
CS 371 Project 6:

Real-Time Graphics

Figure 1: Video game scene rendered at 60 fps on the GPU with dynamic lighting
and shadows using vertex and pixel shaders.

1 Introduction

Realistic video game graphics must deliver an approximation of physics within a
hard time budget of 15 to 35 ms. The rasterization algorithm and massive con-
currency in the graphics pipeline makes this possible. Adapting physically based
rendering from a ray tracing context to this hardware rasterization context means
rethinking the algorithms and tradeoffs within them. It also requires learning to
work with low-level tasks like GPU memory management, run-time compilation,
and managing graphics card state. In this project you’ll do all of these, building a
complete rendering system suitable for a video game given the model loading and
application infrastructure that we’ve built throughout the semester.

This project contains two workflow tasks and two development tasks. The work-
flow tasks will take you through analysis of the development process, a common
industry practice called a post mortem evaluation, and scoping your own project
for next week in light of that analysis. The development tasks are building a real-
time renderer and presenting it effectively.

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

1.1 Educational Goals
1. Apply physically-based rendering in a hardware rasterization context

(a) Vertex shader transformation from object to world to camera to projective
screen space

(b) Pixel shader BSDF implementation
(c) Light visibility determination via the shadow mapping algorithm [Williams

1978]
(d) Gain experience developing software for a constrained, embedded envi-

ronment
(e) Work with functional, massively-concurrent, pipelined programming

2. Analyzing and improving the development process

(a) Scoping and managing complexity
(b) Effective visual communication of results

1.2 Schedule

Out: Tuesday, November 2
Checkpoint 1 + Post-Mortem (Sec. 3): Thursday, November 4, 1:00 pm

Specification Exercise (Sec. 4): Monday, November 8, 11:00 am
Due: Monday, November 8, 11:00 pm

This is a moderately challenging, solo project that builds on last week’s GPU-
programming tutorial. It will form the basis for next week’s interactive graphics
project. As a reference, my implementation contained 9 files, 420 statements, and
300 comment lines as reported by iCompile.

You’ve already seen that debugging in the presence of the multiple languages,
flakey compilers, and poor specifications associated with OpenGL and GLSL can
be time consuming. That’s part of life as a graphics programmer, and it is the same
under pretty much every graphics development environment.

This is where it is important to employ the software engineering practices that
you learned earlier in the course. Minimize state. Make your program look as
much like the math as possible. Test frequently. Commit after every major step.
Use assertions. Read the documentation carefully. Look at the source code inside
library routines.

Once you get your programming running, you still have to debug it. You aren’t
going to be able to print or even run the debugger on the GPU. So you have to devise
ways of testing your hypotheses about what is wrong with the program using only
one color as your output.

Beware that the shadow map implementation will require the fewest lines of code
of any element of the specification, but requires the most thought and is nearly
impossible to debug unless you understand the math. Plan accordingly! There’s no
reason you have to complete the specification in the order that I did.

Remember to scope your work appropriately and reserve a substantial portion of
time for the post-production work of creating the report and images.

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

1.3 Rules/Honor Code
You are encouraged to talk to other students and share strategies and programming
techniques. You should not look at any other student’s code for this project or use
code from other external sources except for the G3D library and code from your
textbook.

During this project, you may use any part of the G3D library and look at all of its
source code, including sample programs. I encourage you to look at the shader sam-
ple programs and the implementation of SuperBSDF in the data-files/SuperShader/SS_*
files.

You may share data files and can collaborate with other groups to create test and
visually impressive scenes. If you share a visually impressive scene with another
group, ensure that you use different camera angles or make other modifications to
distinguish your image of it.

Complete the post-mortem evaluation by yourself. It is OK if your evaluation of
the midterm project differs from that of your teammates and your evaluation will
not affect your grade or their grades for that project.

After Monday, Nov. 8 at 11 pm you may not modify the specification.dox
file or image files related to it in your project 6 directory without my prior approval
for your specific edits. I am electing not to use SVN permissions to enforce this
restriction and instead trust you to follow this rule. It is an honor code violation
to attempt to mislead me as to your specification by editing it without permission
after that date. Doing so would give you an unfair advantage over your classmates.

2 Specification

1. Create a scene with a Quake 3 level and a point light and an appropriate sky
cube map.

2. Implement object-to-world transformation and perspective projection in a vertex
shader, and show a normal-vector visualization as evidence of correctness, e.g.,
Figure 3.

