Corrections as of February 14, 2000 in:
Computability and Complexity from a
Programming Perspective

Neil D. Jones

DIKU, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
E-mail: neil@diku.dk

Global Remarks

e isomorphism = bijection many places!

e Page xiv item 3: bootsrapping = bootstrapping

Chapter 1

e Section 1.5.2 line 1: to be able =

o Page 25 line -2: statemnt = statement

Chapter2
1. Figure 2.1: b b=>b e

2. Page 30, line 3 and line before 2.1.3: remove 3 X ;
Page 32, line -2: Aabbreviation = Abbreviation
Page 33, line 3: atom?cons? =

Page 34: remove 3 x ; after write Y

S ok W

Page 351.11: (d1dy...dp_1dpe1€e3...e) = (d1 dy...dp_q1e1€2...
em)

~

Page 35 1. -10: remove ; after write Y
8. Page 35 1. -5: copy pp of p = copy pp of the body of p

9. Page 40: remove 2 x ; after write Y

10.
11.
12.
13.

14.
15.

Page 41 1. 4: remove 4 X ; after C_’s
Page 34: remove 3 X ; after write Y
Page 42 1. -7: add ; after X := E

Page 43, 1. -11: BUG, since case uses =7 | (Easy to fix, since case only
compares with constants (=7 E d): Expand into a series of if’s testing E,
nested according to the structure of d.)

Page 44, 1. -3: min(|d|,e|) = min(|d|,|e|)

Page 45, rest of exercise 2.6: all wrong, the weight w(d) doesn’t decrease
for some d’s! Solution (thanks Nils!): Define w as follows, using auxiliary
r:

w(d) = |d]—r(d) where
(a) 1 for any atom a
((d;.d2)) = 14r(d2) r(d) = length of right spine of 4

<

r

Exercise: Using this w, find a running time bound on the equality testing
program of Section 2.4.

Chapter 3

1.

© 0 N ok W

10.
11.
12.
13.
14.

Page 48, Definition 3.1.2...Language M can simulate language L if . ..
Just below: Equivalently, M can simulate L iff ...

Footnote, page 48: Recall that Vars = {Vo,Vy,...}.

Page 49, line -9: delete third (.

Page 50, Definition 3.3.1: delete “ = L-data ”.

Page 51, 1 below diagram: change to €.

Page 53, line 2: delete f(p) € T — programs.

Page 53, paragraph above 3.4.1: move to Definition 3.1.1.

Page 54, title of 3.4.2: “interpretation”.

Page 54, line -3: omit semicolons.

Page 55, line -2: omit GOTO.

Page 56, second program, line -3: Replace.

Page 59, Theorem 3.6.2: Language M can simulate language L if ...

Page 61, Figure 3.4, line 3: while Y do ...

15. Page 62, Figure 3.5, line 2: A := hd (t1 A);
16. Page 63, middle: for atom a;, v is the list nil®~2 of { — 2 nil’s.

17. Page 64, Exercise 3.1: replace T-programs by L-programs.

Chapter 4
1. Page 69, Proposition 4.1.1: replace WHILE-programs by WHILE!"® -programs.
2. Page 69, line -6: change to C := hd (t1 P);

Page 69, line -5: change to Cd := (C.nil);

Page 70, Figure 4.1, line 9: cons T U;

Page 70, Figure 4.1, line 11: =7 T U;

Page 70, line -5: “Then” = “Suppose”

Page 72, Figure 4.2, line 6: remove)

© N o o e W

Page 71, Definition 4.2.2: regarded as an I-program = regarded as I-
data

9. Page 74, Exercise 4.1: Prove that for all 1-variable. ..
10. Page 74, Exercise 4.1 and Exercise 4.2: ilvar = ulvar

11. Page 74, Exercise 4.3: last s = d.

Chapter 5
In this chapter ID stands for ID 4 for a fixed A such that

A D {:=,;,while, var, quote, cons, hd, t1,=?,nil}

1. Page 76, Theorem 5.2.1, line 2: and for all s = and for all d
2. Page 76, line -2: ConsExp.

Page 78, line 8: missing “;”.

