
Design Patterns

With a little help from slides by Bill Pugh et al
at University of Maryland

What are design patterns?

• Design pattern is a problem & solution in context

• Design patterns capture software architectures
and designs

! Not code reuse

! Instead solution/strategy reuse

! Sometimes interface reuse

Elements of Design Patterns

• Pattern Name

• Problem statement ! context where it might be
applied

• Solution ! elements of the design, their relations,
responsibilities, and collaborations.

! Template of solution

• Consequences: Results and trade!o"s

Example: Iterator Pattern

• Name: Iterator or Cursor

• Problem statement

! How to process elements of an aggregate in an
implementation independent manner

• Solution

! Aggregate returns an instance of an implementation of
Iterator interface to control iteration.

Iterator Pattern

• Consequences:

! Support di"erent and simultaneous traversals

! Multiple implementations of Iterator interface

! One traversal per Iterator instance

• requires coherent policy on aggregate updates

! Invalidate Iterator by throwing an exception, or

! Iterator only considers elements present at the time of
its creation

Goals of Patterns

• To support reuse, of

! Successful designs

! Existing code !though less important"

• To facilitate software evolution

! Add new features easily, without breaking existing
ones

• Design for change!

• Reduce implementation dependencies between
elements of software system.

Taxonomy of Patterns

• Creational patterns

! concern the process of object creation

• Structural patterns

! deal with the composition of classes or objects

• Behavioral patterns

! characterize the ways in which classes or objects
interact and distribute responsibility.

Creational Patterns

• Singleton

! Ensure a class only has one instance, and provide a
global point of access to it.

! We used with BinaryTree by not having public constructor for
EmptyBinaryTre#

• Abstract Factory

! Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

! We used something like this in Garden assignment
with newPlant$% method.

Structural Patterns

• Adapter

! Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn#t otherwise because of incompatible interfaces

• Proxy

! Provide a surrogate or placeholder for another object
to control access to it

• Decorator

! Attach additional responsibilities to an object
dynamically

Behavioral Patterns

• Template

! De&ne the skeleton of an algorithm in an operation,
deferring some steps to subclasses

• State

! Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class

• Observer

! De&ne a one!to!many dependency between objects so
that when one object changes state, all its dependents
are noti&ed and updated automatically

Creational Patterns

Abstract Factory

• Context:

! System should be independent of how pieces created
and represented

! Di"erent families of components

! Must be used in mutually exclusive and consistent way

! Hide existence of di"erent families from clients

Abstract Factory !cont."

• Solution:

! Create interface w/ operations to create new products
of di"erent kinds

! Multiple concrete classes implement operations to
create concrete product objects.

! Products also speci&ed w/interface

! Concrete classes for each interface and family of
products.

! Client uses only interfaces

Abstract Factory !cont."

• Examples:

! GUI Interfaces:

• Mac

• Windows XP

• Unix

! Garden:

• Text version

• Graphical version

Abstract Factory Consequences

• Isolate instance creation and handling from
clients

• Can easily change look!and!feel standard

! Reassign a global variable

• Enforce consistency among products in each
family

• Adding to family of products is di'cult

! Have to update factory abstract class and all concrete
classes

Structural Patterns

Proxy Pattern

• Goal:

! Prevent an object from being accessed directly by its
clients

• Solution:

! Use an additional object, called a proxy

! Clients access protected object only through proxy

! Proxy keeps track of status and/or location of
protected object

Uses of Proxy Pattern

• Virtual proxy: impose a lazy creation semantics,
to avoid expensive object creations when strictly
unnecessary. !Getting image $om disk."

• Monitor proxy: impose security constraints on
the original object, say by making some public
&elds inaccessible.

• Remote proxy: hide the fact that an object
resides on a remote location.

Decorator Pattern

• Motivation

! Want to add responsibilities/capabilities to individual
objects, not to an entire class.

! Inheritance requires a compile!time choice of parent
class.

• Solution

! Enclose the component in another object that adds
the responsibility/capability

• The enclosing object is called a decorator.

Decorator Pattern

• A decorator forwards requests to its encapsulated
component and may perform additional actions
before or after forwarding.

• Can nest decorators recursively, allowing
unlimited added responsibilities.

• Can add/remove responsibilities dynamically

Decorator Pattern Consequences

• Advantages

! fewer classes than with static inheritance

! dynamic addition/removal of decorators

! keeps root classes simple

• Disadvantages

! proliferation of run!time instances

! abstract Decorator must provide common interface

• Tradeo"s:

! useful when components are lightweight

Decorator Example

FileReader frdr= new FileReader(filename);

LineNumberReader lrdr =

 new LineNumberReader(frdr);

String line;

line = lrdr.readLine()

while (line != null){

System.out.print(lrdr.getLineNumber() +

 ":\t" + line);

line = lrdr.readLine()

}

Behavioral Patterns

Template Pattern

• Problem

! You#re building a reusable class

! You have a general approach to solving a problem,

! But each subclass will do things di"erently

• Solution

! Invariant parts of an algorithm in parent class

! Encapsulate variant parts in template methods

! Subclasses override template methods

! At runtime template method invokes subclass ops

Observer Pattern

• Problem

! Objects that depend on a certain subject must be
made aware of when that subject changes

• E.g. receives an event, changes its local state, etc.