3. Implement a shadowed spot light in a pixel shader, and show a shading-only
image (no texture) as evidence of correctness, e.g., Figure 5.

4. Implement a Lambertian BSDF in a pixel shader, and show a texture only (no
lighting) image as evidence of correctness, e.g., Figure 4.

5. Implement environment map diffuse lighting, and show before and after images
as evidence of correctness, e.g., Figures 6 and 7.

6. Implement shadow mapping and show an image as evidence of correctness, e.g.,
Figure 8.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

7. Decorate your scene with animated character models (e.g., MD2 models) and
other non-animated props, and render a fly-through video. The video must be
relatively short and less than 2 MB for SVN to allow you to submit it–try target-
ing 640× 480 for at most 20 seconds. Tip: You can instanti-

ate VideoOutput, use

the built-in G3D GUI

video recording facilities,

or an external video cap-

ture program like Fraps or

Camtasia.

8. Answer the following questions. As always, you’ll get the most out of the lab if
you think about these deeply. They primarily are chosen to lead you to interest-
ing conclusions, not to test your knowledge.

(a) Explain the algorithm implemented by Listing 5.3. Why does the result
produce lighting comparable to treating every sky pixel as a light source if
it uses only a small number of directions (make an argument with mathe-
matics, starting from the rendering equation)? What is the max expression
for in each line? Why did I use MIP level 9.0?

(b) Explain why switching to front face culling for the shadow map gives cor-
rect results at all, and why it also allows us to reduce the bias magnitude
compared to back face culling.

(c) Describe how you would extend the system to handle multiple lights rea-
sonably efficiently. Note that the current system assumes that all lights
affect all objects, and computes bounds for the Quake 3 levels in a rela-
tively ineffective way under spot lights.

(d) Explain in a mathematically rigorous way why you can perform the shadow
map projection before interpolation, in the vertex stage, and get the same
result as if you projected in the pixel shader after interpolation of position
across the triangle. [This question is optional and worth +1 point extra
credit if you give a fully correct answer. Sorry, no partial credit.]

Like the examples, all images should have the same aspect ratio, be from the
same viewpoint, and be uncluttered by the GUI. Choose your viewpoint so that it
illustrates each of the features well, and use your knowledge of art composition to
make the images interesting.

In addition, you must submit the checkpoint report, post-mortem evaluation on
the midterm, and project 6 specification exercise described in the subsequent sec-
tions.

Your repository directory for this project is:
svn://graphics-svn.cs.williams.edu/371/6-RealTime/realtime-<username>

3 Checkpoint (due Thursday, Nov. 4, 1:00 pm)

1. Complete the Midterm Post-Mortem described in Sec. 3.1. It is part of the
pass/fail evaluation of the checkpoint for this project. It will not affect your
grade from the midterm.

2. Create a placeholder report, including images and a very tiny sample video
of a fly-through of a Quake scene that was actually recorded from your pro-
gram.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

3. Write the code to compute the shadow map (but not render shadows using it),
including computing all of the input that it needs. It is OK if this doesn’t run,
but it should be a few typos away from correct, not missing whole variables.

3.1 Midterm Post-Mortem
Write a short analysis of your team’s midterm project as described in this section
and link to it from your documentation mainpage/report.

The midterm was a chance to explore a topic of personal interest to yourself
and take your new skills–in software development, C++ and G3D, and computer
graphics algorithms–out for a spin. Everyone learned a lot, and everyone felt some
(intended) frustration at not meeting their own specifications and having the work
turn out harder than it looked on paper. I hope that you enjoyed working on your
project–they were all great. I hope that you are also looking forward to the final
project, when you’ll have another chance to choose your team and topic.

One of the reasons I introduced a midterm project this year was so that when you
reached the final project you’d be more experienced and better able to manage the
pre- and post-production aspects. Specifically, designing your own specification,
checkpoints, report, and presentations. With that in mind, I’m asking you to write
a short post-mortem report on your midterm experience and how you will leverage
it towards the final project.

I’m looking for about three short paragraphs (or equivalent content in lists and
bullet points) of honest evaluation after careful introspection. Note that it is easy to
criticize oneself, and I’m specifically asking you not to do that. I’m asking you to
make a forward-looking plan to build on your strengths.

It is important for this process that you go back and hold your own specification
up against my evaluation and your code and report. First look at the actual product
of your work fresh, as if an outsider. Separate that from your memory and percep-
tion of your work that colors it. Then, interpret the work given your knowledge of
the process that led to it.