Page 78, line 12: else branch = write command.

Page 79, Theorem 5.4.2, 2 lines above: = = ~.

Page 79, Theorem 5.4.2: Proof. Assume A is extensional, and both

N oo

Page 80, line -8: o Is the set {d | [p]](d) converges} a finite set? Infinite?

10.

11.
12.
13.
14.
15.
16.

17.

18.

19.
20.

Page 81, line 11: missing write X.
Page 82, line 11: omit .

Page 83 Lemma 5.7.1 Proof.: For simplicity assume the only atom is
nil. (The idea is easily extended to any finite atom set.)

Page 84, line 13: as needed for 2 = sufficient for 2.

Page 85, line 1: then 3 = then 1.

Page 85, line 10: range of A = range of f.

Page 85, program line 3: j = nil.

Page 85, line -2,3: only WHILE and I languages have been.

Page 86, line 1: A set A is recursive (also called decidable) iff there is a
program p that decides the problem z € A7, and terminates on all inputs.

Page 86, Exercise 5.2: Define a WHILE-computable and total function g
satisfying g(p) = not [p]*"(p) any WHILE-forloop-program p. Prove that
g is not computable by any WHILE-forloop-program.

Consequence: the WHILE language cannot be simulated by the WHILE-forloop
language.

Page 87, Exercise 5.14: Let ID be ordered as in Lemma 5.7.1. Show
that an infinite set A can be enumerated in increasing order (i.e., is the
range of an increasing function) if and only if it is decidable.

Page 87, Exercise 5.15: while = WHILE

Page 87, Exercise 5.17: Show that there exists a fized program po such
that determination of whether [po]](d) terminates for d € ID is undecid-
able.

Chapter 6

1.
2.
3.

Page 90, line -7: how fast can an interpreter be

Page 94, line 3: p, we have [[. ..

Page 99, lines 7, 8, 9:

2. Interpretation versus specialization plus execution:

timejpt (p.d) versus timespec(int.p) + timeing,, (4)

If program p is to be run just once...

Page 99, line 12: ison 1 is more fair since ...

© 2° N o o

10.
11.

Page 99, line -5: (int.source) = (spec.int)

Page 100, line -4: in = input

Page 102, line -2: while loop = if statement

Page 105, Figure 6.3, line 3: a(m-1,a(m,n-1))

Page 106, line -7: prameters = parameters

Page 109, Exercise 6.1, line 2: target form t. Line 3: omit last “the”.

Page 109, Exercise 6.3: bootsrapping = bootstrapping

Chapter 7

1.

© ® N o oo W

10.

11.
12.
13.

14.
15.
16.
17.

Page 111 middle: Church-Turing thesis: that all reasonable computation
models are equivalent.

Page 112, line -9: omit “.”

Page 112, line -1: stores = states

Page 113, Definition 7.2.1: Definition 9.1.1 = Definition 2.1.1
Page 113, line -1: I}, = Ip

Page 114, program: remove I from all instruction labels

Figure 7.1: add p | at start of each line; and replace every I/ by I,
Page 116 line -1: X0,X1,...,Xm

Figure 7.3, line 3: 'S = 8'S

Figure 7.3, line -2: If I, = “if S goto ¢' ” =
IfI, = “if S goto ! else (" ”

Figure 7.3, line -1: ¢' = ¢
Figure 7.4, line 3: omit last '

Section 7.4: add at end:

Language 2CM is identical to language CM, except that every program has
exactly two counters.

Page 119, line -6: SRAM = RAM
Page 122, line -6: m = n (twice)
Page 122, line -5: C; = Cy (twice)

Page 122, line -5: add at end: and Cy ~ C4,...,Ch_q1 ~ C,.

