
1 Introduction

It is often stated that object-oriented programming languages are a major im-

provement over older procedural style languages. If so, why are their static

type systems so poor? Some of the static type systems of object-oriented

languages are too restrictive, resulting in the need for a plethora of type

casts, either checked (as in Java [AGH99]) or unchecked (as in C++ [ES90]).

Others allow programs with type errors to be executed. In some of these

languages the type errors may be caught at run time (as in the language

Beta [KMMPN87]), while in others (like current implementations of Eiffel

[Mey92]) the errors may result in run-time crashes.

In this text we will explore the foundations of object-oriented program-

ming languages. Our purpose in examining the formal underpinnings of

object-oriented languages is to answer questions like the one in the previ-

ous paragraph. This study will help the reader gain deeper insight into the

fundamental concepts of these languages. It will help explain why certain

features are designed the way they are, as well as provide a tool to help

design more expressive, yet statically type-safe, object-oriented languages.

While the first object-oriented language, Simula 67 [BDMN73], was de-

signed and implemented in the mid-60’s, and the Smalltalk [GR83] language

was first introduced in the early ‘70’s, it wasn’t until the advent of C++ in

the mid-’80’s that a large number of programmers and organizations began

adopting object-oriented languages. Even then, many users of C++ simply

used it as a “better C” with support for abstraction. However, programmers

increasingly adopted pure object-oriented languages like Smalltalk, Eiffel,

and, most recently, Java, while an increasing number of C++ programmers

write programs in an object-oriented style.

Why has the object-oriented style become so popular? Certainly no small

part has been played by the tendency of programmers to jump on the latest



4 1 Introduction

“fad” language. However there is real substance behind the reasons for the

increasing use of object-oriented languages. There seem to be clear advan-

tages for the object-oriented style in organizing and reusing software com-

ponents. For example, subtyping and inheritance (notions we will define

more carefully later) seem to make it much easier to adapt and reuse existing

software components.

However, in many ways the quality of object-oriented programming lan-

guages falls short of existing procedural and functional languages. In this

text we will focus on two ways in which they fall short – the shortcom-

ings of type systems and the deficiencies in expressiveness of existing object-

oriented programming languages.

Based on our years of experience in programming (and teaching program-

ming) in traditional procedural languages such as FORTRAN [Bac81], Pas-

cal [Wir71], C [KR78], Modula-2 [Wir85], and Ada [US 80], as well as func-

tional languages like LISP [MAE+65], Scheme [SS75], ML [MTH90], Miranda

[Tur86], and Haskell [HJW92], we are convinced that a strong type system,

especially a statically type-safe system, is a very important tool in imple-

menting reliable programs. Thus it would be highly advantageous to pro-

vide static type systems for object-oriented languages that are of the same

quality as those available for traditional procedural and functional languages,

yet make it easy for the programmer to express his or her algorithmic ideas

in an object-oriented style.

Unfortunately, commercially available object-oriented languages fall far

short of that goal. The static type systems of object-oriented languages tend

to be either insecure or more inflexible than one might desire. In some cases

the rigidity of the type system leads programmers to rely on type casts (some-

times checked at run time, sometimes not) in order to obtain the expressive-

ness desired. In other cases, the type systems are too flexible, requiring the

run-time system to generate link-time or run-time checks to ensure the in-

tegrity of the computation.

1.1 Type systems in programming languages

Type systems in programming languages assign types to all values in a com-

putation. Static type systems also assign type expressions to all expressions

of the language. Operations are provided with type information that deter-

mines to which types of values they may be applied. For example, a con-

catenation operator may be restricted to be applied to pairs of strings. An



1.1 Type systems in programming languages 5

“integer” addition operator may be restricted to be applied only to pairs of

integers. A “real” addition operator (which may be represented by the same

symbol as the “integer” addition operator) may be restricted to be applied

only to pairs of reals. (We treat an overloaded operator symbol or name as

referring to multiple operations rather than a single operation with multiple

typings.)

Programming languages include primitive data types like integers, reals,

booleans, etc., and operations that apply to values of those types. These lan-

guages also provide type constructors that allow programmers to build up

composite or structured data types (e.g., records or structs, arrays, sets, etc.),

as well as providing operations that may construct or be applied to values

of these types. In most languages, these more complex types can be named,

though their structure is visible and accessible to programmers. While more

operations on these types may be designed by the programmer by writing

new functions or procedures, these new operations are built from the primi-

tive operations provided by the language. However, any programmer using

these structured types may take advantage of the built-in operations to access

components of the data structure, by-passing the new operations provided

by the type designer. Thus these new type definitions do not appear like

predefined types – their structure is visible to all.

