
CS 371 Project 0:

Cubes

Figure 1: A dog modeled with translated, rotated, and scaled cubes. By the end of
this project you’ll know how to create scenes like this programmatically and write
an interactive real-time 3D renderer for viewing them.

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Educational Goals . 2
1.3 Schedule . 3
1.4 Honor Code & Rules . 3

2 Specification 4
2.1 Report . 4

3 Evaluation Process and Metrics 5

4 Walkthrough 7
4.1 Command Line C++ Programming on OS X 7
4.2 Graphics Programming with G3D::GApp 12
4.3 One Cube, and the Posing Design Pattern 16
4.4 A Scene Data Structure and the Model/Entity Design Pattern . . . 18
4.5 The Cornell Box . 20
4.6 A Custom Scene . 22

5 The Gallery 22

CS371 2010 | PROJECT 0: CUBES

1 Introduction

1.1 Overview
Welcome to your first CS371 Project! In this project you’ll write a C++ program
that displays a set of 3D cubes and then write a short report. The code that you
write this week will be the starting point for the new project next week, so take care
to structure the program in a flexible manner and be sure to document your source
clearly.

For the other projects this semester, you will read the specification and start
work before scheduled lab. This project is unique. We’re going to go through the
handout and begin implementation together during the first lab session. This project
also introduces a number of tools and libraries that may be new to you. For those
reason, the handout is really long. It explicitly walks you through most of the steps
in the project. As you progress through the course you will learn to work directly
from a technical specification, primary research sources, and reference documents,
so you’ll need less direction and detail in the handouts.

Note that I hyperlinked the section numbers, figure numbers, citations, and URLs
in this document to help you navigate quickly in the PDF version. You should
return the favor by structure your project documentation with links like this, most
of which will be done for you by Doxygen if you follow the formatting guidelines.

1.2 Educational Goals
In this project, you’ll gain familiarity with:

1. Some 3D modeling conventions:

(a) Coordinate system and units

(b) Positioning objects in 3D space

(c) A first-person camera controller

(d) The Model/Entity design pattern

2. Some CS371 software development tools:

(a) The C++ programming language

(b) The Subversion (svn) revision control system

(c) The G3D library

(d) The Doxygen documentation generation program

3. Programming in the large:

(a) Automatic memory management

(b) Overview documentation

(c) Entry point documentation

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

1.3 Schedule

Out: Tuesday, September 7
Due: Monday, October 13, 10:00 pm

This is a moderate, solo project. The “moderate” rating is because you’re learn-
ing to use a new programming and documentation environment at the same time
that you’re implementing a specification.

This warmup project is structured slightly differently than the other projects this
semester. For most projects, you’ll start working on Tuesday or Wednesday. In lab
on Thursday we’ll complete some flexibly-structured exercises designed to accel-
erate your progress and get you to (and maybe through) the crux of each project.
You will then have until the following Monday night to complete the project.

For this project, don’t start before the scheduled lab session. We’ll begin it as a
class in lab on Wednesday, September 8th. You will then complete the project at
your own convenience. I encourage you to ask questions outside of the scheduled
lab times by e-mail, during office hours, or in lecture.

As a reference, my solution for this project was about 250 statements and 150
comment lines as reported by iCompile, including the Doxygen comments that
generate the report. More than half of the code was in Scene.cpp for creating
the three required scenes. If at some point your implementation looks like it will
be significantly longer or shorter than that, come talk to me because you may have
gone a bit down the wrong track.

Track how much time you spend on this project outside class. You’re required
to include this in your final report.

If you haven’t completed the report and everything except the custom scene
within three hours of work after the scheduled lab, stop working and talk to
me immediately. In that case you are putting your effort into the wrong part, or I
didn’t explain something clearly enough. The entire project should take at most six
hours outside of lab to complete.

1.4 Honor Code & Rules

You are encouraged to talk to other students and share strategies and programming
techniques but should not look at each other’s code directly. The honor code policy
for CS371 is designed to encourage more collaboration than in other courses. In
fact, collaboration with other students is an important factor in your class partici-
pation grade. Collaboration means sharing appropriate information, code, and data
with others in the class, including people who aren’t your assigned partner. See
the Welcome to Computer Graphics document from the first lecture for the explicit
course policies.

For this project only, you are not permitted to look at the sample projects in the
G3D distribution. You may not look at or invoke the G3D::GEntity class or the
G3D::ArticulatedModel::createCornellBox method. You may look at
and use the rest of the G3D source code.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

2 Specification

For each project, you will submit source code, documentation, and a report that
includes figures and data. These are unified within the source code and submit-
ted through the revision control system–I will grade whatever is checked in at the
time of the deadline. Note that I’m evaluating these three documents, not just the
functionality of your program.

Create your class, method, and function documentation as specially-formatted
Doxygen comments immediately before the element being described inside the
C++ header (.h) files. Prepare your report as a large Doxygen comment in a file
ending with .dox. From your report, include links to relevant code elements and
to images and videos that you have prepared.

1. Build a program to load and visualize small scenes with an interactive cam-
era.

2. Create the following scenes using only cube.ifs and the whiteroom en-
vironment map files:

(a) A single, white 1 m3 cube centered 1 m along the positive x-axis and
rotated 45 degrees about the vertical axis.

(b) A model of the Cornell Box pictured in Figure 4.

