
CS 371 Project 4:

Photon Mapping

Figure 1: Sponza scene with indirect illumination rendered by photon mapping.

1 Introduction

1.1 Overview

Photon mapping [1995; 1996] is a popular global illumination algorithm with
attractive mathematical properties, especially for simulating caustics. It is popular
for film and game production. For example, it was used for lighting in Halo 3 [Chen
and Liu 2008] and Alice in Wonderland [Martinez 2010]. Henrik Wann Jensen, the
primary inventor of photon mapping, received an academy award (“Oscar”) in 2004
for his algorithmic contribution to film rendering.

A common problem in global illumination is that most light transport paths
traced backward from the eye never reach a light source, and most paths traced
forward from the light sources never reach the eye. Photon mapping is a Monte
Carlo algorithm for tracing both kinds of light paths half-way and then loosely con-
necting them to form full transport paths. It can capture all real-world illumination
phenomena, and is mathematically consistent, meaning that its radiance estimate
converges to the true solution as the number of path samples increase.

CS371 2010 | PROJECT 4: PHOTON MAPPING

1.2 Educational Goals
In this project you will implement a photon mapping framework that can render a
photorealistic image of any scene for which you can provide a suitable BRDF and
geometric model. You will work from resources in the computer science literature
including Jensen’s paper [1996] and his SIGGRAPH course notes. Along the way
you will:

• Learn to read a computer science paper and implement an algorithm from it.

• Design your own structure for a complex mathematical program.

• Learn to create and perform experimental analysis without explicit guidance.

• Solve the kind of radiometry problems we’ve seen in lecture on your own.

• Gain experience with Monte Carlo importance sampling, an essential tech-
nique for graphics and other high-performance computing domains including
computational biology, finance, and nuclear science.

• Gain experience with the hash grid spatial data structure for expected O(1)
insert, remove, and linear-time gather in the size of the query radius and
output.

• Use the trait and iterator software design patterns employed for statically-
typed polymorphic data structures in C++.

1.3 Schedule
This is a challenging, pair-programming project that builds extends the previous
ray tracer project. The program will only add about 100 lines to your existing
ray tracer. However, they are mathematically sophisticated lines and you will take
responsibility for the program design and experiment design yourself this week
instead of having them given to you in the handout.

Note that you have three extra days and one extra lab session compared to most
projects because the project spans Fall reading period. If you plan to take a four-
day weekend I recommend completely implementing and debugging the forward
trace before you leave.

As a reference, my implementation contained 9 files, 420 statements, and 300
comment lines as reported by iCompile. I spent substantially longer debugging this
program than I did for the other projects this semester.

Out: Tuesday, October 5
Checkpoint 1 (Sec. 3.2): Thursday, October 7, 1:00 pm
Checkpoint 2 (Sec. 3.3): Thursday, October 14, 1:00 pm

Due: Friday, October 15, 11:00 pm

2 Rules/Honor Code

You are encouraged to talk to other students and share strategies and programming
techniques. You should not look at any other group’s code for this project or use

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

code from other external sources except for: Jensen’s publications, the pbrt library,
RTR3 and FCG textbooks, materials presented in lecture, and the G3D library (as
limited below). You may look at and use anyone’s code from last week’s project,
with their permission.

During this project, you may use any part of the G3D library and look at all of its
source code, including sample programs, with the exception of SuperBSDF::scatter,
which you may not invoke or read the source for.

You may share data files and can collaborate with other groups to create test and
visually impressive scenes. If you share a visually impressive scene with another
group, ensure that you use different camera angles or make other modifications to
distinguish your image of it. On this project you may use any development style
that you choose. You are not required to use pure side-by-side pair programming,
although you may still find that an effective and enjoyable way of working.

3 Specification

1. Implement the specific variant of the photon mapping [Jensen 1996] algo-
rithm described in Section 3.1.

2. Create a graphical user interface backed by functionality for:

(a) Selecting resolution

(b) Real-time preview with camera control

(c) Rendering the view currently observed in the real-time preview

(d) Setting RenderSettings::numEmittedPhotons

(e) Setting RenderSettings::maxForwardBounces and RenderSettings::maxBackwardBounces

(f) Enabling explicit direct illumination (vs. handling direct illumination
via the photon map)

(g) Enabling shadow rays when direct illumination is enabled

(h) Enabling real-time visualization of the stored photons over the wire-
frame (see Section 6.1).

