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Support for distributed application management in large-scale networked envi-

ronments remains in its early stages. Although a number of solutions exist for subtasks

of application deployment, monitoring, and maintenance indistributed environments,

few tools provide a unified framework for application management. Many of the exist-

ing tools address the management needs of a single type of application or service that

runs in a specific environment, and these tools are not adaptable enough to be used for

other applications or platforms. To this end, we present thedesign and implementation

of Plush, a fully configurable application management infrastructure designed to meet

the general requirements of several different classes of distributed applications. Plush

allows developers to specifically define the flow of control needed by their computa-

tions using application building blocks. Through an extensible resource management

interface, Plush supports execution in a variety of environments, including both live

deployment platforms and emulated clusters. Plush also uses relaxed synchronization

primitives for improving fault tolerance and liveness in failure-prone environments. To

gain an understanding of how Plush manages different classes of distributed applica-

tions, we take a closer look at specific applications and evaluate how Plush provides

support for each.
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Chapter 1

Introduction

No one can deny the success of today’s Internet. What startedin the late 1960’s

as a small government-sponsored research project designedto link together four com-

puters across the United States now connects over one billion people worldwide [112].

Further, the applications that run on the Internet have become an integral part of our

lives. The pervasiveness of Internet applications has led to advancements in many as-

pects of our society—including medicine, education, finance, and entertainment—and

these advancements have changed the way we work, learn, play, and share information.

We now manage our investments, make travel arrangements, send email, read breaking

news stories, learn about new medical treatments, hold conference calls, take online col-

lege courses, purchase movies and music, and search the Web directly from applications

running on computers connected to the Internet in our homes and offices.

Most applications deployed on the Internet today, including those previously

mentioned, run simultaneously on thousands or even millions of computers spread

around the world. In general, the goal of thesedistributed applicationsis to connect

users to sharedresources, where we define a resource as any computing device at-

tached to the Internet capable of hosting an application. Bycombining the computing

power and capabilities of distributed resources, applications are able to satisfy the ever-

increasing demand of their users. Some of the most popular distributed applications,

such as Web search engines like Google [44], use over 450,000computers to host their
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service and meet user demand [68]. Additionally, other distributed applications, such as

content distribution networks like CoDeen [79] and Coral [37], rely on the geographic

diversity of hundreds of computers acting as caches to provide users with lower latency

retrieval times for commonly accessed Web content. As the Internet continues to be-

come more pervasive and spreads into more remote parts of ourplanet, the user demand

for these services will increase. To satisfy this demand, the number and geographic

diversity of the computers needed by these services will also continue to grow.

While distributed applications offer many benefits with respect to increased

computing power and geographic diversity, they also introduce new challenges asso-

ciated with managing computations and services running on hundreds or thousands of

computers. For example, consider the task of deploying a distributed application, which

involves installing the required software and starting thecomputation. When running a

computation or service on a single resource, it is easy to download any needed software

and verify that the correct version is installed. However, when running a distributed

application, ensuring that hundreds of computers around the world are all running the

correct version of the required software is a cumbersome andtedious task. This task is

further complicated by the heterogeneity—in terms of both hardware and software—of

the computers hosting the application. The second subtask in deploying an application

after installing any needed software is starting the computation. For applications running

on a single resource, starting an execution is trivial, and usually is a matter of running

a single command. In distributed applications, however, starting a computation requires

synchronizing the beginning of the execution across a distributed set of resources, which

is especially difficult in wide-area settings due to the unpredictable changes in network

connectivity among the resources hosting the application.

In addition to application deployment, there are many otherchallenges in-

volved with keeping an application running in distributed environments, such as failure

detection and recovery. In applications that run on a singleresource, monitoring an

execution and reacting to failures typically consists of watching a single process (or

small set of processes) and addressing any problems that arise. In distributed applica-
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tions, monitoring an execution consists of watching hundreds or thousands of processes

running on resources around the world. If an error or failureis detected among these

thousands of processes, recovering from the problem may require stopping all processes

and restarting them again. The challenges associated with these tasks can be frustrating

to developers, who end up spending the majority of their timemanaging executions and

trying to detect and react to failures, rather than developing new optimizations and en-

hancements for increased application performance. In the remainder of this thesis, we

take a closer look at the challenges associated with managing large-scale distributed ap-

plications, and discuss ways to address the problems that arise in distributed computing

environments.

1.1 Limitations of the Internet

Distributed applications leverage the combined computingpower and avail-

ability of multiple distributed resources to provide better scalability than applications

that run on a single resource. They also can provide better fault tolerance since the

probability of multiple computers failing simultaneouslyis typically less than the prob-

ability of a single computer experiencing a failure. However, merely distributing an

application across several resources does not solve all problems. Internet design deci-

sions made nearly 40 years ago are beginning to limit the potential of many distributed

applications. For example, many Internet applications perform poorly when confronted

with unexpected “flash crowds.” The Internet was not designed to support sudden bursts

of activity, and the ability to handle crowds, particularlyin crisis situations, is essen-

tial in many applications. Currently, the Internet only achieves two to three nines of

availability [51], which translates to more than eight hours of downtime per year. The

telephone system, on the other hand, provides five nines of availability, implying that the

telephone system experiences less than six minutes of downtime per year [9]. Thus, dis-

tributed applications that run on the Internet must provideadditional application-level

support for increased availability. Ideally, a distributed application should provide at
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least as much availability as the telephone system if we are ever to rely on it for time

critical operations.

In addition to availability, the Internet does not provide enough security for

many applications. Malicious users regularly release new worms and viruses that have

the ability to take over personal computers or render them useless [98]. Aside from

worms and viruses, the development of advanced phishing schemes make it difficult

for users to feel safe when performing confidential financialtransactions, and Internet-

based identify theft is becoming a more serious problem eachday [33]. In order for

Internet applications to achieve their maximum potential,users must be able to trust that

the transactions completed online are safe and secure from hackers and thieves. The

current design of the Internet does not provide any capabilities for stopping malicious

users or supporting this level of trust in applications, which can limit the utility of appli-

cations. In order to overcome this limitation, distributedapplications that store sensitive

or confidential information need customized application-level support for security. Ad-

ditionally, applications must take steps to prevent the spread of viruses and worms.