! These objects should not depend on the
implementation details of the subject

• They just care about how it changes, not how it#s
implemented.

Observer Pattern

• Solution structure

! Subject is aware of its observers $dependents%

! Observers are noti&ed by the subject when something
changes, and respond as necessary

! Examples: Java event%driven programming

• Subject

! Maintains list of observers; de&nes a means for
notifying them when something happens

• Observer

! De&nes the means for noti&cation $update%

Observer Pattern
class Subject {

private Observer[] observers;

public void addObserver(Observer newObs){... }

public void notifyAll(Event evt){

forall obs in observers do

obs.process(this,evt)}

}

class Observer {

public void process(Subject sub, Event evt) {

 ... code to respond to event ...

}

}

Observer Pattern Consequences

• Low coupling between subject and observers

! Subject indi"erent to its dependents; can add or
remove them at runtime

• Support for broadcasting

• Updates may be costly

! Subject not tied to computations by observers

State Pattern

• Problem

! An object is always in one of several known states

! The state an object is in determines the behavior of
several methods

• Solution

! Could use if/case statements in each method

! Better: use dynamic dispatch

State Pattern

• Encode di"erent states as objects with the same
interface.

• To change state, change the state object

• Methods delegate to state object

State Pattern Example
class FSM {

State state;

public FSM(State s) { state = s; }

public void move(char c) {

state = state.move(c); }

public boolean accept() {

return state.accept();}

}

public interface State {

State move(char c);

boolean accept();

}

State Pattern Example
class State1 implements State {

public static State1 instance = new State1();

private State1() {}

public State move (char c) {

switch (c) {

case 'a': return State2.instance;

case 'b': return State1.instance;

default: throw new IllegalArgumentException();}

}

public boolean accept() {return false;}

}

class State2 implements State {

public static State2 instance = new State2();

private State2() {}

public State move (char c) {

switch (c) {

case 'a': return State1.instance;

case 'b': return State1.instance;

default: throw new IllegalArgumentException();}

}

public booleanaccept() {return true;}

}

State Pattern

• Can use singletons for instances of each state
class

! State objects don#t encapsulate $mutable% state, so can
be shared

• Easy to add new states

! New states can implement the State interface, or

! New states can extend other states

• Override only selected functions

Visitor Pattern

• Problem: want to implement multiple analyses on
the same kind of object data

! Spellchecking and Hyphenating Glyphs

! Generating code for and analyzing an Abstract Syntax
Tree $AST% in a compiler

• Flawed solution: implement each analysis as a
method in each object

! Follows idea objects are responsible for themselves

! But many analyses will occlude the objects# main code

! Result is classes hard to maintain

Visitor Pattern

• We de&ne each analysis as a separate Visitor class

! De&nes operations for each element of a structure

• A separate algorithm traverses the structure,
applying a given visitor

! But, like iterators, objects must reveal their
implementation to the visitor object

• Separates structure traversal code from
operations on the structure

! Observation: object structure rarely changes, but often
want to design new algorithms for processing

Visitor Pattern

• One class hierarchy for object structure

! AST in compiler

• One class hierarchy for each operation family,
called visitors

! One for typechecking, code generation, pretty printing
in compiler

Visitor Pattern Consequences

• Gathers related operations into one class

• Adding new analyses is easy

! New visitor for each one

! Easier than modifying the object structure

• Adding new concrete elements is di'cult

! must add a new method to each concrete Visitor
subclass

Visitor Traversal Choices

• Traversal in object structure $typical%

! De&ne operation that performs traversal while
applying visitor object to each component

• Traversal implemented in visitor itself

! E.g., perform processing at this node, then pass visitor
to children nodes.

• Traversal code replicated in each concrete visitor

! External Iterator

Designing with Patterns

• How do you know which patterns to use?

• What if you choose the wrong pattern?

! I.e. your code doesn#t evolve the way you thought it
would.

• What if all your work to make things extensible
via patterns never pays o"?

! I.e. your code doesn#t change in the way you thought it
would.

• Choosing the right pattern implies
prognostication

Designing with Patterns

• Some design patterns are immediately useful

! Observer, Decorator

• Some are not immediately useful, but you think
they might be

! You anticipate changing things later !! prognostication

• Recently popular philosophy: XP

! Design for your immediate needs

! When needs change, redesign your code to match

! Use extensive testing to validate frequent changes