(i) Setting the photon gather radius r, RenderSettings::photonRadius

(j) Displaying the number of triangles in the scene

(k) Displaying the forward and backward trace times

3. Document the interfaces of your source code using Doxygen formatting.

4. Devise and render one visually impressive scene of your own creation, as
described in Section 3.4.

5. Devise and render as many custom scenes as needed to demonstrate correct-
ness or explore errors and performance, as described in Section 3.4.

6. Produce the reports described in Sections 3.2-3.4 as a cumulative Doxygen
mainpage.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

3.1 Details
Photon mapping algorithm was introduced by Jensen and Christensen [1995] and
refined by Jensen [1996]. Use those primary sources as your guide to the algo-
rithm. Additional information about the algorithm and implementation is available
in Jensen’s book [2001] and course notes [2007]. The notes are almost identical to
the book and are available online. Section 7 of this project document summarizes
mathematical aspects covered in class that are ambiguous in the original papers.

Make the following changes relative to the algorithm described in the 1996 paper.
These increase the number of photons needed for convergence by a constant factor
but greatly simplify the implementation. The algorithm remains mathematically
consistent.

1. Do not implement:

(a) The projection map; it is a useful optimization for irregular scenes but
is hard to implement.

(b) The illumination maps described in the 1995 paper. Pure photon maps
are today the preferred implementation [Jensen 1996].

(c) The caustic map—just store a single global photon map and do not
distinguish between path types.

(d) Shadow photons; they are an important optimization for area light
sources but are unnecessary for point emitters.

2. Use G3D::PointHashGrid instead of a kd-tree to implement the photon
map data structure. This gives superior performance [Ma and McCool 2002].

3. Ignore the 1995 implementation of the photon class. Instead use a variant
on the 1996 implementation: store position, incident direction, and power
for each photon. Both papers recommend compressing photons. Use a nat-
ural floating point representation instead of a compressed one. Do not store
surface normals in the photons.

4. Use a constant-radius gather sphere (as described on page 7 of the 1996
paper). When you have that working, you may optionally implement the
ellipsoid gathering method or the k-nearest-neighbor method and compare
performance and image quality.

5. Implement the algorithm that Jensen calls“direct visualization of the photon
map”1 rather than final gathering. This means that you should not make
multiple ray casts from a point when estimating indirect illumination, but
instead use the radiance estimate from the photon map directly.

Beware that the description of the trace from the eye sounds more complicated
than it actually is. You’re just going to extend your existing ray tracer by adding
indirect light to the direct illumination at every point.

1Jensen refers to the kind of gathering you’re implementing as “visualizing the photon map.” This
document calls that simply “gathering” and the “radiance estimate” and uses “visualization” to refer
to debugging tools.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

3.2 Checkpoint 1 Report (due Thursday, Oct. 7, 1:00 pm)
1. Implement Photon class (it need not have any methods!)

2. Give pseudo-code for the entire photon mapping algorithm in your Doxygen Tip: Parts of the pho-

ton mapping algorithm

will be presented in lec-

ture the Wednesday after

the project starts, however

you can begin now be-

cause the handout and pa-

pers contain all of that in-

formation and more.

mainpage.

(a) Almost all of the information that you need is in this handout, but is
distributed so that you have to think and read instead of copying it. Be
sure to read everything in here.

(b) Use a hierarchical list, with the four major steps at the top level and the
details inside. Your full pseudo-code, including some LaTeX for the
equations should be around 40 lines long.

(c) I recommend using either nested HTML lists (...)
or simple preformatted HTML (<pre>...</pre>) inside a Doxygen
\htmlonly....\endhtmlonly block.

(d) The details you need are in the implementation section (7), Jensen’s
notes [2007], and McGuire and Luebke’s appendix [2009].

(e) Use actual (and anticipated actual) names of RayTracer methods and
members in the code so that they will be linked correctly when you re-
ally implement them. With careful use of \copydoc and \copybrief
you can avoid typing the documentation twice.

(f) Give all details for the implementation of RayTracer::emitPhoton
(discussed Wednesday in class).