Aside from security, the Internet’s design also makes it difficult to support the

addition and integration of new technologies and devices. Adding new and unconven-

tional resources to the Internet, such as cell phones or wireless sensors, is an error-prone

and unreliable process. One of the main problems is that the Internet does not support

mobility, so non-stationary devices like phones and wireless sensors require additional

functionality that was not originally included in the design of the Internet. Further,

tracking down problems with network misconfigurations or outages is a task we often

still reserve for network engineers or IT (Information Technology) specialists. This is

largely due to the fact that many of the protocols in use todaywere not designed to be

easy to use, and thus the complexity of diagnosing problems or configuring new hard-

ware is often intimidating to users without a background in computer networks. As a

result, distributed applications must provide their own mechanisms and abstractions that

simplify the tasks involved with configuring network devices. The applications should

expose the needed information to help track down problems easier, so that the average
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user need not worry about network-level details in order to successfully connect and

manage their network-capable devices.

1.2 Developing and Evaluating Distributed Applications

The challenges and limitations discussed in the previous section make the de-

velopment and evaluation of new distributed applications difficult. The applications

must provide application-level support for availability,security, and extensibility to ad-

dress the limitations in the Internet’s design. Thus, before releasing a new distributed

application to the public for general use, it must be thoroughly evaluated in realistic con-

ditions to ensure that it achieves the desired levels of performance, availability, security,

and extensibility. Researchers and developers currently exploit three different options

for testing their applications before a public release: simulation, emulation, and live de-

ployment. Each of these evaluation techniques allows developers to test different aspects

of their applications, and in this section, we explore the advantages and disadvantages

of all three approaches.

1.2.1 Simulation

Network simulation is often the first approach used when evaluating a new

distributed application. Some of the common network simulators include ns-2 [76] and

p2psim [60]. Network simulation does not actually involve the network at all, but rather

a set of programs that run on a single computer and simulate the behavior of hosts and

routers connected to a wide-area network. If a developer wishes to test their application

in a simulator, it usually requires rewriting the application code to adhere to the APIs of

the target simulation platform. Since simulation usually only involves a single resource,

deploying and running an application simply involves executing a single command on

the computer hosting the simulator.

One of the main benefits of network simulation is cost. Network simulation

is the most inexpensive way to test a distributed application because typically only one
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computer performs the evaluation. Another advantage of simulation is reproducibility.

The application developer has complete control over the simulated network environ-

ment, and thus running an experiment repeatedly using the same simulated network

conditions yields the exact same results each time. Networksimulators also give users

flexibility with respect to network topologies— application developers can create any

arbitrary topology. Barring processor or memory limitations on the computer hosting

the simulation, topologies scale to large sizes in network simulators as well, since there

are no real network resources to act as the bottleneck. Lastly, another key benefit of sim-

ulation is that it can be used in early stages of application development. For example,

while it may not be worthwhile to deploy an unfinished application on hundreds of com-

puters worldwide to test one aspect of its design, this is feasible and easily accomplished

using a simulator.

Some of the main disadvantages of using a network simulator for testing a

distributed application stem from the fact that there is no real network involved in the

simulation. Thus, it is difficult to accurately model cross traffic, resource contention,

or failures that may occur in the wide-area. As a result, simulation environments limit

the ability of the developer to test the application under realistic network conditions.

Additionally, most network simulators ignore hardware andoperating system proper-

ties, making it challenging to evaluate how the applicationperforms in heterogeneous

computing environments. The most significant disadvantageof simulators is that they

do not run real application code. Hence, the application must be rewritten for the target

simulation platform, which runs the risk of introducing problems that do not exist in the

real code, or worse, masking problems that do exist.

1.2.2 Emulation

Another alternative for evaluating a distributed application is emulation. Some

common and widely-used emulators include ModelNet [103] and Emulab [110]. When

using emulation, computers connected to a local-area network (LAN) emulate the be-

havior of a (potentially) larger set of resources spread across the wide-area. This is
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often accomplished using traffic shaping mechanisms in the network. Thus, when one

computer sends data packets to another in an emulation environment, emulated network

queues subject the individual packets to delay and loss rates that correspond to a wide-

area network topology. In addition, most emulators allow multiple emulated hosts to

reside on the same physical computer. Therefore, using onlya handful of physical com-

puters, developers emulate topologies with several hundred emulated resources. Un-

like simulations, emulation platforms typically support running unmodified application

code. Running an application in an emulated environment involves installing software

and simultaneously starting processes on several hundred emulated resources. This task

is typically made simpler through the use of scripts provided by the emulation platform

for executing parallel tasks across all emulated resources.

In many ways, emulation provides the same benefits as simulation with the

added ability of specifying more variable network conditions, and, most importantly,

the ability to run real application code. Emulated topologies define network links that

take latency, bandwidth, and loss rate into account. Some emulation platforms also pro-

vide mechanisms for injecting cross traffic into the network. Although not as cheap as

simulation, emulation is still relatively inexpensive since a small set of computers can

emulate a large-scale network topology. Like simulation, emulation results are repro-

ducible, and some environments support replaying results at faster or slower speeds for

detailed offline analysis. Emulation environments give developers total control over the

conditions to which their application is exposed, allowingfor a thorough performance

analysis.

The main disadvantage of emulation is that it is difficult to emulate realistic

wide-area network conditions. Although some emulators provide support for injecting

cross traffic into the network, accurately modeling typicalInternet traffic conditions is

still an open area of research. However, recent advances mayaddress this limitation in

the near future. The Emulab project recently developed Flexlab [93], a emulation envi-

ronment that supports integrating a wide variety of networkmodels, including models

obtained directly from real, wide-area networks. Another disadvantage of emulation
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environments in general is that they are sometimes overly reliable and predictable as

compared to volatile wide-area networks, where failures are common and expected.

Scalability can be a limiting factor in emulation, as well, depending on the amount of

resources available for hosting the emulation and the application’s needs with respect

to processor and network capacity. Based on our experiences, however, we believe that

scalability in emulation is usually not a significant problem.

1.2.3 Live Deployment

The third method for evaluating distributed applications is live deployment.