The introduction of the notion of abstract data type (ADT) [GTW78, Gut77]ABSTRACT DATA TYPE

in the early 1970’s, and its introduction in a number of programming lan-

guages (e.g., Clu [L+81], Modula-2, and Ada) provided programmers with a

mechanism that made it possible to introduce a collection of data type and

value definitions, and operations on those definitions, that behaved more

like a primitive data type.

ADT’s included both a specification and an implementation, which were

usually provided separately. The ADT specification provided a name for the

type and provided specifications, both type and behavioral, for a collection

of operations on the type. The type specification for an operation includes

the types of the parameters, if any, and the return type. We will refer to such

a type specification as the signature of the operation. These specificationsSIGNATURE

were usually packaged together, and provided sufficient information for a

programmer to write programs that used the type. The ADT implementation

provided a representation for the values of the type, typically as a structured

data type, and the implementations of the operations, written as procedures

and functions that were allowed to access the representation of the data type.

Programmers using ADT’s were not allowed access to the implementa-

tion of a data type, thus making it easier to replace one implementation of



6 1 Introduction

an ADT by another. This information hiding was an important feature of theINFORMATION HIDING

use of ADT’s. Early language mechanisms that provided support for ADT’s

included Clu’s clusters, Modula-2’s modules, and Ada’s packages. ML’s sig-

natures and structures later provided similar mechanisms.

Object-oriented languages introduced the notions of classes and objects.

Objects contain both state (values) and methods (operations). The main op-

eration provided for objects is sending a message to an object. Classes provide

both specification and implementation information on objects. Not only are

the names and specifications of methods included in classes, but also repre-

sentation information for the state and methods. Most object-oriented lan-

guages provide mechanisms for allowing the programmer to restrict access

to the representation of the state or methods of objects from clients or sub-

classes in order to support information hiding.

Some object-oriented languages also allow programmers to provide only

specification information on objects. For example, several languages allow

the programmer to provide pure abstract (C++, Java) or deferred (Eiffel) classes.

The programmer simply provides method names and signatures, omitting

all mention of the representation of state and implementations of methods.

Java’s interfaces, while they may have initially been included to provide sup-

port for some aspects of multiple inheritance, provide a clean representation

for this separation of interface and implementation. Several classes with en-

tirely different representations may implement the same interface. A proce-

dure or function whose parameter type is given by an interface can take as

actual parameters objects generated from any class that implements the in-

terface. This promotes a notion of reusability that is essentially independent

of the notions of inheritance and subtyping.

Languages like Ada, Clu, and ML allow the user to define parameterized

types (e.g., Stack(T), Tree(T), etc.). These can be seen as functions that take

types as parameters and return new types. These languages also typically

allow the programmer to define polymorphic functions (functions that take

types as parameters, but return values rather than types). There appears

to be a strong correlation between the increased expressiveness of program-

ming languages and the increasing richness of their type systems.

1.2 Type checking and strongly typed languages

Type systems for programming languages are typically designed to provideTYPE SYSTEM

several important functions. These include:



1.2 Type checking and strongly typed languages 7

• Safety: Type checking of programs should prevent (either at compile or

run time) the execution of certain illegal operations. In Chapter 13 we go

into more detail on which illegal operations type systems are responsible

for preventing. For now, we simply provide the examples of attempting

to add a string to an integer as a type error, and dividing an integer by

zero as a non-type error.

The first is a type error because that operation should never be applied

to two operands, one of which is a string and the other of which is an

integer. The second is not a type error because division is an operation

that is normally applied to pairs of integers. However, when the operation

is applied to certain combinations of values from those types, an error

results. Thus, information on the types of the operands is not sufficient to

determine whether the operation will be erroneous.

• Optimization: Type checking can provide useful information to a compiler

or interpreter. This information can be used to allocate storage for values,

select appropriate code to execute (e.g., for overloaded operations), and

support various optimizations.

• Documentation: Type annotation (or, to a lesser extent, inference) pro-

vides documentation on constructs that make it easier for programmers to

determine how the constructs can or should be used. Of course, the pro-

grammer should provide more than just type information as documenta-

tion, but our experience is that omission of type information significantly

impacts the comprehensibility of code.