18.
19.

20.

Page 123, lines 1,2,3: ¥ = X*

Page 124, Exercise 7.5: Assume z,y are initial values of two different
counters.

Page 124, Exercise 7.6: more than memory cell = more than one mem-
ory cell

Chapter 8

1.

B O

10.
11.

12.
13.
14.

Page 129 bottom: omit last sentence.

Figure 8.4: ¢cp = bin

Figure 8.5, line 3: omit 14. Omit line 4.

Section 8.3.2: omit all except first sentence, defining bin
Section 8.4, line 2: omit first “the”

Section 8.4, everywhere: replace X0 by Acc. Point: to avoidthe redun-
dancy caused by having the value of register 0 on both tape 1 and tape
3.

Page 133, line -4: coipl. = co18(L)

Page 133, line -2: ;I

Page 134, lines 7, -3: else clauses omitted (obvious additions)
Page 135, lines 2,4: n = k

Page 135, line 4:

flx1,...,2x) =y iff g+ 0¢g =* 0 where 6(0) =y
Page 135, line 8: X1 = X0 (4 places)

Page 138, line 6: add Z := 0 at start of line

Page 138, lines 7,8: 2>4 = Z>3

Chapter 9

1
2
3

=~

. Page 137, line -10: omit F,
. Page 137, line -3: omit “partial”
. Figure 9.1, line -2: £(E) = f E

. Figure 9.1, line -2: £[BJu = w = £[B]Bu = w

Page 138, line -8: (append (cons (tl hd Z) (tl Z)))
Figure 9.3: Cd:=hd hd X; = Cd := cons (hd hd X) nil
Figure 9.3, line 6: add X := hd St; before write X

Figure 9.3: var’ X = var’

© »® 3 o w;

Figure 9.3: docon's = docons’

10. Figure 9.3: cons U T = cons T U

11. Several places: ID instead of D.

12. Page 146, line 7: omit “and occurrences of W’

13. Page 146, middle: C; C=C; D

14. Page 146, line -6: omit extra “)”

15. Page 148, line 2: until no redexes occur in the input.
16. Page 148, line 6: if = for all

17. Figure 9.5: this terminates a bit too often.

18. Exercise 9.1: Omit third sentence.

Chapter 10

1. Page 151, line 12: interesction = intersection
Figure 10.1, line 4: start with #L, ::= #Ly
Figure 10.1, line 7: start with Ly# ::= #Ly;
Figure 10.1, line 9: start with Lo# ::= #Lp
Page 156, line 6: omit 2 commas
Page 156, lines 11,12: wrong!

Page 158, line 6: omit u—

S A N

Page 159: the reasoning needs tightening up. Sentence “Further, for ev-
ery...” isn’t clear. Also, ¢ contains #, which isn’t an index.

9. Page 160: needs some reworking.
10. Page 161, lines 15, 16: u; = wv;

11. Page 162, line 10: w;, w4, - . - Ui, = Vi, Viy - - - Vi,

12. Exercise 10.3, line 2: (un,vn) = (uk,vr)

Chapter 11
1. Page 167, quote line 4: rational integers = rational numbers

2. Exercise 11.4: Use the binomial theorem to prove that for all n € IV
and all k € {0,...,n}

(Not so hard, no hint necessary!)

Chapter 12

Sections 12.1, 12.2, 12.4.1 will be given a different and clearer presentation in
the lectures.