This involves running applications on resources connectedto a “real” network. The

resources are either physical computers or clusters of virtual machines (such as

VMware[107] and Xen [10]), and the network is either a local-area or wide-area net-

work. As in emulation, application code does not have to be modified during live de-

ployment. Running applications in live deployment environments involves installing

software on each machine separately, and simultaneously starting the execution across

all resources. Application-specific scripts and environment-specific toolkits often sim-

plify the task of running applications in live-deployment environments. Some com-

mon live deployment platforms include computational grids[35], local site clusters,

distributed data centers, and PlanetLab [11, 83]. PlanetLab is a collection of over 700

(Linux) computers connected to the Internet at 345 sites in 25 countries. One of the

main design goals of PlanetLab is to enable the introductionof new technologies into

the Internet. PlanetLab exposes many new challenges associated with managing dis-

tributed applications running at scale across volatile wide-area networks, and thus is the

focus of much of the work in this thesis.

One of the biggest advantages of live deployment environments is that the

resources hosting the application are typically connectedto the Internet, automatically

exposing the application to realistic wide-area network conditions. Note that this is not

entirely true in site clusters and clusters of virtual machines that reside on local-area

networks, however, where the network conditions of the LAN may not be representative
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of those seen across the wide-area. In these settings, developers may inject cross traf-

fic using techniques and models similar to those used in emulation. For wide-area live

deployment environments like PlanetLab, computational grids, and distributed data cen-

ters, application developers also benefit from the geographic diversity of the resources.

Perhaps the most important advantage to live deployment is that real software runs on

real machines connected to a real network.

The disadvantages of using live deployment are often discouraging for appli-

cation developers. One problem is that live deployment is expensive. Especially for

wide-area platforms, few researchers have the funding necessary to obtain hundreds or

thousands of resources to spread around the world for testing purposes. Until recently,

live deployment was typically only achieved by companies who could afford to create

distributed data centers for hosting their applications, or at small scales by researchers

who obtained accounts on computers from colleagues at otheruniversities and com-

panies. Fortunately, recent developments have made live deployment more accessible

to a wider range of developers. By pooling together individual resources from many

sites worldwide, shared testbeds like PlanetLab and several computational grids now

allow researchers to run their applications on real machines across the wide-area. In

addition to the cost, another disadvantage is that live deployment does not yield repro-

ducible results. Since live deployment environments subject applications to real Internet

traffic, researchers have little control over the conditions to which their application is ex-

posed, making it difficult to analyze results. Future live deployment environments may

provide ways to address this limitation. For example, GENI is a live deployment en-

vironment that plans to provide a mechanism for resource containment and experiment

reproducibility in a global large-scale testbed [39].

1.2.4 Summary

Simulation, emulation, and live deployment are three different techniques for

deploying and evaluating distributed applications. Each one offers developers a way

to test different aspects of their applications during different stages of its development.
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Thus rather than choosing one technique for evaluation, developers typically use a com-

bination of the three in order to ensure that an application is suited for public release.

For example, simulation is well suited for early development, perhaps even during the

initial design phase. Simulation allows developers to testthe behaviors of protocols in

a controlled and predictable environment. After completing a thorough analysis of pro-

tocol behavior and coming up with an acceptable applicationdesign, most developers

then move on to emulation. Because emulation environments run unmodified appli-

cation code, these platforms are best suited for evaluationduring early code develop-

ment. Emulation affords developers the ability to thoroughly test their implementations

in large-scale predictable settings. Upon the completion of a series of emulation exper-

iments, the code should be in a stable and functional state, and developers should be

confident that their implementation works in the desired way. The last stage of eval-

uation during application development is live deployment.Live deployment arguably

provides the most realistic evaluation conditions, and thus it is important to thoroughly

evaluate an application’s performance using this technique. However, live deployment

is also the least predictable technique, and therefore mostdevelopers complete several

simulation and emulation experiments to gain a full understanding of the behavior of

their application before running across a real network.

1.3 Distributed Application Management Overview

In the preceding section, we discussed the advantages and disadvantages of

simulation, emulation, and live deployment in the context of distributed application de-

velopment and evaluation. In addition to the advantages anddisadvantages previously

discussed, another key tradeoff between these techniques is the complexity of the tasks

associated with managing applications. This complexity islargely dependent on the

amount of control afforded to the developer and the number ofresources in use for

each evaluation technique. In general, it becomes more difficult to manage applications

as the developer’s control of the environment decreases andthe number of resources
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increases. Thus, managing applications during simulationis trivial, since developers

have total control over the environment, and the execution usually only involves a sin-

gle resource. At the opposite end of the spectrum, managing applications during live

deployment can be very complicated, since these platforms offer developers little or no

control over the environment, and also potentially containhundreds of resources spread

around the world.

Although all three evaluation techniques should be used during application

development, in the remainder of this thesis we focus on the challenges associated with

managing distributed applications running on multiple resources in emulation and live

deployment environments. We are especially interested in wide-area live deployment

environments, since they are the least predictable and mostchallenging with respect to

application management. In this context, it is also important to realize that we are inter-

ested in the problems associated with distributed application managementin general—

that is, we are not limiting our work to a single type of distributed application or a single

deployment environment. Instead, we discuss the challenges associated with managing

a broad range of distributed applications running on a variety of computing platforms. In

particular, we consider applications with varying execution times—ranging from com-

putations that last a few minutes or less to services that runfor years—as well as appli-

cations with varying computational demands—ranging from computationally intensive

scientific applications to bandwidth intensive network applications. Chapter 2 discusses

the different types of applications in more detail. In the remainder of this section we give

a high-level overview of the challenges associated with distributed application manage-

ment.

Managing distributed applications involves deploying, configuring, executing,

and debugging software running on multiple computers simultaneously. Particularly

for applications running on resources that are spread across the wide-area, distributed

application management is a time-consuming and error-prone process. After the initial

deployment of the software, the applications must detect and recover from the inevitable

failures and problems endemic to distributed environments. To achieve required levels
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of availability, applications must be carefully monitoredand controlled to ensure contin-

ued operation and sustained performance. Operators in charge of deploying and man-

aging these applications face a daunting list of challenges: discovering and acquiring

appropriate resources for hosting the application, distributing the necessary software,

and appropriately configuring the resources (and re-configuring them if operating con-

ditions change). It is not surprising, then, that a number oftools have been developed

to address various aspects of the process in distributed environments, but no solution

yet flexibly automates the application deployment and management process across all

environments.