(c) A visually interesting scene of your own design.

3. Use high-level library routines to abstract the operating system, file format,
and immediate-mode rendering, as detailed in this document.

4. Create overview and entry point documentation for your software using Doxy-
gen.

5. Create the report described in Section 2.1.

2.1 Report
1. Make simple, isometric view, labelled axis-diagrams of the 2D coordinate Tip: The Tools document

contains sections on the

2D and 3D coordinate sys-

tems.

and 3D coordinate systems (by hand; don’t write code for this), and include
it in your report. On the 3D coordinate system, show the direction of increase
of the yaw, roll, and pitch angles. I would personally use PowerPoint to
create the diagram and then convert it to a PNG by pressing command-3 on
the Mac and selecting the relevant area on the screen. However, you may use
any reasonable method that you like, including SVG and ASCII art, so long
as your solution renders correctly under Safari.

2. Assume that someone who doesn’t know anything about G3D or your pro-
gram is going to have to modify it in the future. Describe the structure of
your program for this person in your report, with links to major classes and
methods. This should only take about one paragraph of space.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

3. Include images of the single scene, the required multi-cube scene, and your
custom scene. Crop these appropriately using Photoshop, and link a thumb-
nail to the actual image. Put the actual image files in the doc-files di-
rectory and link from smaller versions of them. Look at the HTML source
for the “Cube Maps” section of the “Index of Data Files” page of the G3D
manual using your web browser to see how to do this.

4. Questions. Knowing how to use documentation, experimentation, and re-
verse engineering to discover how a system works are important skills. In
this lab you copied a lot of code that I wrote. To gain mastery over that
code, figure out the answers to the following questions and write them in

Tip: When trying to

understand a library or

language feature, imag-

ine yourself in the API

or compiler writer’s place.

How would you have im-

plemented it? What con-

straints force that design?

your report. You’re going to have to get your hands dirty on this–the answers
aren’t just sitting there. Don’t share the answers with your classmates, but I
encourage you to discuss strategies for finding them.

(a) What are the differences between the Scene* and Scene::Ref types?

(b) What is the ICE_EXTRA_SOURCE environment variable for?

(c) What is the INCLUDE environment variable for?

(d) Why did I tell you to put your initialization code into App::onInit

instead of constructor App::App? (There are many reasons. Try throw-
ing an exception from each, and consider the implications of throwing
an exception from a class’s constructor.)

(e) What invokes App::onInit, App::onPose, and App::onGraphics?

(f) Where is the file “cube.ifs” stored on the file system? What made the
System::findDataFile look there?

5. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. In general, please let me know how the course is going for you
and how I can make this the best experience for you. On this and every future
project, report the following specifically (you get points for answering these
questions!):

(a) How many hours you spent outside of class on this project on required
elements, i.e., the minimum needed to satisfy the specification.

(b) How many additional hours you spent outside of class on this project
on optional elements, such as polishing your custom scene or extreme
formatting of the report.

(c) Rate the difficulty of this project for this point in a 300-level course as:
too easy, easy, moderate, challenging, or too hard.

(d) What did you learn on this project (very briefly)? Rate the educational
value relative to the time invested from 1 (low) to 5 (high).

3 Evaluation Process and Metrics

To evaluate your project, I will check your project out from Subversion as of
the deadline time. I will then run icompile --doc to generate the final report

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

and documentation. I will read sections of your source code, the report in the
index.html page generated by Doxygen, and sections of your documentation as
generated by Doxygen. I may run your program, but I will primarily investigate
its functionality by the description that you provide in the report. Note under this
scheme, that the artifacts from your creation of and experimentation with the pro-
gram are more important than the executable program itself. For many projects
you can receive a favorable evaluation even if your program does not compile or
execute.

As described in the Welcome to Computer Graphics document, I will evaluate
your project in several categories:

• Mathematical (algorithm, geometry, physics) correctness

• Adherence to the specification

• Program quality

• Report quality

Some questions I consider when evaluating the source code are: Is it possible for
someone unfamiliar with it to find specific routines quickly? Is the code easy to un-
derstand? Does it make good tradeoffs between efficiency, clarity, and flexibility?
Are data structures used effectively? Are the algorithms correct? Are the geometry
and physics correct?

When evaluating the report, I consider: Do the experiments adequately explore
the correctness, performance, robustness, and parameter space of the algorithm?
Are known bugs made clear, along with how you tried to solve them? Are appro-
priate sources cited for algorithms and code? Does the overview documentation
guide a reader to the relevant source code documentation? Is the architecture of the
program clear?

The report and code should both be as concise as possible without compromising
clarity. Use the papers we’ve read as examples of how to describe experiments
compactly.

Most students want to create a really impressive 3D scene for the “visually im-
pressive” screenshot mentioned in the specification. Keep in mind that I value your
process and presentation more than your program’s functionality. To get an “A”
you need to answer all of the questions from the specifications, format your re-
port cleanly, provide appropriate entry point documentation, demonstrate effective
use of the Model/Entity design pattern, and do the minimum necessary to satisfy
the specification. Going above and beyond the specification is personally satisfy-
ing, but earns you no additional points and will cost you points if you do so at the
expense of required elements!