• Abstraction: The ability to name types, and, even more importantly, the

ability to hide the implementation of types, allows (even forces) the pro-

grammer to think at a higher level of abstraction in programming. This

hiding of details allows more straightforward modeling of the problem

domain, while making it possible to change the implementation of a type

and its operations without impacting the correctness of programs using

the implementation. Of course, an important reason for changing an im-

plementation is to improve some aspect of the behavior of the program,

but correctness of the program should be dependent only on the specifi-

cation of the provided operations.

Every value generated in a program is associated with a type, either explic-

itly or implicitly. In a strongly typed language, the language implementationSTRONGLY TYPED

LANGUAGE is required to provide a type checker that ensures that no type errors will oc-

cur at run time. For example, it must check the types of operands in order to



8 1 Introduction

ensure that nonsensical operations, like dividing the integer 5 by the string

“hello”, are not performed. Strongly typed languages may either be dynam-

ically or statically type checked. Dynamic type checking normally occurs

during program execution, while static type checking occurs prior to pro-

gram execution, typically at compile time.1 Other type-related checks may

take place at program link time.

In a dynamically typed language like LISP or Scheme, many operations areDYNAMICALLY TYPED

LANGUAGE type checked just before they are performed. Thus the code for a plus op-

eration may have to check the type of its operands just before the addition

is performed. If both operands are integers, then an integer addition is per-

formed. If both operands are floating point numbers or one is floating point

and the other is an integer, then a floating point addition is performed. How-

ever, if one operand is a string and the other is a floating point number, then

execution is terminated with an error message. In some languages an ex-

ception may be raised, which may either be handled by the program before

resuming normal execution or, if there is no handler or no handler can suc-

cessfully execute, the program terminates.

In a statically typed language, every expression of the language is assignedSTATICALLY TYPED

LANGUAGE a type at compile time. If the type system can ensure that the value of each

expression has a type compatible with the statically assigned type of the ex-

pression, then type checking of most operations can be performed at compile

time, rather than delayed to run time.

Dynamically typed programming languages can be more expressive and

flexible than statically typed languages, because the type checking is post-

poned until run time. In general, the problem of determining statically for

an arbitrary program whether a type error will occur at run time is undecid-

able,2, yet it is generally accepted that a static type system should be decid-

able. As a result, sound static type checkers will rule out some programs as

potentially unsafe that would actually execute without a type error.

While the exclusion of safe programs would seem to be a major problem

with static type checking, there are many advantages to having a statically

type-checked language. These include:

• providing earlier, and usually more accurate, information on programmer

errors,

1. For convenience, we will refer to static checks as occurring at compile time, even though

similar checks take place before execution in interpreted as well as compiled languages.
2. We leave it as an exercise for the more sophisticated reader to show this problem can be

reduced to the halting problem. Hint: Have a type error result only if a program that is input as

data halts.



1.2 Type checking and strongly typed languages 9

• eliminating the need for run-time type checks that can slow program exe-

cution and increase program size,

• providing documentation on the interfaces of components (e.g., proce-

dures, functions, and packages or modules), and

• providing extra information that can be used in compiler optimizations.

As a result most modern languages have static type systems.

Procedural languages like Pascal [Wir71], Clu [L+81], Modula-2 [Wir85],

and Ada 83 [US 80], and functional languages like ML [HMM86] and Haskell

[HJW92] have reasonably safe static typing systems. While some of these

languages have a few minor holes in the type system (e.g., variant records in

Pascal), ML, Haskell, CLU, and Ada provide fairly secure type systems.

Programmers used to dynamically type-checked languages may worry

that the use of a static type system will disallow or restrict the use of pro-

grams that can be dynamically determined to be type safe. For example, the

static type system of standard Pascal is so inflexible that it will not allow the

programmer to write a single sort procedure that will work for integer arrays

of different sizes, let alone for arrays of other types like reals or characters.

The language C has a similarly restrictive type system, but provides specific

mechanisms (type casts) to allow the programmer to bypass the static type

system when it gets in the way of the programmer.

However, modern programming languages allow more flexible use of ar-

rays as parameters and often include support for more advanced features,

such as parametric polymorphism, that have increased the expressiveness

of statically typed languages. Examples of statically type-safe, yet flexible,

procedural and functional programming languages include Clu, Modula-2,

Ada, ML, and Haskell.

Unfortunately the situation for static type checking in object-oriented lan-

guages is not as good. The following is a list of some properties of type-

checking systems of some of the more popular object-oriented languages (or

the object-oriented portions of hybrid languages).