3. Prove (in your Doxygen mainpage) that the emitted photons collectively rep-
resent the total emitted power of the lights,∑

P∈photons
P.Φ =

∑
E∈lights

L.Φ. (1)

4. Prove that Lo in Equation 5 has radiance units in your Doxygen mainpage.

5. Show a screenshot of the specified user interface in your Doxygen mainpage.

We will set up the photon map data structure together in the scheduled lab us-
ing the trait and iterator design patterns, and you will then implement and begin
debugging your forward trace.

3.3 Checkpoint 2 Report (due Thursday, Oct. 14, 1:00 pm)
Complete a preliminary version of your report and hypothetical results, so that the
formatting is done.

Answer the BSDF Diagrams questions from the final report. You can change
your answer later, but try to get it right the first time.
Tip: You should have written the code for the entire program at this point, but it

need not be working correctly yet. This way I can help you work through bugs during

the scheduled lab without having downtime while you generate lots of new code. Your

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

(a) Cardiod caustic from a metal
ring rendered by Henrik Wann
Jensen using photon mapping.

(b) Cornell box photographic
reference image by Francois
Sillion

(c) Sponza atrium ren-
dered by Matt Pharr and
Greg Humphreys using
photon mapping.

Figure 2: Classic global illumination test scenes.

forward trace should be working at this point, so you’ll probably spend most of your

time in the scheduled lab debugging the radiance estimate and performing experiments

for your final report.

3.4 Final Report
Extend the mainpage of your Doxygen-generated documentation to include a brief,
motivating description of your design (including where each major part of the al-
gorithm is implemented), any known bugs and what you know about them, and the
following elements. Retain the information from the checkpoint reports.

1. Render the following classic global illumination test scenes, attempting to
match the reference images as closely as possible: Tip: ifs/ring.ifs

(a) Metal ring from by Jensen [2001] shown in Figure 2(a), http://
graphics.ucsd.edu/˜henrik/images/caustics.html

(b) Cornell box photographic reference by Francois Sillion shown in Fig-
ure 2(b), http://www.graphics.cornell.edu/online/box/
compare.html

(c) Sponza atrium from Pharr’s and Humphreys’s book shown in Figure 2(c),
http://www.pbrt.org/scenes_images/sponza-phomap.
jpg

2. Show one “teaser” image of a custom scene intended to impress the viewer at
the top of your report. Plan to spend at least three person-hours just creating
the scene for this image. You may collaborate with other groups on this step.

3. Show other images as needed of custom scenes to demonstrate correctness
in specific cases and to support your discussion.

4. BSDF Diagrams. Create a set of BSDF diagrams as 2D schematics of the
3D shape for a fixed angle of incidence, as we commonly draw in lecture.
Show the BSDF for red, green, and blue wavelengths (in the appropriate
colors) either side-by-side or overlaid on the same image. To save time, I

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.ucsd.edu/~henrik/images/caustics.html
http://graphics.ucsd.edu/~henrik/images/caustics.html
http://www.graphics.cornell.edu/online/box/compare.html
http://www.graphics.cornell.edu/online/box/compare.html
http://www.pbrt.org/scenes_images/sponza-phomap.jpg
http://www.pbrt.org/scenes_images/sponza-phomap.jpg
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

recommend that you draw them by hand on paper or a black/whiteboard and
just include the images. Show BSDFs for the following materials. You may
wish to include a photograph of the material to support your diagrams.

(a) Aluminum foil
(b) Opaque purple plastic
(c) Green cloth
(d) Green glass

5. Analyze your results. Below are the kinds of questions that you should be
asking yourself and discussing in your report. Don’t answer these questions
specifically–instead, pose and answer your own questions, which may over-
lap with these. Begin each part of the discussion with either an explicit ques-
tion in boldface or an appropriate section title, such as “performance.” Aspire
to the kinds of result analysis presented in scientific papers. See McGuire and
Luebke [McGuire and Luebke 2009] for examples of exploring parameter
space, comparing, and presenting dense data. Tip: Your analysis is the

most important part of

your report. Render a lot

of different images, cre-

ate plots and tables of

data, and take the time

to explore the behavior of

the photon mapping algo-

rithm.

Sample questions:

• How do your results compare, quantitatively and qualitatively with the
input and output of previously published images in the papers that
we’ve read?
• What illumination effects are visible in each result? Conclude that the

images confirm correctness or specific errors.
• Are errors due to approximations in the algorithm, the data, or errors in

your implementation?
• How do the input parameters affect the quality and performance of re-

sults?
• How much time is spent in forward and backward trace steps?
• How expensive is the radiance estimate compared to the trace time?