Presently, most researchers who want to evaluate their applications in wide-

area distributed environments take one of two management approaches. On PlanetLab,

service operators address deployment and monitoring in anad hoc, application-specific

fashion using customized scripts. Grid researchers, on theother hand, leverage one or

more software toolkits for application development and management. These toolkits

often require tight integration with not only the environment, but the application itself.

Hence, applications must be rewritten to adhere to the specific APIs in a given toolkit,

making it nearly impossible to run the application in other environments. In emula-

tion environments, the management approach largely depends on the platform. Some

emulation environments provide toolkits and web interfaces for manipulating applica-

tions running on emulated resources, while others rely on researchers to write their own

management scripts.

Despite the fact that applications must adhere to specific APIs and are not

easily run in other environments, toolkits such as those commonly used in grid en-

vironments are highly regarded due to their ability to shield developers from the sig-

nificant complexity associated with executing, configuring, and managing large-scale

distributed computations. In particular, grid workflow management systems are espe-

cially popular. These systems allow researchers to providea specification of a dis-

tributed computation—a high-level description of what resources a particular applica-

tion requires, its individual phases of computation, and the dependencies between the
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phases—as part of the application logic that actually implements the computation. In

this manner, developers can avoid “hardwiring” particularconfiguration details such as

the characteristics of individual hosts or network links inthe application itself. To this

point, however, such toolkits have seen little use in non-grid environments like Plan-

etLab or in publicly available emulation environments likeModelNet or Emulab. The

toolkits are closely tied to the grid environments for whichthey were designed, and thus

are not easily extended to support other computing platforms.

1.4 Hypothesis and Goals

Although the resource-specific low-level tasks associatedwith application

management vary in complexity depending on the target environment and number of

resources in use, at a high-level, the goals of application management across all deploy-

ment platforms are largely similar. Thus if we provide a way to help developers cope

with the intricacies of managing different types of resources—ranging from emulated

“virtual” hosts to real physical machines spread around theworld—it should be easy for

them to seamlessly run applications in a variety of environments using the same man-

agement interface. Fundamentally the only elements of the application’s execution that

change are the underlying resources. Similarly, this management interface should not

be tied to a specific application; the interface must be extensible and customizable to

support many different applications. To this end, we believe that a unified set of ab-

stractions for shielding developers from the complexitiesand limitations of networked

environments—including the Internet—can be applied to a broad range of distributed

applications in a variety of execution environments. Theseabstractions help developers

manage and evaluate distributed applications, to ensure that the applications achieve the

desired levels of availability, scalability, and fault tolerance.

The primary goal of this thesis is to understand the abstractions and define

the interfaces for specifying and managing distributed computations run inanyexecu-

tion environment. We are not trying to build another toolkitfor managing distributed
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applications. Rather, we hope to define the way users thinks about their applications,

regardless of their target deployment platform. We took inspiration from classical op-

erating systems like UNIX [95] which defined the standard abstractions for managing

applications: files, processes, pipes, etc. For most users,communication with these

abstractions is simplified through the use of a shell or command-line interpreter. Of

course, distributed computations are both more difficult tospecify, because of hetero-

geneous hardware and software bases, and more difficult to manage, because of failure

conditions and variable host and network attributes. Further, many distributed comput-

ing platforms do not provide global file system abstractions, which complicates the way

users typically manage their data.

As an evaluation of our hypothesis, we present Plush [86], a generic applica-

tion management infrastructure that provides a unified set of abstractions for specifying,

deploying, and monitoring different types of distributed applications in a variety of com-

puting environments. The abstractions in Plush provide mechanisms for interacting with

resources, defining computations and services, and achieving synchronization without

making any strong assumptions about the application or the execution environment.

Plush users describe distributed computations using an extensible application specifica-

tion language. In contrast to other application managementsystems, however, the lan-

guage allows users to customize various aspects of deployment and management based

on the needs of an application and its target infrastructurewithout requiring any changes

to the application itself. Users can, for example, specify aparticular resource discov-

ery service to use during application deployment. Plush also provides extensive failure

management support to automatically detect and adapt to failures in the application and

the underlying infrastructure. Users interact with Plush through a simple command-line

interface or a graphical user interface (GUI). Additionally, Plush exports an XML-RPC

interface for programmatically integrating applicationswith Plush if desired.

In order to verify that our hypothesis is correct, in this thesis we show how

Plush manages applications that fall into three different classes: short-lived computa-

tions, long-lived services, and parallel grid applications. We believe that these classes
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encompass the majority of distributed applications, and byshowing that Plush provides

support for each class, we prove that the abstractions in Plush can in fact be applied

to a broad range of distributed applications. Further, we also show how Plush interacts

with resources from a variety of computing environments without making any strong

assumptions about the underlying infrastructure. In particular we show how Plush sup-

ports execution using virtual resources, emulated resources, and real physical resources.

Lastly, since one of our goals is to develop a framework that other users can apply to

a variety of applications in different environments, we discuss the usability features of

the Plush user interfaces, and summarize feedback receivedfrom various Plush users at

different institutions.

1.5 Contributions

In summary, Plush is an application management framework that provides

extensible abstractions for managing resource discovery and acquisition, software dis-

tribution, and process execution in a variety of distributed environments. Combinations

of Plush application “building blocks” specify a customized control flow for different

types of distributed applications. Once an application is running, Plush monitors the ex-

ecution for failures or application-level errors for the duration of its lifetime. Upon de-

tecting a problem, Plush performs a number of user-configurable recovery actions, such

as restarting the application, automatically reconfiguring it, or even searching for alter-

nate resources. For applications requiring wide-area synchronization, Plush provides

several efficient synchronization primitives. In particular, Plush implements a new set

of barrier semantics designed for increased performance and robustness in failure-prone

environments. Plush users interact with their applications through three different user

interfaces. The remaining chapters that follow describe each of these features in detail.

In particular, this thesis makes the following contributions.