• Some provide only dynamic type checks.

Smalltalk

• Some are mainly statically type-safe (if no casts), but inflexible. These lan-

guages often require explicit mechanisms to escape from the type system

(e.g., unsafe type casts) to overcome deficiencies of the type system.

C++, Object Pascal



10 1 Introduction

• Some have very flexible static type systems, but the type systems as im-

plemented are not sound.

Eiffel

• Some are flexible, but need run-time type checks to overcome weaknesses

in static typing.

Beta, Java, Ada95

At the boundary between static and dynamic type systems are several

constructs. Here there may be differences of opinion on what features are

considered to be part of static type systems and which are part of dynamic

systems.

For example, we consider constructs like typecase statements, which

make explicit tests on the run-time type of a value, to be statically type-safe

as long as the execution of such statements cannot give rise to run-time type

errors or system-generated exceptions. An example of the use of such a con-

struct in the language Theta [DGLM94] is given below. Assume the identifier

x is declared with static type S, and assume that T and U are subtypes of S.

typecase x
when T(t): ... t ...
when U(u): ... u ...
others: ... x ...

end;

In this statement, if x’s run-time type is a subtype of T, the value of x will be

denoted by t (which is an identifier with static type T), and the code follow-

ing the first when clause will be executed. Similarly, the code in the second

when clause will be executed (with u denoting the value of x) if the run-time

type is a subtype of U, but not of T. Finally, if the run-time type of x fails to

be a subtype of any of the types listed in the when clauses, then the code in

the others clause will be executed. This is type safe because each of the

branches is required to type check correctly.

No run-time type errors can occur, because if x has a type that is not a

subtype of the types specified in the when clauses, the code in the others
clause will be executed, and it must be type safe for x having static type S.

Eiffel’s “reverse assignment” involves an assignment from an expression

with static type T to a variable whose static type S is a subtype of T. We

consider this to be in the same category as typecase.

Suppose x is declared to have type S, where S is a subtype of T, the static

type of exp. Then the statement



1.2 Type checking and strongly typed languages 11

x ?= exp;

will type check. If the run-time type of exp is a subtype of S, the value of exp
will be stored in the location corresponding to x. However, if the run-time

type of exp fails to be a subtype of S, the value void is assigned to x. Thus in

neither case does a run-time type error or system-generated exception occur.

This reverse assignment can be understood as a very restricted form of

typecase. We can code the reverse assignment above using typecase as

follows:

typecase exp
when S(s): x := s;
others: x := void;

end;

On the other hand, we treat Java’s type cast as not being statically type safe

because the failure of a cast raises a run-time exception.3

As we shall see later, type restrictions on the redefinition of methods in

many object-oriented languages give rise to situations where programmers

often feel the need to by-pass the static type system. Some of these type

restrictions follow from the need to preserve type safety when redefined

methods are used in combination with inherited methods. Other restrictions

are due to the desire to have subclasses always generate subtypes. While

the introduction of bounded parametric polymorphism has helped loosen

some of the rigidities of these languages, programmers of statically typed

object-oriented languages are more likely to feel that static type safety gets

in their way than programmers in statically typed procedural or functional

languages.

As a result, in choosing from existing statically typed object-oriented lan-

guages, programmers are faced with unfortunate choices for overcoming the

deficiencies of the type systems. They may attempt to program around these

deficiencies, use constructs that require dynamic type checking, or use lan-

guages that allow run-time type errors to occur.

We make the case in this book that it is possible to define safe statically

typed object-oriented languages that are sufficiently expressive to obviate the

need for either run-time type checks or ways of escaping the type system.

While borderline features like typecase statements or run-time checked

3. If Java could somehow guarantee that an instanceof check occurred before every type cast,

like typecase statements in some languages, we would consider this to be a statically type-safe

operation.



12 1 Introduction

reverse assignments may occasionally be necessary to handle difficult prob-

lems with heterogeneous data structures, we prefer to have type systems that

allow us to program as naturally as possible, while catching all type errors.

As we shall see in the course of this text, many type problems and rigidi-

ties arise in statically typed object-oriented languages because of the confla-

tion of type with class, and with the mismatch of the inheritance hierarchy

with subtyping. Whatever the cause, there appears to be much room for im-

provement in moving toward a combination of better security and greater

expressiveness in the type systems.

1.3 Focus on statically typed class-based languages

In this text we explore the foundations of object-oriented languages by pay-

ing careful attention to the design of type systems and semantics for object-

oriented languages. We will focus particularly on static type systems for

class-based object-oriented languages.