Concretely, analyze your successes:

1. what you learned,

2. areas where you scored well, and

3. areas where you were very satisfied,

and then tell me

4. what concrete steps you will take leverage the techniques that led to those
successes in areas where you were less successful towards the three goals:
education, grade, and personal satisfaction.

Be realistic (“plan to reevaluate specification” is better than “work more hours”)
and specific (“daily checkpoints and status meetings” is better than “more commu-
nication”) in your plan. Those are just examples. I’m not suggesting that they need
to be part of your plan.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

4 Specification Exercise (due Monday 12:00 pm in SVN and hardcopy)

Work with your project 7 partner to write a specification for project 7, as described
below, and commit it as specification.dox in the root directory of your project
7 directory. Note that you can schedule time with your future partner but cannot
actually begin work on this before Thursday.

This Thursday at the start of lab, I’m going to give you a specification for next
week’s project and enable your SVN directory for that project . You won’t im-
plement that specification this week. Instead, you’ll have until Monday to work
with your project 7 partner to revise that specification and submit it. The follow-
ing week, you’ll implement your own revised specification. You can renegotiate it
during the week as well, but I’m more amenable to changes before work starts.

The goal of this exercise is to practice scoping work in preparation for creating
your final project specification. I’ll evaluate your project 6 work based on your own
specification, taking into consideration both how much you accomplished and how
well you accomplished it.

Your task this week is to select the features that will give you the best educa-
tional value and presentation potential for your limited development time. Avoid
the point of diminishing returns, where you need a lot more time to produce mini-
mal value. Focus on elements that give either proportional value for your time, or
better yet, where a small amount of work gives a large payoff.

Your project groups will be (you can also negotiate to change or merge groups,
or work solo):

• awb1 + 12dan1

• cab1 + 12cj1

• jdy1 + 12cl4

• hz1 + 12mtm1

• coreytaylor

• jbatchkoff

• phennessy

• smalakar

5 Implementation Advice

5.1 Modeling
Begin with the (latest) default G3D starter project, which iCompile will produce for
you. Turn down the rendering rate to something reasonable, like setDesiredFrameRate(60).

Modify your scene to contain only point lights and to load a Quake 3 level. To
give you some sense of scale, my initial point light setting was:

lightArray = (GLight::spot(Vector3(20, 70, 0),
Vector3(0.0, -1, 0.0), 0.7, Color3(100000))),

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Choose a Quake 3 scene for which there are large areas open to the sky so that
you can initially have a single source that is the sun. You can use any of the levels
provided in G3D or download your own from your favorite mod (there are hundreds
online!) You’ll have to search the documentation to figure out how to load the maps
as ArticulatedModels, but note that you can use the G3D viewer program to
preview these without writing any code. (It doesn’t use ArticulatedModel to
load them, so you can’t follow its source, however.)

The textures will be missing for many Quake maps. You can see the names of
the textures that are missing in your log.txt file. If you create textures with the
appropriate names you can trick G3D into loading them instead of leaving those
areas white. You can also grab one of the many open source Quake texture packs
and put it on your computer to avoid the problem.

5.2 Shading
Replace App::onGraphics3D with your own code to explicitly render the in-
dexed triangle lists stored within the SuperSurface::GPUGeoms of the surface3D
array. You will have to downcast each Surface::Ref to a SuperSurface::Ref
to access its geometry:

const SuperSurface::Ref surface = surface3D[s].downcast<SuperSurface>();
const SuperSurface::GPUGeom::Ref geom = surface->gpuGeom();

Create a direct illumination shader. Initially have it just set the color of each
pixel based on the normal so that you can debug your transformations: Tip: See the “GPU

Model” tab at the top of

the documentation.
// -*- c++ -*-
/** \file direct.vrt*/

/** World space normal */
varying vec3 rawNormal;

/** World space point being shaded */
varying vec3 X;

void main() {
X = (???).xyz;
rawNormal = ???;

gl_Position = ???;
}

// -*- c++ -*-
/** \file direct.pix */

/** Interpolated world space normal [not unit length] */
varying vec3 rawNormal;

/** World space point being shaded */
varying vec3 X;

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

void main() {
vec3 n = normalize(rawNormal);
gl_FragData[0].rgb = n * 0.5 + vec3(0.5);

}

You must complete the ??? sections yourself following the G3D documentation
and your notes from last week’s tutorial.