I require you to report the number of hours that you spent on the project. That
number will not affect your grade. If you’re spending a lot more time than others
I will suggest some ways to improve your workflow. Everyone is spending more
time than I expected I will reduce the requirements for future projects. If you’re

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

spending much less time than I expected I’ll suggest some other directions you
might optionally explore if you want to learn more about graphics.

4 Walkthrough

This lab contains detailed instructions for setting up your program because it is
your first time using the development environment and libraries. Future projects
will include a specification and some advice, but you create the software design
and implementation plan yourself.

Where this walkthrough says to enter specific code, please actually type it–do not
copy from the PDF and paste it into your editor. Typing the code yourself should
prompt you think about what it means, and if you make a mistake will give you an
opportunity to debug it.

4.1 Command Line C++ Programming on OS X

1. Open an OS X terminal window. The corresponding dock icon is shown in
Figure 2.

Figure 2: The OS X ter-
minal window icon.2. Update your .bashrc file. Run:

/usr/mac-cs-local/bin/check_login

It may tell you to then run additional commands.

3. Configure your compilation environment. Open ˜/.local_bashrc in your
favorite editor (mine is Emacs) and ensure that your environment variables con-
tain the CS371 paths. These should look something like: Tip: Take a few min-

utes to set your prompt,

screen brightness, key re-

peat rate, .emacs file,

Safari bookmarks, and

Dock configuration. Time

spent making your devel-

opment environment effi-

cient is well spent!

G3D9=/usr/mac-cs-local/share/cs371/G3D
export INCLUDE=$G3D9/include:$INCLUDE
export LIBRARY=$G3D9/lib:$LIBRARY
export PATH=/usr/mac-cs-local/share/cs371:$G3D9/bin:

/usr/texbin:/opt/local/bin:$PATH
export G3D9DATA=$G3D9/data
export ICE_EXTRA_SOURCE=$G3D9/source/GLG3D.lib/source:

$G3D9/source/GLG3D.lib/include/GLG3D:
$G3D9/source/G3D.lib/source:
$G3D9/source/G3D.lib/include/G3D:$ICE_EXTRA_SOURCE

Note that there are no spaces around the equal signs and that paths are sepa-
rated by colons. The PATH and ICE_EXTRA_SOURCE variables should each be
entirely on one line–I reformatted those to fit on this page.

4. Configure your subversion environment. At the command line, execute:

svn status

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

and ignore the warning that it prints.

This will create a ˜/.subversion directory. Open ˜/.subversion/config.
Search for the global-ignores line and replace it with:

global-ignores = *.o *.lo *.la *.al .libs *.so

.so.[0-9] *.a *.pyc *.pyo *.rej *˜ #*#
.#* .*.swp .DS_Store g3d-license.txt log.txt
temp tmp .ice-tmp build

This should all be on one line; I had to break the line here because it was too long
to print. This setting tells the revision control system to ignore certain generated
files and directories. Everything up to g3d-license.txt is probably already
in the file but commented out.

5. Go to the scratch directory. In this course, we keep our code under revision
control on a server. During a programming session, we always check out that
code to the local disk, and then check it back into the server at the end of the
session. You want your code on the server between sessions because it enables
collaboration on the pair-programming assignments, keeps your data safe in the
event that something happens to the computer you’re working on, and allows
you to revert to a previous version if you make a mistake. You want to compile
on the local scratch disk instead of your home directory because your home
directory is on the network and is very slow. To get to the scratch disk on the
Mac, type:

cd /local-scratch

6. Check out your project directory from Subversion.. For each project I will
set up a Subversion directory for you. For the first project the name is simply
cubes-$USER, where you can type your username in place of $USER or just
allow the OS X shell to replace the environment variable for you.

You should have already received your Subversion account name and password
by e-mail. Your username is the same as your Unix and Mac OS account name.
Your password is not the same, and you cannot change it yourself– tell me right
away if your password has been compromised and I will give you a new one.

The commands to check out the first project are:

svn co svn://graphics-svn.cs.williams.edu/371/0-Cubes/cubes-$USER

cd cubes-$USER

Since there’s nothing in your project yet, this will just make a directory with a
.svn subdirectory. Do not ever copy, delete, or directly manipulate the .svn

subdirectory.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

7. Write a small program in Emacs. You used the C programming language pre- Tip: “emacs –nw” runs

Emacs in a terminal win-

dow, launches fast, and

runs over SSH. “emacs”

launches Xemacs, which

lacks those nice properties

but gives you menu bars.

viously in CS237 and possibly other courses. We’ll go through a quick refresher
and introduce the debugger. Start by opening Emacs and entering the following
program. When you’re done, save it as main.cpp, but do not quit Emacs.

#include <stdio.h>

void f() {
throw "Exception";

}

int main(const int argc, const char* argv[]) {
// f();
printf("Hello, world!\n");
return 0;

}

Tip: This might be

a good time to look

up the Emacs commands

for splitting and unify-

ing panes, and switching

buffers if you’ve forgotten

them.

8. Compile with g++.: Open a second view pane inside Emacs using “C-X 2”. Do
not open a second terminal window. Create a shell under Emacs using “M-x
shell”. From that shell, compile your program using the command:

g++ -g main.cpp -o hello-world

Run your program by executing hello-world at the command line. It should
print...“Hello, world!”.