There are great advantages to using statically typed languages; for exam-

ple in helping programmers find and fix errors more efficiently. On the other

hand, the restrictions on expressiveness can lead programmers to use lan-

guages that are not statically type safe or to find ways of by-passing the type

system when it gets in the way. One of the goals of research in this area has

been to ameliorate these inherent conflicts by designing language constructs

that are both statically type safe and provide increased expressiveness.

Our focus on class-based rather than object-based languages comes from

both practical and conceptual considerations. Class-based languages rely on

classes that form templates for the generation of new objects. Object-based

languages allow programmers to define objects directly, and usually provide

mechanisms, for example prototypes, delegation, and cloning operations, for

the creation of new objects from old. Like all distinctions in computer sci-

ence, there is blurring at the edges between this categorization of languages,

but the distinctions provided by this categorization are useful. (See Section

7.1.1 for a more detailed description of object-based languages.)

Virtually all popular object-oriented languages (e.g., Simula 67, Smalltalk,

Object Pascal, Eiffel, Objective C, C++, Ada95, and Java) are class-based. On

the other hand, object-based languages (e.g., Self, Cecil, and Emerald) tend to

be research languages or are used by relatively small communities. Of course

this popularity is not an indication that class-based languages are necessarily

better, but it does suggest that there may be more interest in achieving a



1.4 Foundations: A look ahead 13

better understanding of class-based languages.

There are also conceptual reasons for preferring to analyze class-based

languages. In class-based languages, classes and objects separate impor-

tant concerns. Classes form extensible templates that can be used to create

new objects. Objects are the fundamental components of computation, with

computation taking place by sending messages to objects. The execution of

methods of an object may update its state (instance variables), but no mecha-

nism is provided to update or add methods to existing objects. In class-based

languages methods in classes may be updated by using the mechanism of in-

heritance to create a new subclass with the updated (or added) method. In

object-based languages, the methods of objects may be updated in place or

(depending on the language) be updated in the creation of a new object based

on the original.

In object-based languages, objects essentially play the role of both classes

and objects in class-based languages. This causes complications in providing

theoretical modeling of these languages, especially in providing support for

method update or addition of methods in objects. At this point, it is hard

to explain the technical reasons for these difficulties without going into a

much more detailed discussion of the modeling of instance variables, meth-

ods, and, particularly, the modeling of self (written this in Java and C++),

a keyword representing the object currently executing a method. We will dis-

cuss some of these difficulties later in Chapter 7; for now we hope the reader

is satisfied with these explanations.

Not all other researchers agree with our views on this topic. For example,

Abadi and Cardelli, in their very influential text, A Theory of Objects [AC96],

argue that objects are more primitive than classes, and that mechanisms other

than classes are useful in generating objects with common properties. More-

over they argue that classes are superfluous because they can be defined in

terms of objects. This allows them to start with a very simple object calculus

and define a variety of mechanisms (including classes) for generating objects.

The associated cost is that it is more complex to model their object calculus

in terms of the lambda calculus or denotational semantics in such a way as

to preserve subtyping. (See Chapter 7 for a comparison.)

1.4 Foundations: A look ahead

We will begin this text by analyzing existing object-oriented programming

languages, paying special attention to their type systems and impediments



14 1 Introduction

to expressiveness. We explore why type systems for these languages include

what may at first seem to be rather arbitrary restrictions, and the conse-

quences of ignoring these restrictions. It will become clear that there are a

number of constructions that programmers would like to be able to express

in these languages, but that are not currently supported in many existing

statically typed object-oriented languages. In some cases, relatively simple

extensions to these languages can greatly enhance expressiveness while pre-

serving type-safety (see the discussion in Chapter 4 of the extension, GJ, of

Java for one example). In other cases, attempts to add expressiveness have

resulted in either type insecurities or the need to add dynamic type checking

(see the discussion of Eiffel in the same chapter).

In Chapters 5 and 6 we examine the definitions of two key features of

object-oriented languages: subtypes and subclasses. In particular we inves-

tigate conditions that guarantee that two types are subtypes. We also look at

restrictions necessary to ensure that inherited methods in subclasses remain

type correct.

We end the first part of the book with a discussion of different kinds of

object-oriented languages (e.g., class-based, object-based, and multi-method

languages) and an examination of statically typed object-oriented languages

Simula 67, Beta, Java, C++, Smalltalk, Eiffel, and Sather with reference to our

model languages and type systems.