• Chapter 2 distills the general requirements of any distributed application manage-

ment infrastructure. In addition, we identify three different classes of distributed
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applications: short-lived computations, long-lived services, and parallel grid ap-

plications. By outlining the requirements of each of these classes of applications,

we determine the common elements involved with managing distributed applica-

tions. The list of requirements provides motivation for thedesign of Plush. We

conclude Chapter 2 with a discussion of related work.

• Chapter 3 builds on the general requirements outlined in Chapter 2 and discusses

the design and implementation of Plush. The architecture ofPlush consists of

three key components: the application specification, core functional units, and

user interface. The Plush application specification definesa set of application

building blocks that allows users to specify the flow of control for distributed

applications. The core functional units define some of the key abstractions in the

internal design of Plush, including barriers and processes. Plush provides several

different user interfaces for users to interact with their applications, and we discuss

each interface in detail. We also describe how these components work together

to manage distributed applications. In addition, Chapter 3includes a detailed

discussion on fault tolerance and scalability, which are two of the key challenges

in the design and implementation of Plush.

• Chapter 4 details the Plush resource matcher. One of our key design goals in Plush

is to support execution in a variety of environments. In order to achieve this goal,

Plush must provide support for many different types of resources, including Plan-

etLab hosts, virtual machines, and emulated machines. In addition, we discuss the

abstractions that Plush uses to support execution on different types of resources by

interacting with several external resource management frameworks using a com-

mon API. We also describe the process that the Plush resourcematcher uses to

find and maintain the best set of resources available for hosting an application.

• Chapter 5 describes the design and implementation of partial barriers in Plush. A

key challenge when managing applications in potentially volatile, wide-area en-

vironments is ensuring that the applications continue to make forward progress
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in the execution, even in the face of failures. Traditional barrier-based synchro-

nization primitives are too strict to achieve good performance and ensure forward

progress in wide-area environments. Partial barriers relax these traditional syn-

chronization semantics to improve performance across the wide-area. Chapter 5

discusses the relaxations, and explains how Plush uses partial barriers during ap-

plication management.

• Chapter 6 evaluates Plush’s ability to manage different types of applications by

studying several specific distributed applications. In particular, we evaluate ex-

ample applications from multiple classes of distributed applications, as discussed

in Chapter 2. The purpose of Chapter 6 is to show that Plush is effective in pro-

viding useful abstractions for developers to manage their executions, and also to

show how the performance of the applications actually improves due to the fault

tolerance and added reliability mechanisms that Plush provides.

• Chapter 7 describes some potential areas for future work with respect to the de-

velopment of Plush, makes general conclusions about distributed application man-

agement, and discusses some lessons that we learned during the development of

Plush. Chapter 7 also includes several comments about the usefulness of Plush

from users at different institutions around the world.



Chapter 2

Requirements for Managing

Distributed Applications

To better understand the requirements of a distributed application controller,

we first consider how different types of applications are typically run on PlanetLab. We

then use the needs of these applications to distill a list of general requirements that a

distributed application management infrastructure must support.

2.1 Classes of Distributed Applications

We start by describing three distinct classes of distributed applications: short-

lived computations, long-lived Internet services, and parallel grid applications.

2.1.1 Short-lived Computations

One common type of distributed application that runs on PlanetLab is the in-

teractive execution of short computations. The computations range from simple to com-

plex, but many high-level characteristics of the applications are the same. In particular,

the computations only run for a few days or less, and the executions are closely moni-

tored by the user (i.e., the person running the application). To run an application, first

the user finds and gains access to machines capable of hostingthe application. When

18
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running a short-lived application, most users strive to findpowerful machines with good

connectivity at the time when the application is started. After locating suitable ma-

chines, the user installs the required software on the selected hosts, runs the application

to completion, and collects any output files produced for analysis. If an error or failure

is detected during execution, the application is aborted and restarted.

Now we consider a specific scenario that further examines theprocess of run-

ning a short-lived computation in a distributed environment. Suppose a user wants to test

a new file-distribution application on 50 PlanetLab nodes scattered around the world. In

general, file-distribution applications on the Internet are not short-lived. However, sup-

pose that the user is developing a new file-distribution application, and wants to test its

performance (i.e., time required for all hosts to download a specific file) across the wide-

area for files of different sizes. PlanetLab is often used in this manner for testing new

applications before making them publicly available. Before running the application, the

user must gain access to PlanetLab resources. Authentication on PlanetLab is based on

public-key cryptography, and access to PlanetLab machinesis achieved through SSH

login using RSA authentication. To obtain SSH login privileges, the user registers with

PlanetLab Central (PLC) to obtain a user account, and creates an SSH key pair. Af-

ter uploading the public key to the PLC database, the user associates their PLC account

with a specific PlanetLabslice. A slice is a named set of distributed PlanetLab resources,

forming the basis for both resource allocation and isolation on PlanetLab. The user binds

the newly created slice to a number of physical PlanetLab machines (e.g., using a Web

interface), causing the user’s public key to be copied to thenodes and authorizing the

user to login to the machines [25, 85].

After gaining access to PlanetLab resources, the next step is to find a suitable

set of machines scattered around the world to host the application. Resource discovery

tools like SWORD [3, 77] are commonly used to help streamlinethe process on Plan-

etLab. In our example file-distribution application, suppose the user wants 50 machines

with fast processors, low load, and high pairwise availablebandwidth to maximize per-

formance. After finding machines that meet these requirements, the user transfers any



20

required software to the 50 chosen machines. PlanetLab doesnot provide a global file

system, so each machine separately and individually downloads and installs the soft-

ware package. This is accomplished using a file transfer protocol such as scp, wget,

Bullet [56], or CoBlitz [80]. After the machines have been prepared with the software,

the processes are started on all 50 machines by connecting toeach machine separately

via SSH and then executing the appropriate commands. As the execution runs, the user

periodically checks the status of each host to ensure the application runs correctly. After

all hosts have finished downloading the specified file, any remaining processes that did

not cleanly exit are killed, and any desired output or log files that were generated on the

PlanetLab machines are copied to a central location for analysis.

