SUBTYPES

Thus far we have assumed that only object types have subtypes, and that
subtypes are formed only by adding new methods to object types. In this
chapter we provide some insight into ways that subtyping can be extended
to more types, and how the subtyping relation on object types can be made
richer.

Recall from Chapter 2 that type S is a subtype of a type T,written 8 <: T, if
an expression of type S can be used in any context that expects an element
of type T. Another way of putting this is that any expression of type S can
masquerade as an expression of type T.

This definition was made more concrete in Chapter 5 by including a Sub-
sumption rule among our type-checking rules for SOOL. Recall that the Sub-
sumption rule states that if S <: T and expression e has type S then e also
has type T. This is in contrast to languages without subtyping in which most
expressions can be assigned a unique type. The subsumption rule thus pro-
vides a mechanism for allowing an expression of a subtype to masquerade
as an element of a supertype.

The support for subtyping provides added flexibility in constructing legal
expressions of a language. For instance, let x be a variable holding values
of type T. If e is an expression of type T, then x := e is a legal assignment
statement. If S is a subtype of T and e’ has type S, then e’ can masquerade
as an element of type T, and hence x := e’ will also be a legal assignment
statement. Similarly an actual parameter of type S may be used in a func-
tion or procedure call when the corresponding formal parameter’s type is
declared to be T. In most pure object-oriented languages, these mechanisms
are supported by representing objects as implicit references, and interpret-
ing assignment and passing parameters as binding new names to existing
objects, i.e.,, as ways of creating sharing.

90

6.1

6.1.1

6 SUBTYPES

How can we determine when one type is a subtype of another? A careful
technical discussion of this topic would take us far afield from the aims of this
text into complex issues of domain theory in denotational semantics. Instead
we will first present intuitive arguments for determining when one type is
a subtype of another. In the last section of this chapter we sketch the basic
ideas behind a model verifying the subtyping rules.

Because the typing of message sends has similarities to typing records of
functions, we begin with examining the simpler cases of record, function,
and array types now, holding off on object types until later. We also include
a discussion of references (i.e., types of variables) here, in order to prepare
for the later discussion of instance variables in objects. The subtyping rules
in the rest of this section are based on those given by Cardelli [Car88].

Subtyping for non-object types

Rather than plunging directly into the study of subtyping for object types, we
instead take a step back and examine how subtyping might apply to typesin
more traditional languages.

Record types

In order to keep the initial discussion as simple as possible, we deal in this
subsection only with immutable (or “read-only”) records of the sort found
in functional programming languages like ML. No operations are available
to update particular fields of these records. While one can create records as
a whole, the only operations which may be applied to record values are to
extract the values of particular fields. We discuss in section 6.1.3 the impact
of allowing updatable fields.

As discussed earlier, records associate values to particular labels. The type
of a record specifies the type of the value corresponding to each label. We
can define the record type

SandwichType = { bread: BreadType; filling: FoodType;|[.
An example of an element of type SandwichType is
s: Sandwich = {| bread = rye; filling = pastrami; [}

Because these records are immutable, the only operations available on s are
the extraction of the bread and £filling fields: s.breadand s.£illing.
Suppose that we are given that CheeseType <: FoodType. Let

6.1 Subtyping for non-object types 91

CheeseSandwichType =
{| bread:BreadType; filling:CheeseType;
sauce: SauceType; [}

and

cs: CheeseSandwich = {| bread = white;
filling = cheddar; sauce = mustard; |}

We claim that CheeseSandwichType <: SandwichType.

In order for elements of CheeseSandwichType to masquerade as ele-
ments of SandwichType, expressions of type CheeseSandwichType need
to support all of the operations applicable to expressions of type Sand-
wichType. Since the only operation available on these records is extracting
fields, it is straightforward to show this. A record cs of type CheeseSand-
wichType has the bread and £illing fields expected of a value of type
SandwichType. Moreover, the results of extracting the bread field from
values of each of the two sandwich types each have type BreadType, and
the result of extracting the £111ing field from arecord of type CheeseSand-
wichType is of type CheeseType, which, by the assumption above, can
masquerade as a value of type FoodType. Thus CheeseSandwichType is
a subtype of SandwichType

Figure 6.1 illustrates a slightly more abstract version of this argument.
In that figure a record r’: {m: S’; n: T’; p: U’; g: V’; [} is mas-
querading as a record of type {| m: S; n: T; p: U; [}. For this mas-
querade to be successful, the value of, for example, the m field of r* must be
able to masquerade as a value of type S. Again, notice that the subtype may
have more labeled fields than the supertype, since the extra fields don’t get
in the way of any of the operations applicable to the supertype.