Once you know the transformation is correct, also pass the texture coordinate
from the vertex shader to the pixel shader.

Now pass all the lambertian BSDF material property of each GPUGeom to the
shader. The constant is a vec4 in GLSL (red, green, blue, and alpha coverage). Tip: You’re going to have

to refer to the GLSL doc-

umentation at this stage,

and will have to figure out

what to do with the alpha

channels.

The texture has type sampler2D in GLSL. Because it can be NULL, use
Texture::whiteIfNull to ensure that you never pass a NULL pointer to the
GPU. For now, skip the specular and other terms. You can optionally implement
them later if you like (see data/SS_Components.pix to see the unpacking al-
gorithm for specular–it is somewhat complicated.)Render each surface using its
Lambertian component (the product of the texture map sample and the constant) as
a debugging step.

Pass the world-space position of the light to your shader. Use this to compute
the direct illumination at each point. The code should look exactly like your ray
tracer, except using GLSL syntax instead of G3D/C++ syntax. To help a little with
the syntax and outline how it relates to the ray tracer, here’s part of my solution: Tip: Remember to use

GLight::color, not

GLight::power, for

direct illumination

.

/** World space point being shaded */
varying vec3 X;

/** World space light source position */
uniform vec3 S;

/** World space light power */
uniform vec3 Phi;

#define PI (3.1415926536)

...

vec3 delta = S - X;

// Incoming light direction
vec3 w_i = normalize(delta);

// Square of the distance to the light
float r2 = dot(delta, delta);

// Incident power
vec3 E_i = Phi / (4.0 * PI * r2);

...

Remember to check your units–the final output from the pixel shader should be Tip: It is helpful to tem-

porarily disable the lam-

bertian texture by setting

it to white so that you can

really see your lighting.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

in radiance units.

5.3 Environment Lighting
You’ll notice that the back sides of objects are very dark. That’s because we have
no model of indirect lighting. The “environmentMap” cube map is used to approx-
imate indirect lighting. It is a picture of that ideally represents what you would see
if you stood in the center of the scene. That is, it is Lin(X,ωin) for some fixed
point X .

To get true indirect lighting from an environment map, we’d need a different and
correct environment map for every single point in the scene. We’d also have to
consider incident light from all possible directions (these cube maps tend to be at
least 512× 512 pixels for each of 6 faces, so that’s a lot of directions to handle!)

We can use a really cheap approximation, however. The lowest MIP level is
an average of a large number of directions. If we assume that the cube map is a
constant, we can directly integrate over the hemisphere. If we assume that it is
piecewise constant, we can perform a really coarse approximation by just consid-
ering the six directions that represent the faces.

My C++ code to pass the environment map to my shader is:

m_directShader->args.set("environmentConstant",
m_scene->lighting()->environmentMapConstant);

m_directShader->args.set("environmentMap",
Texture::whiteCubeIfNull(m_scene->lighting()->environmentMapTexture));

The environmentMap has GLSL type samplerCube and is typically read using
textureCube(sampler, direction). We want to force a low MIP map, so
use textureCubeLod(sampler, direction, 9.0) for a 512 × 512 texture.
My sampling code looks like:

vec3 E_ambient = environmentConstant *
(max(0.0, n.y) * textureCubeLod(environmentMap, vec3(0.0, 1.0, 0.0), 9.0).rgb +
max(0.0, -n.y) * textureCubeLod(environmentMap, vec3(0.0, -1.0, 0.0), 9.0).rgb +
...);

5.4 Creating a Shadow Map
The G3D starter includes a shadow map variable. Recall from Friday’s mini-lecture
that a shadow map is the depth buffer from a camera placed at the light. The G3D
shadow map class abstracts the rendering of that depth buffer–it looks essentially
the same as the code you’ve already written, and you can examine the G3D source
code to see how it does so very efficiently. You need to use that depth map to create
the shadows in your direct illumination from the viewer’s point of view.

The first step is visualizing the shadow map so that you can debug. Create
a GuiTextureBox for viewing the ShadowMap::depthTexture(), as shown
in Figure 2. Note that you have to do this after you create the ShadowMap in
App::onInit.

Figure 2: Debugging
GUI with shadow map
visualization.