4 Evaluation Metrics

I will evaluate this project in line with the metrics used for previous projects. How-
ever, because your program is significantly more complicated than in previous
weeks, the mathematical correctness and program design areas will require more
attention to receive high scores.

As is always the case, I am more concerned with your process than the result
of the process. Put your effort into clean program and report structure and under-
standing the algorithm. It is less important whether your program produces correct
results. A nearly-correct program may still produce completely incorrect images!

5 Getting Started

Start by exporting the previous week’s code to new Subversion project. See the
Tools handout from last week or refer to the Subversion manual for information

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

about how to do this. Remember that you can use anybody’s code from the previous
week with their permission, so if you aren’t happy with your own project as a
starting point, just ask around. You’re responsible for everything in your program,
so if you inherit bugs and lousy documentation from the code that you import, then
you need to clean those up.

The Subversion command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/4-PhotonMap/photon-<group>

Replace <group> with your group name.

6 Debugging Advice

6.1 Visualization
Early on, implement a method for visualizing the photon locations over your wire-
frame rendering, because that is an essential tool for debugging the forward trace.

Visualize small (< 1000) numbers of photons as arrows pointing along their ω̂i

directions. For large numbers of photons, visualize them as points. In each case,
set the color based on the photon power. Because the power of each photon is fairly
small, normalize the power so the largest component is 1.0.

Use G3D::Draw::arrow to render arrows. To render points, use something
like:

rd->setPointSize(5);
rd->beginPrimitive(PrimitiveType::POINTS);
for (PhotonMap::Iterator it = m_photonMap.begin(); it.hasMore(); ++it) {

rd->setColor(it->power / it->power.max());
rd->sendVertex(it->location);

}
rd->endPrimitive();

6.2 Program Trace
You will probably also need to instrument your forward trace to print information
after each scattering event and trace a small number of photons in order to verify
that the importance sampling is working. Use G3D::debugPrintf to output to the
OS X console. If your program is crashing, G3D::debugPrintf may not actually
be printing the last output before the crash. In that case, use G3D::logPrintf to
write to log.txt, which is guaranteed to complete before the function returns. Of
course, gdb is often the best tool for debugging a program that is crashing.

6.3 GuiTextureBox
The G3D::GuiTextureBox interactive inspector allows you to see the radiance
values that your program wrote to the image. Remember that you can zoom in
and out and change the exposure of this box. If you see unexpected black or white
areas, hold the mouse over them to see their floating-point values. A value of nan or
inf means that somewhere in your code you divided by zero or performed another
undefined mathematical operation. You can create a GuiTextureBox explicitly or
use the one that GApp::show produces.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

Figure 3: User interface and debugging visualization for large numbers of photons.

7 Implementation Advice

The following sections expand McGuire and Luebke’s [2009] concise definition
of global illumination by direct visualization of a global photon map. It contains
design choices and advice designed to minimize implementation complexity at the
cost of decreased convergence rate. I use the following notation:

• To reduce the number of distinct variables and subscripts, I use object-oriented
notation to group the properties of a single object. E.g., Emitter E has power
E.Φ and position E.X .

• Roman, non-italic subscripts are names (not array indices). E.g., in ω̂i, the
“i” is a name (here, an abbreviation of “incident”).

• All directions point outward from a location. Thus the “incident direction”
of a photon is opposite the direction of propagation and corresponds to the
light vector in a local illumination model.

• The average of a quantity c over all wavelengths is c̄.

Because we consider the steady state, a single emitted photon may create multi-
ple stored photons. Those represent points along the same path at different times.
This is not “double counting” the same photon. Each stored P has a position P.X
in meters, an incident direction P.ω̂i, and incident power (a.k.a. radiant flux) P.Φ
in Watts.

