward ray trace from the eye. These are linked by a ra-
diance estimate performed where the paths nearly meet. The points on paths dis-
covered by the forward trace are stored in a photon map. The core data structure
within the photon map and throughout the photon trace is the photon. Each photon
P has a position YP in meters, an incident direction ω̂P (i.e., it propagates along
−ω̂P), and incident power (a.k.a. radiant flux) ΦP in Watts.

In the following, I denote the average value of a quantity c over all frequencies
as c̄. This corresponds to Color3::average.

3.1 Forward Trace
The forward photon trace computes the photon map, scattering (“bouncing”) each
photon a limited number of times. Each emitted photon may produce multiple
stored photons. Repeat the following numEmitted times:

1. Select an emitter E ∈ emitters with scalar emission probability ρe propor-
tional the emitter’s relative power, averaged over wavelengths:

ρe(E) =
Φ̄E∑

F∈emitters

Φ̄F

. (2)

2. Let E be the selected emitter. Create a new photon P with power2

ΦP ←
ΦE

numEmitted · ρe(E)
, (3)

and initial position

YP ← YE (4)

at the emitter. For an omnidirectional point emitter, choose direction ω̂P
uniformly at random on the sphere. For a spot light, use rejection sampling
against the cone of the spot light to ensure that the emitted direction is within
the cone.

2Note that the power of an individual photon is small when either numEmitted or |emitters| is
large. Jensen chooses to scale power such that the average photon has power 1.0 at each wavelength,
claiming that this avoids underflow and improves floating point accuracy [Jensen 2001]. I believe this
is a misunderstanding of the IEEE floating point format and have not experimentally observed any
loss of precision even when using millions of photons.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

3. Repeat at most maxForwardBounces times:

(a) Let X be the first intersection of ray YP − ω̂P t with the scene. If there
is no such intersection, abort processing of this photon by immediately
exiting this loop.

(b) Update the photon by

YP ← X. (5)

(c) Store a copy of photon P in the photon map.

(d) Test if the photon scatters. At surface whose reflectivity is ρs (which
varies with frequency, i.e., is a G3D::Color3), let the scalar scattering
probability be ρ̄s. If photon P is absorbed instead of scattering, abort
processing it by immediately exiting this loop (this is Russian roulette
sampling of the scattering function).

(e) Scatter the photon, i.e., choose a new direction ω̂P ← ω̂o by importance
sampling, ideally with respect to function ω̂P → fX,n̂(ω̂P , ω̂o)|ω̂i · n̂|.
LetW be the weight if the distribution sampled is not ideal. Update the
power of the photon by equation 6. Note that under ideal importance
sampling in a scene with no spectral frequency variation, the power of
the photon is unchanged by this step–we’re only correcting for bias due
to computational limitations of sampling techniques.

ΦP ← ΦP W ρs/ρ̄s. (6)

If explicit direct illumination is enabled in the GUI, do not store photons on their
first bounce, but do still scatter them. Always store them on subsequent bounces.

Some advice for the photon forward trace and the photon radiance estimate:

• G3D::Light::bulbPower is the power that a spot light would have if it
were a point light (which is what you use for direct illumination). The actual
emitted power of the light, taking the cone into account, is G3D::GLight::emittedPower,
which is what you should use during the photon trace. This interface makes
it so that lights don’t appear to get “darker” at points already within the cone
when you adjust the cone angle.

• Be really careful with the photon direction convention. It is confusing for
two reasons. First, the propagation direction is different than the incident di-
rection that you eventually want to store. Second, the photon travels between
two points during each iteration, and the vectors describing the direction be-
tween them point in opposite directions at each end. So your convention
will be backwards for half of the iteration no matter what you do. Use as-
sertions heavily and run targeted experiments with small numbers of photon
and small numbers of bounces to ensure that you have this correct. There are
several places that you will have to negate the photon direction.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

• Just as with backwards tracing, you have to bump photons a small amount
along the geometric normal of the last surface hit to avoid getting “stuck”
on surfaces. If you see strange diagonal patterns of photons or the photons
generally have the same color as the surface that they are on, you aren’t
bumping (or are bumping in the wrong direction!)

• Photons store incident illumination–before a bounce.

3.2 Backward Trace
Setting aside the final gathering process, the backward trace is exactly the same as
for your previous ray tracing project, except shading now contains a new indirect
illumination component in addition to the previous direct illumination and specu-
lar illumination components. If explicit direct illumination is disabled in the GUI,
do not compute the direct contribution from light sources (but do still compute the
specular component).

The indirect component is also called a radiance estimate. Consider a point X
with normal n̂ and direction ω̂o to the eye (or previous intersection), that we reached
by backwards tracing. If there were many photons stored at X in the photon map,
that would tell us the incident radiance. We could apply the BSDF and know the
outgoing radiance to the eye.