1. Page 194, line -6: h is total recursive, = h is total, and computable since
f, g are computable,

2. Page 194, line -3: Define g(d) = f(tl(d)) = Define g(d) = ¢l(f(d))

3. Page 195, lines -3, -4:
2. Each inference rule R, has a type P; X ... X P, — P where ...

4. Page 197, lines -1,-2, page 198, lines 1,2:
Define a proof tree t to be a proof tree form such that every subtree
(nil" d (ni1™ dy...)... (nil™ dg...))
satisfies:

e Each d; is a proof tree; and

e There is a predicate R, C ID* x ID of type P; x ... x P, — P such
that

((dl, .. .,dk),d) € R,
5. Page 199, lines -5, -7: replace F by S

6. Page 201 top: replace by

Expressions. This is by an easy induction on syntax:

Fan(d,d') = d =nil
Frae(d,d) = 3d"(d=(d.d"))
Fae(d,d) = 3d'(d=(d".d))
Fx(d, d') = d=d

F(e1.e2)(d, d') Ir3dsFei(d,r) AFpa(d,s) AN d' = (r.5)

7. Exercise 12.1: omit “first”

Chapter 13
1. Definition 13.2.2: h: IN" — IN |

2. Page 207 middle Part 2: interchange m,n
3. Page 209 line 6: vg = wv;

4. Page 209 displayed equation in item 3:

insg(3) = s iff I, : (£,5) = (¢',s")

Page 209 line -6: g(s) = ...
Page 210, lines , 11: N = DD

Page 210, last line of program: write Y = write New

®» N o

Page 210, line -3, -2: There exist WHILE-computable total functions U :
D —IDDandT: DD x D x ID — ID such that ...

9. Page 211, line 3: add “)” at end

10. Exercise 13.5, paragraph 2: Prove that if f is partial computable, there
exists a partial computable function g with g ~ ey. f(z,y). Hint: use
dovetailing as in Theorem 5.5.1.

Chapter 14
1. Page 223, line -14: ...hence any IT program can be compiled into I.

2. Page 224, Example 2: (Remark: The program uses a version of IT with
sysntax extended as seen in Chapter 2.)

Chapter 15
1. Page 241, line 1: program = problem

2. Page 242, line -13: that that = that

Chapter 16
1. Page 241, line 1: program = problem
2. Page 242, line -13: that that = that

3. Page 249 bottom:

e In WHILE, GOTO and F, the only atom used is nil.
o A fized input set, namely {0,1}* or a subset ...

e In RAM, the input is offline rather than in a register. All registers are
initialized to 0, except that register RO is initialized to the length of

the input.
4. Page 252, lines 1, 5 and -4: L-program q = M-program q
5. Definition 16.4.2: missing one clause
Tlatom=? E]Jo =1+ T[E]c
6. Page 254, line -4: should be
Cko — o', and C;whileEdoC F''™e o/ = ¢/
7. Page 258, line -3: SRAMro = SRAM
Chapter 17

1. Figure 17.3, line 1: wWhere = Where

2. Page 267,line 1: 1 = 0

3. Page 268, line 9: if a; = 0, else = if d; = 0, else

4. Figure 17.5, time ¢t = 8: Hdg should be 1

5. Exercise 17.1: For input-output, let the readin program have two spe-
cial vaiables: eof, which has value true if no more input is left to be read;
and next which, whenever referenced, yields the next input value if any
exists. If there is no remaining input, then execution aborts.

Chapter 18

1. Page 271, line 3: omit “invariant”

2. Page 271, lines 9-11: ...(e.g., the choice to represent ...adjacency lists
should not make a complexity difference)

3. Lemma 18.1.3 end: LINTIME" = LINTIME", and analogously for PTIME
under relations <Ptime =ptime,

4. Page 274, middle: change to
Since an SRAM-program can at most increase any cell Xi by 1 in one step,
none of the values v; can exceed ¢ + n in value (since the initial value of
every cell Xi is 0, excepting X0 which is initialized to n.)

5. Page 274, lines -7, -6: change to

...takes time more than timegM(d) < a-ulogu to simulate, where u =

timeIS)RAM(d) + n. Thus one simulation . ..

10

6. Theorem 18.2.4:

PTIME™ = pTIME®T0 = pTIMESRAM = pTIMEVEILE= pTIME!