Every frame, compute the shadow map from your scene (you obviously must do
this before you attempt to shade the scene!) ShadowMap::updateDepth requires

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

several arguments describing the scene and the orientation of the virtual camera
placed at the light source. The ShadowMap class also contains static helper meth-
ods for computing these. Tip: Also look at the

Surface static methods.When you update the shadow map depth, reduce the bias to a small number,
like 0.0f , and specify RenderDevice::CULL_FRONT for the cull face. The latter
inverts the normal backface removal: front faces will be ignored and back faces
will be drawn.
Tip: Visualize the various bounds that you’re computing so you can see how they relate

to your 3D scene. My code for this is:

if (m_showBoundingBoxes) {
// Object bounding boxes in red
for (int s = 0; s < surface3D.size(); ++s) {

AABox box;
surface3D[s]->getWorldSpaceBoundingBox(box);
Draw::box(box, rd);

}

// The scene bounding box in yellow
Draw::box(sceneBounds, rd, Color4(0.9f, 0.9f, 0.3f, 0.2f));

}

if (m_showLightFrustum) {
// The light bounding box in blue
Draw::frustum(

lightCamera.frustum(m_shadowMap->depthTexture()->rect2DBounds()),
rd, Color4(0.2f, 1.0f, 0.5f, 0.2f));

}

5.5 Using a Shadow Map
When you have computed a shadow map that looks reasonable, pass the shadow
map and the light’s (biased) view and projection matrix to the shader using some-
thing like:

m_directShader->args.set("shadowMap",
m_shadowMap->depthTexture());

m_directShader->args.set("lightBiasedModelViewProjectionMatrix",
m_shadowMap->biasedLightMVP());

Note that in your direct illumination shader, the shadow map has GLSL type
sampler2DShadow.

The GLSL function shadow2D(sampler, P) returns a color as a vec4, but
only the first element (r) is useful. The interpretation is that it is 1.0 if the point is
visible to the light (i.e., lit) and 0.0 if the point is not visible (i.e., shadowed). It is
a value between 1.0 and 0.0 if the point is partly shadowed. So you can just scale
the light’s power by this value at each pixel to create shadows.

The shadow2D call computes its result under specific assumptions about the
P argument. It assumes that texture coordinate (P.x, P.y) in the shadow map

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

that is the projection of the point being shaded under the virtual camera that we
previously placed at the light source. It assumes that P.z represents the same
point’s distance along the light’s “view vector” as encoded in a funny way by the
projection matrix. That funny encoding is described in the OpenGL manual under
gluPerspective and in your textbook. The basic idea is that P.z is on the range
[0, 1], where 0 means “close to the light” and 1 means “far from the light”, and the
scaling is hyperbolic between them.

The key idea is that we don’t care about the particular scaling of P.z...we just
care that the same scaling previously happened when rendering the shadow map.
So if P.z is greater than the value in the shadow map, then our world-space point
X is farther from the light than some other surface and is in shadow. Otherwise it
is the first surface seen by the light and is lit. shadow2D performs that comparison
for us, so we just need the result.

But how do you compute P.z? It is the projection of X into the virtual light-
camera’s screen space...including the homogeneous division so that P.w = 1. (You
don’t need to pass a vec4 to shadow2D; I’m just making the point because it is
important to both the math and the computation you go through to produce P.) This
is a complicated way of leading you to write two lines of code, but those two lines
require a lot of thought and will probably require you to go back and read up on
projection matrices again.

Finally, performing this projection in the pixel shader means that we’re perform-
ing a matrix product at every pixel. The 4× 4 matrix product (but not the division)
can actually be lifted up to the vertex shader. You can optimally make that trans-
formation to your code. Note the optional specification question asking why this
transformation preserves correctness.

References
WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. SIGGRAPH Comput. Graph. 12, 3, 270–274.

2

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Figure 3: Visualization of surface normals.

Figure 4: Visualization of lambertian BSDF coefficients.

Figure 5: Visualization of shading with BSDF disabled.

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 6: REAL-TIME GRAPHICS

Figure 6: Lighting and texture combined.

Figure 7: Environment (“ambient”) lighting approximated from a cube map.

Figure 8: Lighting with shadows. Note that the ambient light colors the shadowed
regions.

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

	Introduction
	Educational Goals
	Schedule
	Rules/Honor Code

	Specification
	Checkpoint (due Thursday, Nov. 4, 1:00 pm)
	Midterm Post-Mortem

	Specification Exercise (due Monday 12:00 pm in SVN and hardcopy)
	Implementation Advice
	Modeling
	Shading
	Environment Lighting
	Creating a Shadow Map
	Using a Shadow Map