However, it is extremely unlikely that any previously-traced forward path will
terminate exactly at Y . So we estimate the incident flux from photons near X ,
which are discovered by gathering all photons within the neighborhood of X from
the photon map. As we make our definition of “near” more liberal, the indirect
illumination will become blurrier. As we make it more conservative, the indirect
illumination will be sharper–but also noisier.

The reflected (outgoing) radiance estimate is given by:

1. Let Lo ← 0 W/(m2sr) be the initial estimate of radiance reflected towards
the viewer.

2. Gather the photons nearest X from the photon map. Two methods for doing
this are growing the gather radius until a constant number of photons have
been sampled, and simply gathering from a constant radius. Regardless of
the method chosen, let r be the gather radius in meters.

3. For each photon P within radius r of X ,

Let β =
ΦP∫ r

0

∫ 2π

0
κ (s) · s dθ ds

· κ (||YP −X||) (7)

Lo ← Lo + β · fX,n̂(ω̂P , ω̂o) (8)

Compute the double integral in Equation 7 by hand; the denominator should be
a constant over the loop. Note that determining the units of this equation is key to
one of the proofs that you are required to write in your report.

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

Function κ() is the 2D falloff3 for which Jensen recommends a cone [Jensen
1996] filter, κ(x) = 1 − x/r. When debugging, it is easier to first choose to have
no falloff within the gather sphere, i.e., κ(x) = 1. In that case, the double integral
is equal to the area of the largest cross-section of the sphere, πr2. To help build
some intuition for this, recall one derivation of the area of a disk of radius r. The
area of a small rectangular patch on a disk at radius s is (s · dθ) · ds; the length of
this patch along the radial axis is clearly ds and, in the limit as dθ → 0, the length
perpendicular to the radial axis is the length of the arc at radius s: sdθ. The integral
of the patch area expression over the full circle and disk radius is∫ r

0

∫ 2π

0
s dθ ds =

1

2
s2 · 2π

]r
0

= πr2. (9)

The more general expression given in Equation 7 is the “area” of a disk of variable
density, where the density at distance s is κ(s).

Tip: When you disable the explicit direct illumination, the noise and blurriness should

increase, but the intensity of all surfaces should be the same. Test this with 1-bounce

photons so there is no “indirect” light to confuse the issue.

3This κ has nothing to do with the attenuation constant that is similarly notated when discussing
index of refraction and transmission.

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

4 Advice

4.1 Scheduling

A large part of this class, and this project, is about managing development of large
projects. It would take six months to implement this project fully and perfectly.
You have five business days to complete it. Obviously, you can’t afford to perform
every possible experiment and polish every aspect of the project.

Decide what level of quality you want for each element and then schedule to that.
All projects make tradeoffs. Choose yours proactively and intelligently, instead of
letting the clock run out and then choosing them them retroactively and randomly.
Success doesn’t depend on completing everything perfectly, it depends on choosing
where to spend your time appropriately, and then excelling at only the important
parts.

Keep in mind that you don’t have to work right up to the deadlines. For example,
if you are planning an aggressive midterm project, you might want to finish off this
project in the first week and then start the midterm early.

A 2pm checkpoint doesn’t mean that you have between 1pm and 2pm to accom-
plish it. It just means that it is due at 2pm. You could complete it days ahead of
time if that fits your schedule better.

4.2 Algorithm Variations and Resources

Photon mapping algorithm was introduced by Jensen and Christensen [1995] and
refined by Jensen [1996]. Use those primary sources as your guide to the algo-
rithm. Additional information about the algorithm and implementation is available
in Jensen’s book [2001] and course notes [2007]. The notes are almost identical to
the book and are available online. Section 3 of this project document summarizes
mathematical aspects covered in class that are ambiguous in the original papers.
Note that Ma and McCool [2002] observed that a hash grid is superior to a k-d tree
for photon gathering.

Ignore the 1995 implementation of the photon class. Instead use a variant on the
1996 implementation: store position, incident direction, and power for each photon.
Both papers recommend compressing photons. Don’t compress your photons–it
makes the implementation hard and likely will give no performance advantage.
Use a natural floating point representation instead of a compressed one. Also do
not store surface normals in the photons.

Use a constant-radius gather sphere (as described on page 7 of the 1996 paper).
When you have that working, you may optionally implement the ellipsoid gathering
method or the k-nearest-neighbor method and compare performance and image
quality. Note that gathering from a large sphere (or box) from a data structure and
then choosing only the k-nearest neighbors may be more efficient than repeatedly
querying the data structure.

Beware that the description of the trace from the eye sounds more complicated
in Jensen’s papers than it actually is. You’re just going to extend your existing ray
tracer by adding indirect light to the direct illumination at every point.

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

Figure 3: User interface and debugging visualization for large numbers of photons.

4.3 Visualization
Implement the GUI and photon visualization first because they are essential tools
for debugging. When implementing the forward (photon) trace, I recommend mak-
ing a button to trace the photons but not actually produce an image. That will
reduce your debugging time. Likewise, some of you considered an optimization to
only compute the TriTree on load, rather than every time that the scene is rendered.
That optimization could save you a lot of time in this project.