7. Page 276 bottom:

LINTIME™ = LINTIME®T? = LINTIMES®™ = LINTIME"E= LINTIME®
8. Page 279, lines -10 to -8:
We shall prove that if
M= (Ea Qaeinitaefina T)

is a 1-tape Turing machine running in time f and € > 0, then there is a
2-tape machine
M= (Ela Qlaegniw IfinaTl)
9. Figure 18.1: remove extra commas in lines (8), (9)
10. Exercise 18.1: program-independent constant-factor slowdown
11. Exercise 18.5: with at most a constant-factor slowdown. Is the slowdown
program-dependent?

Chapter 19
1. Page 288, line -2:

timeg,(p.d.nil™) < k - min(n, time, (d))
2. Page 289, lines -4, -5:
time,(p.d.nil™) < k- timey(d)
timegw (p-dnil™) < k-n
2:

3. Page 292, program line
Timebound := [b(X): (*Insert body of b here *)

4. Definition 19.5.2: ...and a constant ¢ > 0 such that ...
5. Definition 19.5.2 line 3: ... timey,(nil™) < c¢- f(n)

6. Exercise 19.5: This exercise requires a model not yet introduced: the
read-only variants of Section 21.2, page 316.

7. Exercise 19.2: Prove Theorem 19.5.4 for a special case: that there are
problems ...

11

Chapter 20
1. Page 305, line 4: omit “program”

2. Page 305, line -5: ...a function f such that f = [[p] impliesp ¢ @, ...

3. Page 306, line 3 after figure: different from [px]](n) where ...

Chapter 21

1. Page 317 line -8: omit “ =a; as ...a, ”

2. Definition 21.1.10: Extra) in 3 superscripts
Page 322 line 9: should start with (¢,...B;L;S;B...

Proposition 21.6.1item 1: z-y = z—y

ATl

Exercise 21.2: Prove Corollary 21.1.6.

Chapter 22

1. Exercise 22.1: add Hint: “if” is immediate from earlier results since non-
deterministic Turing machines include deterministic ones. For “only if”
modify the pattern of Theorem 13.4.1 to apply to a given nondeterministic
Turing machine.

Chapter 23

1. Figure 23.2 line 6: Counter := n;
2. Figure 23.4 line 11: for k := 1 to r do {
3. Theorem 23.4.3: NSPACE(f) C |, SPACE(b- f?)

4. Exercise 23.2: Estimate the running time of the state transition-searching
algorithm of Theorem 23.3.4.

5. Exercise 23.4: Estimate the running time of the LOGSPACE algorithm of
Theorem 23.3.2 for deciding membership in GAP.

Chapter 24
1. Exercise 24.3: Replace GOTO by GOTOro, and Fro by F+ro.

12

Chapter 25
1. Page 365, line -7: ... may have many hardest problems.

2. Page 367, line -8:
GAP = {(G,v0, Venq) | directed graph G = (V, E) has a path from vertex vg t0 Vena }

3. Proposition 25.3.5: If A is <-hard for D, and A < B, and B € D, then
B is also hard for D.

4. Page 375, lines 15-17: However for this approach to be useful it is necessary
that problem H be well-chosen: simpy stated, and such that it can be
reduced to many interesting problems.

5. Definition 25.6.1: ... timey,(d) < a-|d| for all d € ID.

6. Theorem 25.6.6: ...p is a while-free I-program and p accepts d.

Chapter 26
1. Page 384, line 2: ...and adding 7 + 1 for each

2. Lemma 26.1.5, line 3: remove “p and”
3. Page 385, lines 18, 20 (definitions of H, T): true iff 1 is the ith bit of ...

4. Page 394, line 18: ...any won position p € W is

Chapter 27
1. Page 403, line -11: VertexCover

2. Page 403, line -4: S\C = V\C
3. Page 404, line -10: (u,w) € E

Appendix section A.3.11
1. Item 1: g(n) <r- f(n)

2. Ttem 2: for all but finitely many n, g(n) > r - f(n)

13