9. Run under gdb. We’re going to see how to run a program under the command-
line debugger and perform basic operations. Debuggers are most useful when
your program is doing something wrong, so we have to break the program. Un-
comment the line in the body of main() that calls function f() and recompile
your program. Now, launch the debugger with

gdb hello-world

(a) Press “r” to run your program.
(b) When it crashes, type “bt” to see a backtrace. It should look like:

(gdb) bt
#0 0x00007fff86db83d6 in __kill ()
#1 0x00007fff86e58972 in abort ()
#2 0x00007fff885455d2 in __gnu_cxx::

__verbose_terminate_handler ()
#3 0x00007fff88543ae1 in __cxxabiv1::__terminate ()
#4 0x00007fff88543b16 in std::terminate ()
#5 0x00007fff88543bfc in __cxa_throw ()
#6 0x0000000100000e8e in f () at main.cpp:4
#7 0x0000000100000ea2 in main (argc=1, argv=0x7fff5fbff4b8)

at main.cpp:8

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

(c) Type “frame 6” to select the f stack frame.

(d) Type “list” to see the source code around the active line (you can also
look at line 4 of main.cpp, since the debugger told you that is where the
problem was.) It will show you the code that triggered the exception.

(e) Now switch stack frame #7 so we can look at some variables.

(f) Type “print argc” to look at argc. Since argc was a formal parameters
for the function, it is also printed in the back trace directly.

(g) Quit the debugger by typing “q”.

10. Compile with iCompile. Fix your program by commenting out the call to f()

again. You could continue to directly invoke g++ for the rest of your time in
371, however the g++ command line gets complicated very quickly when we
write more sophisticated programs. For example, the command line to compile
the project you’ll complete this week might look like:

g++ -D_DEBUG -g -D__cdecl= -D__stdcall= -D__fastcall=
-fasm-blocks -arch i686 -msse3 -mfpmath=sse -pipe
-Wall -Wformat=2 -Wno-format-nonliteral
-Wno-deprecated-declarations -I G3D9/build/osx-i386-g++4.2/include/
-I /usr/local/include/ -I /usr/include/ -o build/0-Cubes
-Wl,-w -arch i686 -msse3 -mfpmath=sse
-Wl,-headerpad_max_install_names -L G3D9/build/osx-i386-g++4.2/lib/
-L/usr/local/lib/ -L/usr/lib/ -framework AGL -framework
IOKit -lGLG3Dd -lavformat -lavcodec -lavutil -lG3Dd -lzip
-framework Cocoa -framework Carbon -lz -framework OpenGL
-lpthread -ljpeg -lpng -multiply_defined suppress
-all_load source/App.cpp source/Scene.cpp

So instead of typing that directly, you’re going to use a script that produces the
command line for you. The script is called iCompile and it comes with G3D. It
is written in Python and you are welcome to look at the source code for it. For
now all that you need to know is that if you type:

icompile

in the directory containing your project, it will figure out the appropriate g++
command line and execute it. You can use the --verbosity 2 command line
option if you’d like to see the underlying commands that are being executed.
The first time you run iCompile on a project it will ask you to confirm that you
really want to compile. Press “Y”.

11. To see a complete list of icompile options, run

icompile --help

You will use the --opt, --run, --doc, --gdb, and --clean ones frequently.

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Tip: I recommend that you always work from a single, persistent Emacs instance.

This will keep you from accidentally opening the same file in two different sessions. It

will reduce your development time. You can keep your hands on the keyboard while

compiling, and can cut and paste between files and between code and the shell using

only Emacs keyboard commands. It will also reduce the overhead of editing. I’ve seen

students who opened a source file, found the line they needed to change, edited it,

closed the editor, and then compiled. The compiler would report an error on the very

next line, so they re-opened the same file, searched for the line, etc...it took those

students more than twice as long to debug a program as the ones who simply kept their

files open and on the right line.

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

4.2 Graphics Programming with G3D::GApp

1. Move main.cpp to source/main.cpp. Edit your main.cpp to look like:

Tip: Save frequently and

whenever you compile or

switch buffers. This

will keep you from acci-

dentally compiling out-of-

date code and will increase

the chance of recovering

your program in the event

of a crash. Graphics pro-

grams interact with the

OS at a low level and can

crash your computer.

#include "App.h"

// Tells C++ to invoke command-line main() function even
// on OS X and Windows.
G3D_START_AT_MAIN();

int main(int argc, const char* argv[]) {
GApp::Settings settings(argc, argv);
settings.window.width = 1440;
settings.window.height = 800;

return App(settings).run();
}

Note that you can’t recompile because you haven’t written the new classes that
are being referenced yet.

2. Add main.cpp to Subversion. Whenever you create a new file, it is a good idea
to add it to revision control right away so that you don’t later forget. Execute:

svn add source

This command will mark source/ and source/main.cpp for addition to
your repository. You can see this by running svn status. They haven’t actu-
ally been added yet. To do that, commit your changes with:

svn commit -m "Added main.cpp"

Now your file is on the server and safe from local changes. If you modify the
file, you will need to commit the new version, but never need to add this file
again.

3. Create source/App.h.

C++ splits code into header and implementation files. By convention, we put one
class in each header. Header files describe the interfaces to classes and functions.
They include both public and private data because the compiler needs to know
the size of each class, and the private data affects the size. Write a App.h header.
This that contains the interface for the App class that will manage the graphical
user interface (GUI) and general 3D scene state for your program. It should look
like: Tip: You don’t have to

list your method argu-

ments vertically. I just did

that here so that the lines

would fit on the page in

the PDF. If you do make

them vertical, it is easier

to read if you line them up

in columns.