The algorithm consists of two phases: a forward photon trace outward from
the light sources and a backward ray trace from the eye. These are linked by
a radiance estimate performed where the paths nearly meet that is implemented
using a hash grid of photons called a photon map.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

7.1 Forward Trace
The forward photon trace computes the photon map, scattering (“bouncing”) each
photon a limited number of times. Each emitted photon may produce multiple
stored photons. Repeat the following numEmitted times:

1. Select an emitter E ∈ emiters with probability proportionate to its relative
power, averaged over wavelengths:

ρ̄e(E) =
E.Φ̄∑

F∈emitters

F.Φ̄
. (2)

2. Let E be the selected emitter. Create a new photon P with power2

P.Φ← E.Φ

numEmitted · ρ̄e(E)
, (3)

and initial position P.X ← E.X at the emitter. For an omnidirectional point
emitter, choose direction P.ω̂i uniformly at random on the sphere. For a spot
light, use rejection sampling against the cone of the spot light to ensure that
the emitted direction is within the cone.

3. Repeat at most maxForwardBounces times:

(a) Let Y be the first intersection of ray (P.X,−P.ω̂i) with the scene. If
there is no such intersection, abort processing of this photon by imme-
diately exiting this loop.

(b) Update the photon with P.X ← Y .

(c) Store a copy of photon P in the photon map.

(d) Scatter the photon. If this photon is absorbed instead of scattering, abort
processing it by immediately exiting this loop (this is Russian roulette
sampling of the scattering function). At a surface whose reflectivity is
ρs that varies with wavelength, let the scattering probability be ρ̄s. If
the photon scatters, let its power be updated by P.Φ← P.Φ · ρs/ρ̄s.

If explicit direct illumination is enabled in the GUI, do not store photons on their
first bounce, but do still scatter them.

Some advice for the photon forward trace and the photon radiance estimate:

• A spot light has G3D::GLight::spotHalfAngle ≤ π/2
2Note that the power of an individual photon is small when either numEmitted or |emitters| is

large. Jensen chooses to scale power such that the average photon has power 1.0 at each wavelength,
claiming that this avoids underflow and improves floating point accuracy [Jensen 2001]. I believe this
is a misunderstanding of the IEEE floating point format and have not experimentally observed any
loss of precision even when using millions of photons.

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

• G3D::GLight::color is the power that a spot light would have if it were a
point light. The actual emitted power of the light taking the cone into account
is G3D::GLight::power, which is what you should use. This interface
makes it so that lights don’t appear to get “darker” at points already within
the cone when you adjust the cone angle.

• Be really careful with the photon direction convention. It is confusing for
two reasons. First, the propagation direction is different than the incident di-
rection that you eventually want to store. Second, the photon travels between
two points during each iteration, and the vectors describing the direction be-
tween them point in opposite directions at each end. So your convention
will be backwards for half of the iteration no matter what you do. Use as-
sertions heavily and run targeted experiments with small numbers of photon
and small numbers of bounces to ensure that you have this correct. There are
several places that you will have to negate the photon direction.

• Just as with backwards tracing, you have to bump photons a small amount
along the geometric normal of the last surface hit to avoid getting “stuck”
on surfaces. If you see strange diagonal patterns of photons or the photons
generally have the same color as the surface that they are on, you aren’t
bumping (or are bumping in the wrong direction!)

• Photons store incident illumination–before a bounce.

7.1.1 Scattering

Our BSDF from the previous projects contained a diffuse Lambertian lobe and a
glossy Blinn-Phong lobe. The Blinn-Phong lobe could have an infinite exponent
on the cosine term, representing a mirror reflection.

Scattering from a finite Blinn-Phong lobe is a little tricky3. Therefore, to sim-
plify the implementation you will will approximate the approximate the BSDF dur-
ing forward scattering with only a diffuse Lambertian lobe and a mirror-reflection
impulse.

To implement the scattering, first query the intersection for the impulse(s) and
the Lambertian coefficient. We ignore the glossy coefficient (consider the kinds of
errors this creates, and what it means for the images). Choose a number t uniformly
at random on [0, 1]. The coefficient of an impulse is the probability that a photon
scatters along that direction. So, for each impulse, decrement t by the impulse’s
coefficient averaged over its wavelengths. If t < 0 after a decrement, the photon
scattered in that direction, so update the photon’s information and return it.

The probability of the photon performing Lambertian scattering is the Lamber-
tian coefficient scaled by one minus the sum of the impulse coefficients. This
has nothing to do with the radiometry or the mathematics–it is just the way that
SuperBSDF is defined. It is defined that way so that it is easy to ensure energy
conservation. If you increase the impulse probability in the scene file, it is un-
derstood that the sampling code (which in this case, you’re the one writing!) will

3Two options are rejection sampling, which can be slow, and an approximate analytic form that is
complex [Ashikhmin and Shirley 2000].