2.1.2 Long-lived Internet Services

Aside from short computations, another type of distributedapplication that

is often run on PlanetLab is a continuously running service.Unlike short-lived appli-

cations, long-running services are not closely-monitored, typically run for months or

even years, and provide a service to the general public. Hence, in addition to the tasks

described above for obtaining and configuring resources forhosting short-lived compu-

tations, service operators must perform additional tasks to maintain the services over

an extended period of time. The environments in which services run change over time,

exposing the applications to a variety of operating conditions. Further, the machines that

host the services are often taken offline for software or hardware upgrades, and therefore

the services must recover from these changes. Some common examples of services in

use today on PlanetLab include CoDeen [79], Coral [37], and OpenDHT [92].

Since operators generally do not closely monitor long running services, detect-

ing failures is difficult. If the operator does not periodically check for errors and users

of the service fail to report outages, it is not uncommon for aproblem to go unnoticed

by the operator for weeks or even months. When running short-lived applications like

the file-distribution example previously described, usersrunning the application quickly

notice when a failure occurs, and often treat the failure as an aberrant condition and
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discard the results of the run. For long-running services, failures are the rule rather than

the exception and, therefore, must be addressed as such. Thus, rather than aborting the

application in response to failure, the operator attempts to detect and recover from the

failure to restore the service as quickly as possible. The ultimate goal of the service

maintainer is to minimize downtime and maximize availability, even when failure rates

are high. Additionally, since services run continuously for long periods of time, it is

likely that the service itself will need to be upgraded to remain compatible with under-

lying operating system features. Hence, supporting software upgrades to the service

itself is another challenge that must be addressed. Ideallythe upgrades will not drasti-

cally impact the service’s availability, although achieving this goal is often difficult.

For example, suppose a service operator wants to deploy a newresource dis-

covery service on PlanetLab. The application aims to run on as many PlanetLab ma-

chines as possible and be highly available to provide accurate information to users of

the service. To deploy such a service on PlanetLab, an operator goes through the same

process as previously described for establishing authentication, adding nodes to a Plan-

etLab slice, finding a suitable set of resources, transferring software, and starting the

executable. However, unlike short-lived applications that often run for short periods of

time on powerful machines with good connectivity,i.e., low-latency and high-bandwidth

connections, services run for months or years, and are subjected to changing network

conditions resulting in machines with slow or lossy connections in addition to more

desirable low-latency, high-bandwidth links. Further, sporadic resource contention on

PlanetLab often leads to saturated machines with low amounts of free memory and avail-

able processor power. Thus, choosing nodes to host an Internet service on PlanetLab

often hinges on avoiding nodes that frequently perform poorly over relatively long time

periods rather than choosing nodes that perform well at any given point in time [91].

Once the service is running, the operator periodically monitors the individual

processes running on each host for failures. One popular service monitoring technique

involves the use of customized scripts or cron jobs that check the status of the appli-

cation at specified intervals in at attempt to automaticallydetect and recover from the
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more common failure conditions, including network outages, hardware failures, operat-

ing system or software incompatibilities, and applicationerrors. Another solution is to

monitor application-generated log files for error information. If a problem is found in a

log file, it may be possible to restart a misbehaving process before a widespread outage

occurs. When a software upgrade to the service is required, the operator has two main

options. First, the user can perform a “hot upgrade” on each machine. During a “hot

upgrade” the service is upgraded without ever stopping the individual processes. If this

is not possible, the second option is to shut the service downon each host, install the

new version of the software, and restart the service as quickly as possible.

2.1.3 Parallel Grid Applications

Though there are many different types of grid applications,one of the most

common usage scenarios for computational grids is harnessing resources at one or more

sites to execute a computationally intensive job. A typicalgrid application involves gath-

ering data from specific sites, and then processing this datausing a compute-intensive

algorithm to produce the desired result. Unlike the file-distribution application previ-

ously described that embraced the geographic diversity of PlanetLab machines, most

grid applications are compute-intensive, and view networkconnectivity and geographic

resource distribution as “necessary evils” to accomplishing their goals [94]. Since grid

applications tend to be compute-intensive, many are designed to be highly parallelizable:

rather than running on a single machine with one or more processors, the computation is

split up and run across several machines in parallel. Parallelization has the potential to

increase the overall performance substantially, but only if each machine involved makes

progress. The rate of completion for individual tasks is often delayed by a few slow

machines or processors. For a researcher running a parallelapplication, maintaining an

appropriate and functional set of machines is crucial to achieving good throughput.

Let us again consider a specific example. Suppose a physicistwants to run

EMAN [66] on PlanetLab. EMAN is a publicly-available software package used for

reconstructing 3-D models of particles using 2-D electron micrographs. The program



23

takes a 2-D micrograph image as input and then runs a “refinement” process on the

image to create a 3-D model of the particle. The refinement process is run repeatedly

until yielding a result with the desired quality. Each iteration of refinement consists of

both computationally inexpensive sequential computations and computationally expen-

sive parallel computations. During this process the original micrographs are distributed

among several machines that simultaneously run the refinement process computations

in parallel. For multiple iterations of refinement, the entire cycle is repeated.

As in the other applications, the researcher running EMAN has to gain ac-

cess to PlanetLab, find suitable resources, distribute the software and data files, install

the software, and start the executables. Unlike the short-lived application or the long-

running service described above, however, the performanceof EMAN is greatly affected

by the computational resources available on the machines hosting the parallel compu-

tations of the refinement process. Thus, with each iterationof the refinement process,

the researcher running the application wants to use the set of PlanetLab machines that

has the most available computational resources. Further, if a machine fails or suddenly

becomes overloaded during execution, the machine should bereplaced by another with

more available resources. Detecting and recovering from these bottlenecks is both diffi-

cult and essential to achieving high performance and throughput1.

2.2 Application Management Requirements

In the preceding section we described the process of executing three different

types of distributed applications. Though the low-level details for managing the applica-

tions are different, at a high-level the requirements for each example are largely similar.

Rather than reinvent the same infrastructure for each application separately, we set out

to identify commonalities across all three classes of distributed applications, and build

an application control infrastructure that supports all types of applications and execution

environments. Based on the example applications in the previous discussion, we now
1In reality, PlanetLab is typically not used for running parallel grid applications like EMAN. Dedicated computa-

tional grids such as NEESgrid [82] and Teragrid [20] are often used instead. We use PlanetLab in this discussion to
provide a better comparison to the previous two example applications.
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Figure 2.1: Basic requirements and control flow for a distributed application controller.

extract some general requirements for a distributed application management infrastruc-

ture. Together, these requirements identify the abstractions needed for defining the flow

of control for any distributed application, as shown in Figure 2.1.