#ifndef App_h
#define App_h

#include <G3D/G3DAll.h>

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

class App : public GApp {
private:

public:

App
(const GApp::Settings& settings);

virtual void onInit();

virtual void onPose
(Array<Surface::Ref>& surface3D,
Array<Surface2D::Ref>& surface2D);

virtual void onGraphics3D
(RenderDevice* rd,
Array<Surface::Ref>& surface3D);

};

#endif

The preprocessor commands at the top of the header are called a header guard. Tip: Forgetting the semi-

colon at the end of the

class definition, forgetting

the #endif, and incor-

rectly copying the base

class’s method signatures

when overriding them are

common bugs that create

misleading compiler mes-

sages.

They are a common trick used to ensure that this header is never included twice
into your program, since doing so could cause hard-to-debug compile time er-
rors.

The include preprocessor command imports the definition of the G3D library.
The C++ language provides only computation, not routines for managing the
GUI, communicating with the graphics card, or even basic file I/O. All of that
is contained within libraries. We’re going to use the G3D library as a common
and platform-independent source of utility routines. It is good for learning 3D
graphics because it resembles a film or game rendering engine, but exposes most
of its functionality so that you can replace parts with your own code.

The App class inherits from GApp, which is part of G3D. Look it up in the G3D
documentation (be careful to use the version 9.00 beta documentation on our
server and not the older 8.00 version on SourceForge). GApp provides a number
of event handlers (a.k.a. callbacks), which are implemented as virtual methods.
We can override these to respond to specific events. In this project we’re going
to execute some code on initialization, when the scene is “posed” for rendering,
and when the scene is rendered in 3D.

4. Add App.h to revision control.

svn add source/App.h
svn commit -m "Added App.h"

From here on, I’m going to assume that you add every file that you create with-
out needed explicit instructions. Take care to not add generated files (e.g., the
build directory, Emacs backup files ending in tilde) to the repository. If you

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

accidentally add something, you can svn revert that file. See the Subversion
manual and the svn --help command for detailed instructions.

5. Create source/App.cpp to implement your App class by typing in the fol-
lowing:

#include "App.h"

App::App(const GApp::Settings& settings) : GApp(settings) {
}

void App::onInit() {
// Put initialization code here

}

void App::onPose
(Array<Surface::Ref>& surface3D,
Array<Surface2D::Ref>& surface2D) {

(void)surface3D;
(void)surface2D;

}

void App::onGraphics3D
(RenderDevice* rd,
Array<Surface::Ref>& surface3D) {

(void)surface3D;
Draw::axes(CoordinateFrame(), rd);

}

All of the (void) expressions are just a way of telling the compiler that you’re Tip: You should al-

ways investigate warnings,

and modify code to avoid

them in cases where you

verify that there is no

problem. That way you

will notice the new warn-

ings if introduce incorrect

code later.

intentionally ignoring the value of another expression. In this case they serve to
prevent the compiler from warning you that you ignored the parameters to most
of the methods.

The only interesting thing in this class is the App::onGraphics3D method,
which uses the G3D::Draw utility class to render the default coordinate frame
as a set of arrows. Those axes will help us stay oriented as we create a more
interesting scene.

6. Run it! Compile and run your program using iCompile. You should see a set
of colored axes on a blue background and some additional debugging tools that
G3D adds to every program. You can disable those debugging tools later in your
App::onInit method, but for simplicity just leave them there right now.

By default, G3D::GApp creates a G3D::FirstPersonManipulator that al-
lows you to move the 3D camera. This manipulator uses common first-person

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

PC video game controls. The ‘W’, ‘A’, ‘S’, and ‘D’ keys on the keyboard will
translate the camera forward, left, back, and right relative to its own axes. If you
press the right mouse button (or press Shift and the mouse button for a single-
button mouse under OS X), the mouse rotates the yaw and pitch of the camera.
It requires you to press a button because otherwise using the mouse with the
GUI would also move your viewpoint. G3D contains other manipulators with
different control styles, and you can write your own or use none at all. This is
only the default. Move the camera around a bit to get a feel for the controls, and
then exit the program.

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

4.3 One Cube, and the Posing Design Pattern

Figure 3: A scene
with one instance of
cube.ifs, and a set of
axes for debugging.

We begin by building the simple scene containing a single cube lit by an infinitesi-
mally small (i.e., point) light source shown in Figure 3. The cube will be centered
1 m along the positive x-axis and rotated 45 degrees about the vertical axis.

There are more convenient ways of creating the objects described in this section,
and fairly helpful defaults for all of the values. I’m using a verbose initialization
process here to make clear what options you can change. In the G3D documentation
you can find details about these settings and even more options.

The concept of reducing a complex model to just the information needed to ren-
der a frame is common in computer graphics. “Pose” is the name that I give this
process; there is no universally accepted term for it. In the G3D API, a “surface”
is the boundary of a 3D object. That is, what you would call a surface in everyday
life. Beware that for historical reasons, under some graphics APIs, “surface” also a
name for the image that is being rendered.