Thus one record type is a subtype of another if the first has all of the fields
of the second (and perhaps more), and the types of the corresponding fields
are also subtypes. We write this more formally as follows. Let {| 1;: T; [}1<i<n
represent the type of a record with labels 1; of type T; for 1 < i < n. Then,

{| ljZTj|}1San < {| li:Ui|}1§i§k lﬁ[k’ <n andfor all 1 < i< k,T; <UL

By this definition, CheeseSandwichType <: SandwichType.

Again, this rule is appropriate for record values in which the only opera-
tions available are extracting labeled fields. Later we discuss how the sub-
typing rule would change if operations are available to update the fields.

92

6.1.2

6 SUBTYPES
m n m
— » S ——» s’ —» S
n n n
f—ou»- T —> T’ [——» T
r re

p P p
l— U F—» U’ —» U

q

— Vv’

Figure6.1 Avrecordr:{{ms;n:T;p:U;[},andrecordr’: {ms’;n:T*;p:U"; q: V"';
[} masquerading as an element of type { m: 8; n: T; p: U; [}

Figure 6.2 A function f: 8 - T, and £': 8’ — T’ masquerading as having type s
— T.

Function types

The proper definition of subtyping for function types has provoked great
controversy and confusion, so it is worth a careful look. As discussed earlier,
we write 8 — T for the type of functions that take a parameter of type s and
return a result of type T.If (S — T') <: (S — T), then we should be able to
use an element of the first functional type in any context in which an element
of the second type would type check.

Suppose we have a function £ with type s — T. In order to use an element,
fr,of type s’ — T in place of £, the function £’ must be able to accept an
argument of type S and return a value of type T. See Figure 6.2. Because £
is defined to accept arguments of type 8, £ can be applied to an argument,
s, of type sif 8 <: s’.In that case, using subsumption, s can be treated as
an element of type S, making £’ (s) type-correct. On the other hand, if the

6.1 Subtyping for non-object types 93

output of £/ has type T’ then T’ <: T will guarantee that the output can be
treated as an element of type T. Summarizing,

(8" > T)<:(8—>T)iffs<:8 and T' <: T

Again, assuming that CheeseSandwichType <: SandwichType, we get
that

(Integer — CheeseSandwichType)
<: (Integer — SandwichType)

but

(SandwichType — Integer)
<: (CheeseSandwichType — Integer)

Note that in the latter case, if £: SandwichType — Integer, then £ can
be applied to an expression of type CheeseSandwichType, since that ex-
pression can masquerade as being of type SandwichType. The reverse is not
true, since if f: CheeseSandwichType — Integer, it may not be possible
to apply £ to an argument of type SandwichType, as the body of £ may ap-
ply an operation that is only defined for expressions of type CheeseSand-
wichType. For example, if the body of £ attempts to access the sauce field
of the parameter, an execution error would arise if the actual parameter was
of type SandwichType and not CheeseSandwichType.

As in our language SOOL, procedure types may be subtyped as though
they were degenerate function types that always return a default type void.

The subtype ordering of parameter types in function subtyping is the re-
verse of what might initially have been expected, while the output types of
functions are ordered in the expected way. We say that subtyping for pa-
rameter types is contravariant (i.e., goes the opposite direction of the relation
being proved), while the subtyping for result types of functions is covariant
(i.e., goes in the same direction). The contravariance for parameter types can
be initially confusing, because it is always permissible to replace an actual
parameter by another whose type is a subtype of the original. However the
key is that in the subtyping rule for function types, it is the function, nof the
actual parameter, which is being replaced.

Let us look at one last example to illustrate why contravariance is appro-
priate for type changes in the parameter position of functions and proce-
dures. The contravariant rule for procedures tells us that it is possible to
replace a procedure, p, of type CheeseType — void by a procedure, p’,

94

6.1.3

6 SUBTYPES

of type FoodType — void. The procedure p can be applied to any value,
cheese, of type CheeseType. Because CheeseType <: FoodType, the
value cheese can masquerade as an element of type FoodType. As a re-
sult, p’ can also be applied to the value cheese. Thus p’, and indeed any
procedure of type FoodType — void can masquerade as an element of type
CheeseType — void.