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

scale the Lambertian coefficient down appropriately. If none of the impulses scat-
tered the photon, decrement t by the average of the updated Lambertian coefficient
across wavelengths. If t < 0 after the decrement, the photon scatters diffusely.
Choose the outgoing direction to be cosine distributed about the shading normal of
the intersection and update the photon appropriately.

Some advice for scattering:

• Look at G3D::Vector3::cosHemiRandom for implementing the diffuse
scattering.

• Implement a function “bool scatter(const SurfaceSample& s, Photon& P)”
that returns false if the photon is absorbed and updates the photon if it is scat-
tered.

• G3D::PointHashGrid is not threadsafe, and photon tracing is usually the
fastest part of the program. So keep it single-threaded.

• Be really careful about which way the direction vector in the Photon is
facing.

7.2 Backward Trace
The backward trace is exactly the same as for your previous ray tracing project,
except shading now contains a new indirect illumination component in addition
to the previous direct illumination and specular illumination components. If
explicit direct illumination is disabled in the GUI, do not compute the direct con-
tribution from light sources (but do still compute the specular component).

The indirect component is also called a radiance estimate. Consider a point Y
with normal n̂ and direction ω̂o to the eye (or previous intersection), that we reached
by backwards tracing. If there were many photons stored at Y in the photon map,
that would tell us the incident radiance. We could apply the BSDF and know the
outgoing radiance to the eye.

However, it is extremely unlikely that any previously-traced forward path will
terminate exactly at Y . So we estimate the incident flux from photons near Y in
the photon map. As we make our definition of “near” more liberal, the indirect
illumination will become blurrier. As we make it more conservative, the indirect
illumination will be sharper–but also noisier.

The reflected (outgoing) radiance estimate is given by:

1. Let Lo ← 0 W/(m2sr) be the initial estimate of radiance reflected towards
the viewer.

2. Gather the photons nearest X from the photon map. Two methods for doing
this are growing the gather radius until a constant number of photons have
been sampled, and simply gathering from a constant radius. Regardless of
the method chosen, let r be the gather radius in meters.

3. For each photon P within radius r of Y :

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

Let Ii =
P.Φ∫ r

0

∫ 2π

0
κ (s) · s dθ ds

· κ (||P.X − Y ||) (4)

Lo ← Lo + Ii · fY (P.ω̂i, ω̂o) ·max(0, P.ω̂i · n̂) (5)

Compute the double integral in Equation 4 by hand; the denominator should be
a constant over the loop.

Function κ() is the 2D falloff for which Jensen recommends a cone [Jensen
1996] filter, κ(x) = 1 − x/r. When debugging, it is easier to first choose to have
no falloff within the gather sphere, i.e., κ(x) = 1. In that case, the double integral
is equal to the area of the largest cross-section of the sphere, πr2. To help build
some intuition for this, recall one derivation of the area of a disk of radius r. The
area of a small rectangular patch on a disk at radius s is (s · dθ) · ds; the length of
this patch along the radial axis is clearly ds and, in the limit as dθ → 0, the length
perpendicular to the radial axis is the length of the arc at radius s: sdθ. The integral
of the patch area expression over the full circle and disk radius is∫ r

0

∫ 2π

0
s dθ ds =

1

2
s2 · 2π

]r
0

= πr2. (6)

The more general expression given in Equation 4 is the “area” of disk of variable
density, where the density at distance s is κ(s).

Tip: When you disable the explicit direct illumination, the noise and blurriness should

increase, but the intensity of all surfaces should be the same. Test this with 1-bounce

photons so there is no “indirect” light to confuse the issue.

8 What’s Next

This section describes directions that you may be interested in exploring on your
own, and possibly as a future midterm or final project. I do not expect you to
implement these as part of this project.

Elliptical gathering: Compressing the gather sphere into an ellipsoid along the
normal of each intersection helps avoid gathering photons that may not describe the
flux at that intersection. Jensen describes this in detail in the notes and 1996 paper.

Final gathering: Only gather from caustic photons the way that we have been.
For photons with some diffuse scattering event in their path, cast a large number of
rays from each shading point and gather at those locations. This increases rendering
time but dramatically improves both smoothness and sharpness in the rendered
image.