1. Create a lighting environment. First, we create the environment around the
box. This consists of the lighting and a “sky box” that is an infinite cube painted
with distant objects so that we appear to be in a large environment. Declare
member variables m_skyBoxTexture of type Texture::Ref, m_skyBoxConstant
of type float, and m_lighting of type Lighting::Ref.

In App::onInit, initialize these members as follows:

Texture::Specification skyBoxSpec;
skyBoxSpec.filename =

System::findDataFile("cubemap/whiteroom/whiteroom_*.png");

skyBoxSpec.desiredFormat = ImageFormat::RGB8();
skyBoxSpec.dimension = Texture::DIM_CUBE_MAP;
skyBoxSpec.settings = Texture::Settings::cubeMap();
skyBoxSpec.preprocess = Texture::Preprocess::gamma(2.1f);

Lighting::Specification lightingSpec;
lightingSpec.lightArray.append

(GLight::point(Point3(7, 10, 4), Power3::white() * 100.0f));

lightingSpec.environmentMapTexture = skyBoxSpec;

m_skyBoxTexture = Texture::create(skyBoxSpec);
m_skyBoxConstant = 1.0f;
m_lighting = Lighting::create(lightingSpec);

The “specification” classes are a way of setting a complex set of arguments
to the factory methods. This is a design pattern that G3D uses for most major
classes. It isn’t the only way of handling complex initialization arguments, but it
is one I’ve come to prefer (you’ll see some of its advantages in the next project).
I think the best way to teach design patterns is to have you just start using them.
You’ll pick up a lot of small programming tricks like this throughout the course
that will be new tools you can later apply to other problems.

http://graphics.cs.williams.edu/courses/cs371 16

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

2. Create a geometric model of a cube. Declare a member variable m_cubeModel
of type ArticulatedModel::Ref. Initialize it with:

ArticulatedModel::Specification modelSpec;
modelSpec.filename = System::findDataFile("cube.ifs");

modelSpec.preprocess.xform = Matrix4::scale(1.0f, 1.0f, 1.0f);
modelSpec.preprocess.setMaterialOverride(Color3(1.0f, 1.0f, 1.0f));

m_cubeModel = ArticulatedModel::create(modelSpec);

3. Pose the cube. Your cube model is centered at the origin and aligned with the
axes. To render it at the desired location, you need to pose it. Posing places a
model at a specific location and reduces it to just the information necessary for
rendering, which for our application infrastructure is an array of surfaces.

The code to pose the cube 1 m along the x-axis and rotate it 45 degrees about
the y-axis in the App::onPose method follows.

void App::onPose
(Array<Surface::Ref>& surfaceArray,
Array<Surface2D::Ref>& surface2D) {

(void)surface2D;
m_cubeModel->pose(surfaceArray, CFrame::fromXYZYPRDegrees(1,0,0, 45,0,0));

}

The word xform is a common graphics abbreviation of “transformation.” That
is the name of the variable, so you have to use it. CFrame is an abbreviation of
CoordinateFrame. That is an alias (typedef), so it is optional if you prefer to
type out really long things.

4. Send the geometry to the graphics card. Most modern computers contain a
general purpose CPU and a dedicated graphics processor, which is also known as
a GPU or graphics card. Part of the graphics card’s memory is dedicated to a data
structure called a framebuffer, which is essentially an image of what should be
displayed on the screen. A circuit on the graphics card continually sends the
framebuffer to the display. To display an image, we therefore need to transfer
information from the CPU to the GPU. We’ll let the G3D library handle most of
this for our first program. Add the following code to App::onGraphics3D:

Draw::skyBox(rd, m_skyBoxTexture, m_skyBoxConstant);

// Draw the surfaces, with appropriate lighting
Surface::sortAndRender(rd, defaultCamera, surface3D, m_lighting);

// Draw the surfaces again in wireframe mode
// so that we can see the mesh.

http://graphics.cs.williams.edu/courses/cs371 17

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

rd->pushState();
{

rd->setRenderMode(RenderDevice::RENDER_WIREFRAME);
rd->setLineWidth(2);
rd->setColor(Color3::black());
Surface::sendGeometry(rd, surface3D);

}
rd->popState();

// Visualize the light sources to help with debugging
Draw::lighting(m_lighting, rd);

In C++, braces have three purposes: they create a local scope, they group a set
of statements into a single statement, and they incidentally trigger indenting in
the editor. Here we’re using them for the trivial purpose of creating indenting.
The indenting helps us to remember to call rd->popState.

There are a lot of things going on in this code that I did not attempt to explain.
What algorithm does the graphics card use to draw the scene? How much of that
algorithm is in the G3D library, how much is in the OpenGL API that G3D uses
to communicate with the graphics card, how much is in the graphics processor?
What are the formats of the cube and sky data files? Why does the image look like
“computer graphics” instead of like a photograph? These are the kinds of questions
we’ll spend the rest of the semester investigating.

4.4 A Scene Data Structure and the Model/Entity Design Pattern
To create a scene with more than one cube we need some data structure that ab-
stracts over the parts. For this project, we use the simplest solution: a class com-
prising the various lighting constants and an array of array of objects. We’ll see
more sophisticated scene data structures soon, but currently have no motivation for
anything more structured than an array.

We also need a better abstraction of the difference between a model and an in-
stance of a model. The Model/Entity design pattern stores the geometric template
common to a class of objects in a model and the information about a particular in-
stance in an entity. Under this pattern, for example, A scene containing thousands
of trees might be represented by a single tree model and many entities that each
reference that shared model and store a unique location and orientation.