2.2.1 Application Description

A distributed application controller must allow the user tocustomize the flow

of control for each application. Thisapplication specificationis an abstraction that de-

scribes distributed computations. A specification identifies all aspects of the execution

and environment needed to successfully deploy, manage, andmaintain an application.

It describes the resources required, software needed to runthe application (and instruc-

tions for how to install it), processes that run on each resource, and environment-specific

execution parameters. User credentials for resources are also included in the appli-

cation specification. To manage complex multi-phased applications like EMAN, the

specification supports defining application-specific synchronization requirements. Sim-

ilarly, distributing computations among pools of resources requires a way to specify a

workflow—a collection of tasks that must be completed in a given order—within an ap-

plication specification. The application controller parses and interprets the application

specification, and uses the information to guide the flow of control for the remainder of

the application’s life cycle.

The complexity of distributed applications varies greatlyfrom simple, single-

process applications to elaborate, parallel applications. Thus the challenge in building
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a general application management infrastructure is to define a specification language

abstraction that provides enough expressibility for complex distributed applications, but

is not too complicated for single-process computations. Inshort, the language must

be simple enough for novice users to understand, yet also expose enough advanced

functionality to run complex scenarios.

2.2.2 Resource Discovery and Creation

In addition to the application description, another key abstraction in distributed

application management is aresource. Put simply, a resource is any network accessible

device capable of hosting an application on behalf of a user,including physical, vir-

tual, and emulated machines. Because resources in distributed environments are often

heterogeneous, users naturally want to obtain a resource set that best satisfies their ap-

plication’s requirements. In shared computing environments, even if hardware is largely

homogeneous, dynamic characteristics of a host such as available bandwidth or CPU

load can vary over time. The goal of resource discovery in these environments is to find

the bestcurrentset of resources for the distributed application as specified by the user.

In environments that support dynamic virtual machine instantiation, these resources may

not exist in advance. Thus, resource discovery involves finding the appropriate physical

machines to host the virtual machine configurations, and creating the appropriate virtual

machines as needed.

Many solutions exist for resource discovery and creation indistributed en-

vironments. On PlanetLab, services like CoMon [81] and SWORD [3, 77] provide

users with measurements and mechanisms for monitoring and locating hosts that meet

application-specific criteria. Distributed computing environments that support virtual

machines (e.g., Xen [10] and VMWare [107]) leverage virtual machine configuration

and management frameworks such as Shirako [49] and Usher [71] for efficient resource

discovery and creation. A distributed application controller must either provide a de-

fault mechanism for performing resource discovery directly, or it should interface with

these existing external tools. In the latter case, the role of the application control infras-
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tructure is to parse the user’s request for resources, send the request to an appropriate

resource discovery and creation mechanism, and export a common API that allows these

services to add and remove resources from the user’s application resource pool. If the

application control infrastructure provides its own mechanism for resource discovery, it

must provide built-in functionality for finding the best setof available resources without

contacting an outside service.

2.2.3 Resource Acquisition

Resource discovery and creation systems often interact directly with resource

acquisition systems. After locating the desired resourcesduring resource discovery and

creation, resource acquisition involves obtaining a leaseor permission to use the re-

sources. Depending on the application’s target execution environment, resource acqui-

sition can take a number of forms. In best-effort computing environments (e.g., Plan-

etLab), no advanced reservation or lease is required, so no additional steps are needed

to acquire access to the resources. To support advanced resource reservations such as

those used in environments where resources are arbitrated by a batch scheduler, re-

source acquisition involves potentially waiting for resources to become available and

subsequently obtaining a “lease” from the scheduler. In virtual machine environments,

resource acquisition includes verifying the successful creation of virtual machines, and

gathering the appropriate information (e.g., IP address, authentication keys) required for

access. If any failures or problems arise while trying to acquire resources, the applica-

tion controller recontacts the resource discovery and creation mechanism to find a new

set of available resources if necessary.

The challenge facing an application controller is to provide a generic resource-

management interface that supports execution in all computing environments. The com-

plexities associated with creating and gaining access to physical or virtual resources

should be hidden from the user. As the size and popularity of distributed computing

environments continue to grow, the process of acquiring resources will become increas-

ingly more complex. Currently, most large-scale distributed environments are centrally
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managed, so that obtaining access to resources only involves gaining access to a cen-

tral site. This central site acts as a trusted intermediary,and has the ability to grant

access to resources at all other sites [84]. There are scalability limitations to this central-

ized approach, however, and as we move toward more decentralized and distributed ap-

proaches for managing large-scale networked environments, gaining access to resources

may become more complicated and involved. For these reasons, a distributed applica-

tion controller must be extensible enough to support a variety of methods for resource

acquisition.

2.2.4 Application Deployment

Upon obtaining an appropriate set of resources, the application deployment

abstraction defines the steps required to prepare the resources with the correct software

and data files, and run the executables to start the application. There are really two

phases that must be completed during application deployment in the general case. The

first phase prepares the resources for execution. This involves downloading, unpacking,

and installing any required software packages, checking for software dependencies, ver-

ifying correct versions, and basically ensuring that all resources have been correctly con-

figured to run the desired application. Some environments may have a common/global

file system, while others may require each resource to separately download and install

all software packages. As a result, the application controller must support a variety of

file-transfer and decompression mechanisms for each targetexecution environment, and

should react to failures that occur during the transfer and installation of all software.

Common file transfer mechanisms include scp, wget, rsync, ftp, CoBlitz [80], and Bul-

let [56], and common decompression tools include gunzip, bunzip2, and tar. In addition,

to further simplify resource configuration, the application controller must interface with

package management tools such as yum, apt, and rpm.