Types of variables

Variables holding values of type T have very different properties than values
of type T. Variables holding values of type T (i.e., values of type Ref T) may
be the targets of assignments, while values of type T may be the sources
(right hand sides) of such assignments.

If £v is a variable holding values of type FoodType (i.e., £v has type Ref
FoodType), and apple is a value of type FoodType, then the statement fv
:= apple; is a type-correct statement, whereas apple := fv is clearly
not correct. In this section we show that the types of variables have only
trivial subtypes.

Suppose that CheeseType <: FoodType and cheddar is a value of type
CheeseType. Then fv := cheddar; is type-correct, because we can al-
ways replace a value of type FoodType by a value of a subtype. That is,
using cheddar in a slot expecting a value of type FoodType is safe because
CheeseType <: FoodType.

Suppose cv is a variable holding values of type CheeseType. We noted
above that fv := apple is fine, but if we attempt to replace fv by cv in
the assignment statement to obtain cv := apple, then we obtain a type
error. For instance there may be an operation melt which can be applied
to cheeses but not general foods like apples. Thus an execution error would
result if melt were applied to cv and it held a value, apple, which was not
of type CheeseType. Thus it is not type-correct to replace a variable holding
values of a given type by a variable holding values of a subtype.

In Chapter 5 we defined type Ref T to be the type of a variable which holds
values of type T. As we saw in the example above, the fact that variables
may be the targets of assignments will have a great impact on the subtype
properties (or rather the lack of them) of reference types. In particular, Ref
CheeseType is not a subtype of Ref FoodType, even though CheeseType
<: FoodType.

Suppose we have a variable x* which holds values of type 87 (i.e., x’ is
an expression of type Ref '), that we wish to have masquerade as a vari-

6.1 Subtyping for non-object types 95

able holding values of type S. See Figure 6.3. As indicated earlier, a variable
holding values of type S has two values: an l-value and an r-value. The I-
value is the location corresponding to the variable, while the r-value is the
value of type S actually stored there. In Chapter 5 we introduced the nota-
tion val x for the value stored in x. For example, if n is an integer variable,
the assignmentn := n + 1 in our language with abbreviations stands for
the expanded assignmentn := val n + 1. Thus in the formal language,
two operations are applicable to variables, assignment statements and val
expressions. In the first of these, the variable occurs in a value-receiving
context, while in the second it occurs in a value-supplying context.

The first of the two operations in the figure is represented by the arrow
labeled “val” coming out of the variable (because it supplies a value). Recall
that if x is a variable holding values of type S (i.e., is a value of type Ref 8),
then val xreturns a value of type s.

By the definition of subtype, in order for a variable x* holding values of
type S’ to be able to masquerade as a value of type S in all contexts of this
kind, we need 8 <: 8. This should be clear from the right-hand diagram in
the figure, where in order for x’ to provide a compatible value using the val
operator, we need S’ <: 8.

A value-receiving context is one in which a variable holding values of type
S is the target of an assignment, e.g., a statement of the form x := e, fore
an expression of type S. This is represented in the figure by an arrow labeled
“:=" going into the variable. In this context we will be interpreting the vari-
able as a reference or location (i.e., the I-value) in which to store a value. We
have already seen that an assignment x := eistype safeif the type s of e is
a subtype of the type declared to be held in the variable x. Thus if we wish to
use a variable holding values of type s in all contexts where the right-hand
side of the assignment is a value of type S, we must ensure that s <: s-.
Again this should be clear from the right-hand diagram in the figure.

Going back to the example at the beginning of this section, suppose we
have an assignment statement, cv := cheddar, for cv a variable holding
values of type CheeseType and cheddar a value of type CheeseType. If
fv is a variable holding values of type FoodType, then we can insert fv in
place of cv in the assignment statement, obtaining fv := cheddar. Be-
cause CheeseType <: FoodType, this assignment is legal. However the
assignment cv := apple would nof be legal.