Visualize small (< 1000) numbers of photons as arrows pointing along their ω̂i

directions. For large numbers of photons, visualize them as points. In each case,
set the color based on the photon power. Because the power of each photon is fairly
small, normalize the power so the largest component is 1.0.

Use G3D::Draw::arrow to render arrows in App::onGraphics3D after the
visible parts of the scene are rendered. To render points, use something like4:

rd->setPointSize(5);
rd->beginPrimitive(PrimitiveType::POINTS);
for (PhotonMap::Iterator it = m_photonMap.begin(); it.hasMore(); ++it) {

rd->setColor(it->power / it->power.max());
rd->sendVertex(it->location);

}
rd->endPrimitive();

4.4 Program Trace
You will probably also want to instrument your forward (photon) trace to print
information after each scattering event and then trace a small number of pho-
tons in order to verify that the importance sampling is working correctly. Use
G3D::debugPrintf to output to the OS X console. Beware that if your pro-

4This is one of those cases where the difference between ++it and it++ can be significant

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

gram crashes, G3D::debugPrintf may not actually print the last output before
the crash. In that case, use G3D::logPrintf to write to log.txt, which is guar-
anteed to complete before the function returns. Of course, gdb is often the best tool
for debugging a program that crashes.

4.5 GuiTextureBox
The G3D::GuiTextureBox interactive inspector allows you to see the radiance
values that your program wrote to the image. Remember that you can zoom in
and out and change the exposure of this box. If you see unexpected black or white
areas, hold the mouse over them to see their floating-point values. A value of nan or
inf means that somewhere in your code you divided by zero or performed another
undefined mathematical operation. You can create a GuiTextureBox explicitly or
use the one that GApp::show produces.

4.6 G3D::PointHashGrid
You may want to use the G3D::PointHashGrid class on this project. It uses the
C++ trait design pattern to support arbitrary keys. This is useful for cases where a
data structure must work with a class that may not have been designed to work with
it, and therefore does not have the right interface. The idea of this design pattern is
that adapter classes can describe the traits of other classes.
G3D::PointHashGrid<T> requires a helper class that tells it how to get the

position of an instance of the T class; in this case, T is Photon. The helper class
must have a static method called getPosition. PointHashGrid also requires
either an operator== method on the Photon class or another helper that can test
for equality. See the documentation, which offers examples on this point.
G3D::PointHashGrid is not threadsafe, so you’ll have to protect it with a

mutex if you plan to write from multiple threads. But photon tracing is usually the
fastest part of the program. So keep the forward trace single-threaded and avoid the
complexity and cost of locks.

References
ASHIKHMIN, M., AND SHIRLEY, P. 2000. An anisotropic phong brdf model. J. Graph. Tools 5, 2, 25–32.

CHEN, H., AND LIU, X. 2008. Lighting and material of halo 3. In SIGGRAPH ’08: ACM SIGGRAPH 2008
classes, ACM, New York, NY, USA, 1–22. 1

JENSEN, H. W., AND CHRISTENSEN, N. J. 1995. Photon maps in bidirectional Monte Carlo ray tracing of
complex objects. Computers & Graphics 19, 2, 215–224. 1, 12

JENSEN, H. W., AND CHRISTENSEN, P. 2007. High quality rendering using ray tracing and photon mapping. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York, NY, USA, 1. 5, 12

JENSEN, H. W. 1996. Global illumination using photon maps. In Rendering Techniques, 21–30. 1, 3, 11, 12

JENSEN, H. W. 2001. Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick, MA, USA. 6,
8, 12

MA, V. C. H., AND MCCOOL, M. D. 2002. Low latency photon mapping using block hashing. In HWWS
’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 89–99. 12

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

MARTINEZ, A., 2010. Faster photorealism in wonderland: Physically based shading and lighting at sony pictures
imageworks, August. in Physically Based Shading Models in Film and Game Production SIGGRAPH 2010
Course Notes. 1

MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-accelerated global illumination by image space photon
mapping. In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009, ACM, New
York, NY, USA, 77–89. 5, 7

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371

Index

backward ray trace, 8
backward trace, 10

consistent, 1

direct illumination, 10

forward photon trace, 8

G3D::debugPrintf, 13
G3D::Draw::arrow, 13
G3D::GApp, 14
G3D::GuiTextureBox, 14
G3D::PointHashGrid, 14
G3D::PosFunc, 14

indirect illumination, 10

Photon, 14
photon, 8
photon map, 8
Photon mapping, 1

radiance estimate, 8, 10
Russian roulette, 9

specular illumination, 10

trait, 14

	Introduction
	Overview
	Schedule
	Rules/Honor Code
	Teams

	Specification
	Checkpoints
	Report

	Photon Mapping
	Forward Trace
	Backward Trace

	Advice
	Scheduling
	Algorithm Variations and Resources
	Visualization
	Program Trace
	GuiTextureBox
	G3D::PointHashGrid