In order to support a careful analysis of the type systems and semantics of

object-oriented languages, we will introduce a prototypical object-oriented

language, SOOL, with a simple type system that is similar to those of class-

based object-oriented languages in common use today. After a discussion of

subtypes and subclasses (especially with regard to type restrictions on over-

riding methods), we begin an analysis of the foundations of object-oriented

languages by providing a semantics. The semantics will allow us to precisely

specify the meaning of these languages, enabling a more careful examination

of the rules sufficient to guarantee the type safety of various programming

constructs.

There are many alternatives available for providing the semantics of object-

oriented languages. A denotational semantics would provide a mathemat-

ical specification of meaning. An operational semantics would specify the

meaning of programs by providing instructions for an interpreter that would

execute programs using a very simple virtual machine. One might also pro-

vide an axiomatic semantics that would provide rules for reasoning about

programs. While there are advantages to each of these, and in other situa-

tions we have been quite happy with the provision of an operational seman-



1.4 Foundations: A look ahead 15

tics, we have taken a different approach here.

Our semantics provides the meaning of programming constructs by trans-

lating them to an extended typed lambda calculus. The main advantage of

a typed lambda calculus is its simplicity. The core of the calculus is the rep-

resentation of functions and function application; concepts that are learned

quite early in mathematics courses. While the notation may initially be un-

familiar, the ideas behind the calculus should be familiar to all readers. Also

rather than restricting ourselves to a stripped-down, “pure” lambda calculus,

we add familiar programming constructs such as records, pairs, and refer-

ences. We also extend the lambda calculus with less familiar notions, such

as parametric polymorphism and existential types, that will help to model

parameterized classes and information hiding.

Another advantage of providing a translational semantics based on the

lambda calculus is that these calculi have been studied in great detail over

the years. As a result, rather than providing very detailed and technically

intricate proofs of type soundness and safety, we simply show that our trans-

lation preserves types. This will enable us to lift type soundness and safety

results from the lambda calculus to our object-oriented language. While

soundness and safety proofs are of interest in their own right, our goal here

is to provide explanations of typing issues in object-oriented languages to a

larger audience. Thus we include only the proofs we feel are most necessary

in order to provide convincing evidence that our semantics are correct and

that the type system is safe. As a result, we do not hesitate to base our results

on systems that are intuitively (as well as provably) safe. We provide point-

ers to the literature for readers who are interested in complete proofs from

first principles.

After the introduction to our extended lambda calculus in the second part

of the book (Chapters 8 and 9), we begin the third part of the book with a

careful formal definition of our prototypical language, SOOL. In Chapter

11, we begin the task of modeling the semantics of SOOL. While modeling

of objects and classes will turn out to be rather straightforward, the mod-

eling of subclasses is surprisingly tricky if we hope to preserve type safety.

However, the correct modeling provides an explanation for the difficulties

in type checking methods that arise if we wish to guarantee that inherited

methods remain type safe in subclasses. As one might hope, our modeling of

object-oriented languages will suggest the addition of new constructs to the

language (e.g., MyType) as well as to help us understand the type-checking

rules of object-oriented languages. This modeling leads into one of the most

technical chapters of the text, Chapter 13, in which we prove that the type



16 1 Introduction

system is sound by showing that our semantics preserves typing informa-

tion. We finish this part of the book by adding some common features that

were omitted to simplify the original presentation and proof. These include

references to methods in the superclass, the handling of null references, more

refined information hiding, and multiple inheritance.

In the last part of the book (Chapters 15 through 18) we add desirable

features that are not yet included in many statically typed object-oriented

languages. These new features include parametric polymorphism (includ-

ing what is sometimes known as F-bounded polymorphism), and a MyType
construct. The combination of these features allows us to overcome many

of the expressiveness limitations of existing statically typed object-oriented

languages. We end the book with the sketch of a language that includes the

MyType construct and drops subtyping for a slightly weaker relation, called

matching.

There is much more material that could be included in a text on this sub-

ject. For example, we were tempted to include operational semantics for

object-oriented languages, and we would have liked to include more mate-

rial on virtual types and modules. However, our primary goal is to provide

in a fairly compact form a good introduction to the concerns in designing

safe, yet expressive, object-oriented programming languages. We hope that

the following chapters will successfully achieve this goal. After completing

this text, the reader should be prepared to go to the research literature to find

information on these other topics.