Thus for a variable holding values of type S’ to masquerade as a vari-
able holding values of type S in value-supplying (r-value) contexts we must
haves’ <: s, whileitcan masquerade in value-receiving (l-value) contexts

96

6.1.4

6 SUBTYPES
val ol val
—— ——» s’ —>
X = X’ = =
l«—— S l¢——— S’ f«— S

Figure 6.3 A variable x: Ref S, and x': Ref S’ masquerading as having type Ref
S.

onlyif s <: s’.It follows that there are no non-trivial subtypes of variable
(reference) types. Thus,

Ref S’ <:Ref Siffs’ ~ s,

where S’ ~ s abbreviates s’ <: Sand s <: §. We can think of ~ as defining
an equivalence class of types including such things as pairs of record types
that differ only in the order of fields. It is common to ignore the differences
between such types and to consider them equivalent.

We can get a deeper understanding of the behavior of reference and func-
tion types under subtyping by considering the different roles played by sup-
pliers and receivers of values. Any slotin a type expression that corresponds
to a supplier of values must have subtyping behave covariantly (the same di-
rection as the full type expression), while any slot corresponding to areceiver
of values must have contravariant subtyping (the opposite direction). Thus I-
values of variables and parameters of functions, both of which are receivers
of argument values, behave contravariantly with respect to subtyping. On
the other hand, the r-values of variables and the results of functions, both
of which are suppliers of values, behave covariantly. Because variables have
both behaviors, any changes in type must be simultaneously contravariant
and covariant. Hence subtypes of reference types must actually be equiva-
lent.

Types of updatable records and arrays

This same analysis as for references can lead us to subtyping rules for updat-
able records and arrays. An updatable record should support operations of
the form r.1 := e, which results in a record whose 1 field is e, while the
other fields have the same values as originally. The simplest way to model

6.1 Subtyping for non-object types 97

this with the constructs introduced so far is to represent an updatable record
as a record, each of whose fields represents a reference.!
An updatable record with name and age fields would have type

PersonInfo = { name: Ref String; age: Ref Integer; [}

Thus if Jane has type PersonType, then Jane .name has typeRef String.
Combining the record and reference subtyping rules, it follows that:

I 1:Ref Tjlhicj<n <:{ li:Ref Uilhicick
iffk <nandforall1 <i<k T; ~U.

Thus the subtype has at least the fields of the supertype, but, because the
fields can be updated, corresponding fields must have equivalent types.

Arrays behave analogously to functions. Let ROArray[IndexType] of
T denote a read-only array of elements of type T with subscripts in Index-
Type. This data type can be modeled by a function from IndexType to T.
Thus

ROArray [IndexType’] of S’ <:ROArray [IndexType] of S
iff 8’ <: 8 and IndexType <: IndexType’

Intuitively, the index types of read-only arrays change contravariantly be-
cause, like function parameters, they are value receivers, while the types of
elements of the arrays change covariantly because read-only arrays supply
values of those types, just like function return types.

Of course, arrays in most programming languages allow individual com-
ponents to be updated. We can model Array[IndexType] of T by a
function from IndexType to Ref T. From function and reference subtyping
rules it follows that

Array [IndexType’] of S’ <:Array [IndexType] of S
iff 8 ~ 8 and IndexType <: IndexType’

As before, the index types of arrays change contravariantly, but now the
types of elements of the arrays are invariant because arrays both supply and
receive values of those types.

Java's [AG96] type rules for array types are not statically type-safe. In
Java the type of an array holding elements of type T is written T[1.> The
subtyping rule for array typesin JavaisS'[] <:S[] iff 8’ <:8.

1. In a real implementation, the locations of the fields would be calculated from the location of
the beginning of the record and the size of each field. However this difference has no impact on

the subtyping rules.
2. Javaarray types do not include the type of subscripts.

98

6 SUBTYPES

The following Java class illustrates the problems with this typing rule:

class BreakJava{
C v = new C();
void arrayProb(C[] anArray){
if (anArray.length > 0)
anArray[0] = v; } [/ (* 2 %)

static void main(String[] args){
BreakJdava bj = new BreakJava();
CSub paramArray = new CSub[10];
bj.arrayProb(paramArray) ; // (% 1 %)
paramArray[0] .methodOfCSubOnly(); // (* 3 *)

}

Suppose class CSub extends class C by adding a new method methodofC-
SubOnly. Then the message send of arrayProb to bj at (* 1 *) will result
in a type error because an element, v, of type C should not be assignable to
an element of an array of type CSub[] at (* 1 *). If that assignment were
allowed, then the message send of method0fCSubOnly would fail because
the current value of paramArray[0] would be of type C, and hence not
understand that message at (* 3 *).