Transmission: Transmissive surfaces pose some interesting design problems.
You must track the medium from which the ray is exiting as well as the one that
it is entering, implement Snel’s law, and attenuate the photon energy based on the
distance that it traveled through the transmissive medium. Refractive caustics are
one of the effects for which photon mapping is extremely well suited. A related

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 4: PHOTON MAPPING

problem is rendering participating media such as fog. This is typically done by
marching the ray through the medium, periodically scattering as if hitting sparse
particles.

Full BSDF scattering: We simplified the BSDF to make the scattering impor-
tance sampling algorithm relatively efficient and straightforward. Processing the
true BSDF increases accuracy.

8.1 G3D::PointHashGrid
G3D::PointHashGrid uses the C++ trait design pattern. This is useful for cases
where a data structure must work with a class that may not have been designed to
work with it, and therefore does not have the right interface. The idea of this design
pattern is that adapter classes can describe the traits of other classes.
G3D::PointHashGrid<T> requires a helper class that tells it how to get the

position of an instance of the T class; in this case, T is Photon. The helper class
must have a static method called getPosition. PointHashGrid also requires
either an operator== method on the Photon class or another helper that can test
for equality. See the documentation, which offers examples on this point.

References
ASHIKHMIN, M., AND SHIRLEY, P. 2000. An anisotropic phong brdf model. J. Graph. Tools 5, 2, 25–32. 11

CHEN, H., AND LIU, X. 2008. Lighting and material of halo 3. In SIGGRAPH ’08: ACM SIGGRAPH 2008
classes, ACM, New York, NY, USA, 1–22. 1

JENSEN, H. W., AND CHRISTENSEN, N. J. 1995. Photon maps in bidirectional Monte Carlo ray tracing of
complex objects. Computers & Graphics 19, 2, 215–224. 1, 4

JENSEN, H. W., AND CHRISTENSEN, P. 2007. High quality rendering using ray tracing and photon mapping. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York, NY, USA, 1. 4, 5

JENSEN, H. W. 1996. Global illumination using photon maps. In Rendering Techniques, 21–30. 1, 2, 3, 4, 13

JENSEN, H. W. 2001. Realistic image synthesis using photon mapping. A. K. Peters, Ltd., Natick, MA, USA. 4,
6, 10

MA, V. C. H., AND MCCOOL, M. D. 2002. Low latency photon mapping using block hashing. In HWWS
’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 89–99. 4

MARTINEZ, A., 2010. Faster photorealism in wonderland: Physically based shading and lighting at sony pictures
imageworks, August. in Physically Based Shading Models in Film and Game Production SIGGRAPH 2010
Course Notes. 1

MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-accelerated global illumination by image space photon
mapping. In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009, ACM, New
York, NY, USA, 77–89. 5, 7, 9

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

Index

backward ray trace, 9
backward trace, 12

caustic map, 4
consistent, 1

direct illumination, 12

elliptical gathering, 13

final gathering, 4, 13
forward photon trace, 9

G3D::debugPrintf, 8
G3D::Draw::arrow, 8
G3D::GApp, 8
G3D::GLight, 10
G3D::GuiTextureBox, 8
G3D::PointHashGrid, 4, 14
G3D::PosFunc, 14
G3D::Vector3::cosHemiRandom, 12
global photon map, 4

hash grid, 2

illumination maps, 4
importance sampling, 2
indirect illumination, 12
iterator, 2, 5

Monte Carlo, 2

participating media, 14
Photon, 5, 12, 14
photon map, 9
Photon mapping, 1
projection map, 4

radiance estimate, 9, 12
Russian roulette, 10

scatter, 12
shadow photon, 4
specular illumination, 12
Subversion export, 7

trait, 2, 5, 14
transmission, 13

	Introduction
	Overview
	Educational Goals
	Schedule

	Rules/Honor Code
	Specification
	Details
	Checkpoint 1 Report (due Thursday, Oct. 7, 1:00 pm)
	Checkpoint 2 Report (due Thursday, Oct. 14, 1:00 pm)
	Final Report

	Evaluation Metrics
	Getting Started
	Debugging Advice
	Visualization
	Program Trace
	GuiTextureBox

	Implementation Advice
	Forward Trace
	Scattering

	Backward Trace

	What's Next
	G3D::PointHashGrid