1. Create the Entity class. We can use G3D::ArticulatedModel class as our
model class, but you need to create the Entity class. A functioning header and
implementation follow.

http://graphics.cs.williams.edu/courses/cs371 18

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

/**
\file Entity.h
\author Morgan McGuire, morgan@cs.williams.edu

*/
#ifndef Entity_h
#define Entity_h

#include <G3D/G3DAll.h>

/**
\brief An instance of an object in the world.
Contains a single rigid-body frame and never
moves from its initial position.

*/
class Entity : public ReferenceCountedObject {
public:

typedef ReferenceCountedPointer<Entity> Ref;

private:

CFrame m_cframe;
ArticulatedModel::Ref m_model;

/** Called from Entity::create() */
Entity
(const CFrame& cframe,
const ArticulatedModel::Ref& model);

public:

/** \brief Creates new Entity. */
static Ref create
(const CFrame& cframe,
const ArticulatedModel::Ref& model);

/** \brief Appends the surfaces of this entity to \a surfaceArray.
Called from App::onPose(). */

void onPose
(Array<Surface::Ref>& surfaceArray) const;

};

#endif

(CFrame is a shorthand for CoordinateFrame in G3D. You can use them
interchangeably).

http://graphics.cs.williams.edu/courses/cs371 19

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

#include "Entity.h"

Entity::Entity
(const CFrame& cframe,
const ArticulatedModel::Ref& model) :

m_cframe(cframe),
m_model(model) {

}

Entity::Ref Entity::create
(const CFrame& cframe,
const ArticulatedModel::Ref& model) {

return new Entity(cframe, model);
}

void Entity::onPose(Array<Surface::Ref>& surfaceArray) const {
m_model->pose(surfaceArray, m_cframe);

}

Note the C++ colon-syntax for initializing member variables in the constructor.
Think of this as invoking the constructors of the members. You’ll get warnings
if you don’t initialize them in the same order that you declared them (...and I
don’t want to see warnings when I compile your code.)

2. Create the Scene class. You’ve seen an example of a reference-counted C++
class (Entity), and know how to declare and initialize a lighting environment
and objects. Apply that knowledge by creating a Scene class. For this class: Tip: Read the explana-

tion of the Ref pointer

type and create() fac-

tory methods in the C++

section of the Tools docu-

ment.

(a) Make all of the members private and use accessor methods for any that
you require access to from App.

(b) Pass a const std::string& name argument to the factory method.
This will be the name of the scene. For the moment, ignore the name
and always create the single-box scene.

3. Test your Scene class. Your single-box scene should look the same as before,
but there should be significantly less code in the App implementation now.

4.5 The Cornell Box
The Cornell Box is a real-world box at Cornell University that has been long used Tip: Look up G3D’s de-

bugging routines, espe-

cially debugPrintf and

debugAssert.

for photorealistic rendering experiments. The idea is that by constructing a real
scene containing only well-measured geometric primitives, we can create a perfect
virtual replica and then measure rendered results against real photographs. There
have been many variations on the Cornell Box. We’ll model the specific one shown

http://graphics.cs.williams.edu/courses/cs371 20

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

in Figure 4, and estimate the geometry rather than working from measurements
(N.B. the measurements are available on the Cornell web page.)

Figure 4: Photographic reference of the real Cornell Box from http://www.

graphics.cornell.edu/online/box/compare.html.

This Cornell Box can be modeled using seven instances of rotated, translated,
and scaled cubes. When creating your Cornell Box, scale the models, but don’t
rotate and scale them. Instead rotate and translate the entity placement. Were we
animating the scene that design would give us more intuitive control of the objects.
It also lets us reuse objects. For example, all three white walls should be different
entities that use the same model.

1. Specify the scene. In App::onInit, pass m_settings.argArray[1] to the
Scene::create factory method. This will allow us to select the scene to load Tip: Print the scene

name when you load it;

this helps catch typos on

the command line.

from the command line. For example, executing

icompile --run Cornell

will pass the string "Cornell" to your Scene::create method. (Consider
creating a default value or error message so that your program doesn’t crash
mysteriously if you forget the argument!) By the end of this project, you need
to support three arguments: “cube”, “Cornell”, and whatever single-word name
you give your custom scene (discussed later).

2. Model the Cornell Box scene. Write code to create the Entitys and

Figure 5: A rough
approximation of the
Cornell Box model
using seven instances of
cube.ifs.

ArticulatedModels for the Cornell Box. Don’t forget to place the light and
dim the background. We don’t know how to model the “color” of a mirror yet,
so set the mirrored box to be black. You can skip the black card near the ceil-
ing. That was there in the original experiment to avoid lens flare from directly
imaging the light source, since lens flare was not the point of the experiment.

You can chose the scale and need not worry about the precise colors and angles.

http://graphics.cs.williams.edu/courses/cs371 21

http://www.graphics.cornell.edu/online/box/compare.html
http://www.graphics.cornell.edu/online/box/compare.html
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

Ensure that the walls have nonzero thickness. I chose 1 mm walls for a 1 m3

box.