If Java used the rule suggested above, a static type error would arise at
statement (* 1 *). Instead, Java would not indicate any type errors at compile
time, but it would insert a dynamic check at line (* 2 *) because of the as-
signment to an array parameter. That dynamic check would fail during the
execution of the messagesend bj.arrayProb (paramArray) atline (*17%).
Thus the message send at line (* 3 *) would never be executed at run-time.

Thus the Java designers compensate for not catching the type error stat-
ically by performing dynamic checks when an individual component of an
array is assigned to. Why did they use this obviously faulty subtyping rule,
when it results in having to add extra code to assignments to array parame-
ters? This extra code in compiled programs results in increased size of pro-
grams and a slowdown in the execution of programs.

One reason Java might have included this faulty rule would be to allow
generic sorts (and similar operations) to be written which could pass the
static type checker. Java programmers can write sort routines which take
elements of type Comparable[], where Comparable is an interface sup-
porting a method compareTo which returns a negative, zero, or positive

6.2

6.2 Object types 99

int depending on whether the receiver is small than, equal to, or larger than
the parameter. Java’s unsafe subtyping rule for arrays allows any array of
elements which implement Comparable to be passed in to such sorts, even
though they are in theory vulnerable to the same errors as illustrated above.
However, the actual code written in these sort routines typically does not
create a dynamic type error. Thus one result of the decision to give up static
type safety by including an “incorrect” subtyping rule for arrays is to make
it easier for programmers to write more flexible programs.’

As we saw in Section 4.1, parametric polymorphism of the sort introduced
in GJ would allow the creation of type-correct generic sorts without the need
for this unsafe rule. Thus we can recapture static type safety and maintain
expressiveness of the language by introducing a richer type system. We will
see other examples of this trade-off later in this text.

Object types

While most popular object-oriented language determine subtyping of object
types based on whether the corresponding classes are subclasses, this iden-
tification of subclass with subtype is not necessary. In this section we deter-
mine subtyping rules for objects which depend only on their public interface
or object type.

The subtyping rules for object types follow from those of records and ref-
erences. From the outside, the only operation available on objects is message
sending. As a result, object types behave like immutable records. The sub-
typing rule is:

ObjectType {|1;:8![t1<j<n <: ObjectType {|1::S;[ti<i<k
iffk <nandforalll <i<k, S;<:8;.

Because the types s} and §; are method types, they are functional types. Sup-
pose S; = T; — U; and 8; = T; — U;. Then by the subtyping rule for function
types, s; <: 8; iff T; <: T; and U} <: U;. That is, object types are subtypes iff
for every method in the supertype there is a method with the same name in
the subtype such that the range types of corresponding methods vary covari-
antly and the domain types vary contravariantly.

3. The reason why this subtyping rule for arrays was included is apparently not as principled.
An implementation hack for arrays resulted in a desire for this subtyping rule [?].

100 6 SUBTYPES

What s the relation between subclasses and subtypes? Most popular object-
oriented languages, like the language SOOL introduced in Chapter 5, allow
no changes to method types in subclasses. This clearly implies that the object
types generated by a subclass-superclass pair are in the subtype relation. We
noted earlier that C++ allows covariant changes to result types in subclasses.
By the above, this also results in subtypes.

Eiffel [Mey92] allows covariant changes to both parameter and result types
of methods in subclasses. This is not statically type safe. While proposals
have been made to add a new type-checking phase at link time (a system
validity check|Mey89]), and more recently a proposal to add checks with an
incremental compiler (the no polymorphic cat-calls proposal[Mey95]), current
Eiffel compilers generate code that can be made to crash because of type er-
rors at run-time. The language Sather [Omo91] allows contravariant changes
to parameter types and covariant changes to return types in subclasses. Thus
it is the most flexible in allowing changes to subclasses so that the resulting
object types are in the subtype relation.

While our focus in this section has been on subtyping, a related interest-
ing question is what kind of restrictions must we have on changing types of
methodsin subclassesif we don’t care whether subclasses generate subtypes.
We examine that question in Chapter 7.

6.3 Subtyping for class types

No non-trival subtypes of class types exist. The possibility of defining sub-
classes and using inheritance is the main impediment to formulating sub-
types. Suppose class C’ of type ClassType(IV',M’) is masquerading as
having type ClassType(IV,M). Let us see what constraints on IV’, IV, M’,
and M follow from this assumption. Of course new C’ generates an object
of type ObjectType M". If C’ is successfully masquerading as an element of
type ClassType(IV,M) then new C’ must have a type which is a subtype
of ObjectType M. Thus we need M’ <: M.

Suppose thesubclassgiven by class inherits C modifies 1,,...,1;
(Iv", M”) is well-typed when C has type ClassType (IV,M). Therefore it
should be well-typed if C is replaced by C’. However any method m of C
could have been overridden with a method of the same type. Because this
must still be legal in the subclass built from C’, all methods in M must have
the same typein M’ (as otherwise the override would have been illegal). Sim-
ilarly M could have no more methods than M as if M’ had an extra method,

m

6.4

6.4 Summary 101

we could define a subclass of ¢ with an added method with an incompa-
rable type from that in M’. Then if we attempted to define a similar sub-
class from C’, we would get a type error in defining the subclass. Thus if
type ClassType (IV',M’) <: ClassType (IV,M) then we must have M’ ~
M. Similar arguments on instance variables can be used to show that IV’ ~
IV. Thus there are no non-trivial subtypes of class types.

Summary

In this chapter, we provided a relatively careful analysis of subtyping. The
subtyping rules for record types included both breadth and depth subtyping.
That is, a subtype of arecord type could include extra labeled fields (breadth)
or could replace the type of one of the existing labeled fields by a subtype
(depth subtyping).

We addressed the famous covariance-contravariance controversy with func-
tion types. We discovered that to avoid problems, only covariant changes
were allowed to return types and only contravariant changes were allowed
to domain types in subtyping function types. Most languages allow no changes
to either domain or range types in subtyping function types, though some al-
low covariant changes in range types. There do not seem to be compelling
examples where contravariant changes in domain types are useful.

We emphasize that the rules provided above can be proved mathemati-
cally to be safe. Languages which allow covariant changes to both range
and domain types (like Fiffel) are not statically type-safe. They either sacri-
fice type safety altogether or require link or run-time checks to regain type
safety.

Reference types (types of variables) allowed no subtyping because objects
of these types can both be used as sources of values (e.g., using the val con-
struct in SOOL) and as receivers of values in assignment statements.

Subtyping for object types followed naturally from the rules for records
and functions. A subtype of an object type can add new methods (width sub-
typing again) or replace the type of an existing method with a subtype (depth
subtyping). By the subtyping rules on function spaces, one may make con-
travariant changes to the domain type of the method and covariant changes
to the return type. Because instance variables (or hidden methods) do not
show up in the public interface of objects, they have no impact on subtyping.

We summarize the subtyping rules for SOOL types in Figure 6.4. For sim-
plicity we presume that there are no subtype relations involving type con-

102

6 SUBTYPES

Reflexive <: ChFT<:T

CHs<:T CFT<:U
CHs<:Uu

Trans <:

CtT, < U foralll <i<k andk <n

Record <:
CH{ lj:Tj|}1§j§n < liIUz’|}1§i§k
Cks;<:8forl <i<n, CFT'<:T
Func <: ; /
CH(81%x...8, 9 T")<:(81X...8, > T)
FMT<:M
Obj < : crur<:m
ClF ObjectType M’ <: ObjectType M
CHC(T")<: C(T
Type Abbrev <: (1) <:C(x)

CFT'<:T

Figure 6.4 Subtyping rules for SOOL

stants. We have also generalized the subtyping rule for function types to
include functions with more than one argument. The domain of a function
with multiple arguments is represented as a product or tuple type. We do
not include separate rules for reference types, class types, or visible object
types as they only have trivial subtypes. The rule Type Abbrev <: takes into
account the type definitions in C, by allowing type expressions to be in the
subtype relation if the subtype relation may be proved after replacing type
variables by their definitions.

In the next chapter we address the impact of our rules for subtyping on
the allowed changes to types of methods and instance variables in defining
subclasses.