4.6 A Custom Scene
The single cube was my example to show the parameters you can adjust and how
to initialize certain classes. The Cornell Box is a classic rendering test that shows
me that you have sufficient control of the classes to model a given scene. For any
rendering project you’d probably make simple scenes like this as initial targeted
experiments. Then you’d make a more visually compelling scene to demonstrate
that your implementation scales to the complexity of more interesting data sets.

Design a visually impressive scene of your own and model it using cubes, lights,
and a sky box. For example, decided to create the dog shown in Figure 1 (you
should not make the dog–you should make something else.) I’m expecting some-

Tip: Press F4 to take

a screenshot and F6 to

record video in any G3D

program.
thing of about the complexity of my dog. Although you’re welcome to go beyond
that if you enjoy the process, I’m not expecting the Taj Mahal for Project 0; it just
has to be more interesting than the Cornell Box!

If you’re stumped for artistic inspiration, note that legos, Lincoln logs, and most
other building toys, let alone most houses and other buildings are just scaled cubes...

5 The Gallery

Each week I’ll collect everyone’s images and put them on a web page (without
names), so that we can see each other’s work. I’ll show that page in lecture as well.
This is a common practice in art classes. It gives everyone a sense of the standard
of the class and presents new ideas. It is also nice to see the final products of the
projects that you collectively worked on.

But this is not an art course. So why do I require a “visually impressive” image
in every project? Visual communication and presenting your work effectively are
important in any field. Learning how to compose images that read clearly, with
good color palettes, camera positions, overlap, and lines is a valuable skill, and one
that anyone can acquire with practice. We’ll incidentally explore composition in
the context of the images we see throughout the semester in lecture.

In computer graphics in particular, it is important to leverage visual communica-
tion skills to present algorithms in a compelling way. On one hand, we’d like like
algorithms to be judged by quantitative results and analysis. On the other hand, fol-
lowing such analysis is a large investment on the part of the audience, and a single
image can prove that an algorithm is indeed sufficient for a task. As an audience
member, if someone can’t show you a picture demonstrating that his or her algo-
rithm does what you want it to, why would you bother following an analysis of just
how poorly suited it is?

Most computer graphics papers and talks therefore begin with a single, visually
compelling image, often called a teaser. If the teaser grabs you, then you will
investigate the rest of the work to see how well the technique applies under specific
targeted experiments. Those targeted experiments isolate a single phenomenon
and explore how parameters and specific input scenarios affect it. They typically
employ common datasets to allow comparison with previous techniques, the results

http://graphics.cs.williams.edu/courses/cs371 22

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 0: CUBES

of which are often shown side-by-side. Take a look at X and Y.
The same process is also applied outside of pure research in the context of pro-

duction and engineering. Say that a technical director at a film company is inves-
tigating new shadowing methods. He or she would render a few scenes from that
company’s previous film with the new method to show everyone what to expect
from the new algorithms. He or she would then make specific images to investi-
gate the algorithm more carefully. For example, the hard shadow of a single edge
under a point light, the soft shadow of that edge under an area light, shadows from
translucent objects, cast by and on curved surfaces and so on.

All of these images are results, which has a formal meaning in this context. The
process of creating result image must be repeatable and clearly explained. Unless
that is explicitly part of the technique, result images should not be retouched in
tools like Photoshop–the pixels displayed must be the ones that come out of the
program. There are some gray areas of retouching: cropping and gamma correc-
tion for presentation are probably acceptable in most cases; scaling and color ad-
justment should probably be explained. For targeted experiments, the experimenter
should seek to produce a representative image, a best case and a worst case so as to
accurately describe the expected behavior.

References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In

Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.
ref.html.

ROBERTS, A., 2009. Getting to grips with Latex - Mathematics, December. http://www.andy-roberts.
net/misc/latex/latextutorial9.html and http://www.andy-roberts.net/misc/
latex/latextutorial10.html.

VAN HEESCH, D., 2010. Doxygen 1.7.1 manual. http://www.stack.nl/˜dimitri/doxygen/
manual.html.

http://graphics.cs.williams.edu/courses/cs371 23

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://graphics.cs.williams.edu/courses/cs371

Index

App, 18
App.cpp, 12
App.h, 11
App::onInit, 14
App::onPose, 15

Cornell Box, 18

documentation, 3

Emacs, 8
entity, 16

framebuffer, 15

g++, 8
G3D, 11
G3D::CFrame, 15, 17
G3D::CoordinateFrame, 15, 17
G3D::Draw, 13
G3D::FirstPersonManipulator, 13
G3D::RenderDevice::popState, 16
GApp.h, 11
gdb, 9

header file, 11
header guard, 12

iCompile, 9, 10, 13

m lighting, 14
m skyBox, 14
m skyBoxConstant, 14
main(), 11
main.cpp, 8, 11
model, 15, 16

PNG, 4
pose, 14, 15
PowerPoint, 4

report, 3, 4
results, 21

screenshot, 20
shell, 8
sky box, 14
source code, 3
Subversion, 8
surface, 14, 15

typedef, 15

xform, 15

	Introduction
	Overview
	Educational Goals
	Schedule
	Honor Code & Rules

	Specification
	Report

	Evaluation Process and Metrics
	Walkthrough
	Command Line C++ Programming on OS X
	Graphics Programming with G3D::GApp
	One Cube, and the Posing Design Pattern
	A Scene Data Structure and the Model/Entity Design Pattern
	The Cornell Box
	A Custom Scene

	The Gallery