The second phase of application deployment begins the execution. After the

resources have been prepared with the required software packages, the application con-

troller starts the application by running the processes defined in the application spec-
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ification. One key challenge in the application deployment phase is ensuring that the

requested number of resources are correctly running the application. This often involves

reacting to failures that occur when trying to execute various processes on the selected

resources. In order to guarantee that a minimum number of resources are involved in

a distributed application, the application controller mayneed to request new resources

from the resource discovery and acquisition systems to compensate for failures that

occur during software installation and process execution.Further, many applications

require some form ofloose synchronizationacross resources to guarantee that various

phases of computation start at approximately the same time.Providing synchroniza-

tion guarantees without sacrificing performance in distributed computing environments

is challenging, especially in failure-prone and volatile large-scale networks.

2.2.5 Application Control

Perhaps the most difficult requirement for managing and controlling dis-

tributed applications is monitoring and maintaining an application after it starts. Thus,

another abstraction that the application controller must define is support for customiz-

able application maintenance. One important aspect of maintenance is application and

resource monitoring, which involves probing resources forfailure due to network out-

ages or hardware malfunctions, and querying applications for indications of failure (of-

ten requiring hooks into application-specific code for observing the progress of an ex-

ecution). Such monitoring allows for more specific error reporting and simplifies the

debugging process. The challenges of application maintenance include ensuring appli-

cation liveness across all resources, providing detailed error information, and achieving

forward progress in the face of failures. In order to accomplish these goals, it is desir-

able that the application controller have a user-friendly interface where users can obtain

information about their applications, and if necessary, make changes to correct problems

or improve performance.

In some cases, system failures may result in a situation where application re-

quirements can no longer be met. A robust application management infrastructure must
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be able to adapt to “less-than-perfect” conditions and continue execution. For example,

if an application is initially configured to be deployed on 50machines, but only 48 are

available and can be acquired at a certain point in time, the application controller should

contact the user, and, if possible, adapt the application appropriately to continue exe-

cuting with only 48 machines. Similarly, different applications have different policies

for failure recovery. Some applications may be able to simply restart a failed process

on a single resource, while others may require the entire execution across all resources

to abort in case of failure. Thus, the application controller should support a variety of

options for failure recovery, and allow the user to customize the recovery behaviors sep-

arately for each application. For applications that have strict resource requirements, the

application controller may need to contact the resource discovery, creation, and acqui-

sition subsystems to obtain new resources for hosting the application and recover from

failures.

2.3 Related Work

The functionality required by an application controller asdiscussed in this

chapter is related to work in a variety of areas, ranging fromremote execution tools to

application management systems. In this section we examineseveral projects in these

areas, and discuss the extent to which they fulfill the requirements outlined in the pre-

ceding section. In addition, we also discuss related work that addresses workflow man-

agement, resource discovery, creation, and acquisition, and synchronization, since these

are key components in distributed application management.

2.3.1 Remote Execution Tools

With respect to remote job execution, there are several tools available that pro-

vide a subset of the functionality required for distributedapplication management. In

particular, cfengine [19] is a language-based software configuration system designed to

help system administrators manage networks of machines. The goal is to allow users



30

to describe their configuration requirements in a high-level language, such that a sin-

gle cfengine file will describe the setup of every machine connected to the network.

This saves users from writing customized scripts that attempt to account for the subtle

differences that exist across heterogeneous systems.

gexec [23] and pssh [24] are tools designed to perform remotejob execution

in cluster environments. The goal of both of these projects is to simply run a command

on multiple computers simultaneously. The key difference between pssh and gexec is

that gexec is designed to run mainly in cluster environments, whereas pssh is designed

to run on any set of hosts, including those potentially spread around the world. Rather

than requiring a user to maintain separate connections to each machine, gexec and pssh

transparently manage the underlying connections and execute commands on behalf of

the user. The systems are designed to be robust and scale to over 1000 nodes. vxargs [67]

is a similar tool that extends the functionality provided bypssh by providing a wider

range of supported commands, and also by providing a user interface for monitoring the

execution status of processes.

GridShell [108] and GCEShell [75] are distributed shells designed specifi-

cally for grid-computing environments. GridShell incorporates extensions to the Tenex

C Shell (TCSH) and Bourne Again Shell (BASH) that transparently support distributed

grid-computing operations. GCEShell provides a new set of shell commands that re-

semble common UNIX operations and are actually implementations for remote Web

Services/Open Grid Service Architecture (OGSA) services that are executed on behalf

of the user. Both GridShell and GCEShell support script processing, and aim to provide

a user-friendly interface for managing remote resources.

The difference between these tools and the requirements of adistributed ap-

plication controller is that an application controller requires more functionality than just

remote job execution. An application controller must be robust and provide mechanisms

for failure detection and recovery, as well as automatic reconfiguration due to changing

conditions. Additionally, most of the remote execution tools described above require

scripts and configuration files that specifically define the set of machines on which to
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run commands. A distributed application management infrastructure should support a

variety of different types of resources, and not be tied to a specific set of machines.

2.3.2 Application Management Systems

In addition to remote job execution tools, application management projects

such as the PlanetLab Application Manager (Appmanager) [48] focus specifically on

managing and configuring distributed applications. Appmanager is a tool designed for

use on PlanetLab that helps users maintain distributed applications and services. It uses

a simple client-server architecture, where the central server maintains a database that

stores all pertinent information about the application being run, and the clients are solely

responsible for periodically updating the server with the application’s status. Appman-

ager relies on cron jobs running on the clients for maintaining an application and for

retrieving status updates. There is no user interface for interacting with the clients run-

ning on the remote PlanetLab hosts directly. In order to obtain information about an

individual host, the user views a webpage that is periodically updated by the server and

displays information about each host involved in the application.

HP’s SmartFrog [43] project is a framework for describing, deploying, and

controlling distributed applications. It is written entirely in Java, and consists of a col-

lection of distributed daemons that manage applications and a high-level language that

describes applications. SmartFrog is a not a turnkey solution to application manage-

ment, but rather a framework or API for building configurablesystems. In order to man-

age a distributed application using SmartFrog, the user must write the application such

that it adheres to the SmartFrog API, or at the very least, build a SmartFrog “wrapper”

program around their application. SmartFrog also providesa set of scripts for start-

ing, stopping, and manipulating distributed applicationsrunning remotely, and provides

mechanisms for detecting and recovering from failures.

There are several other commercially available products that perform func-

tions related to application management and configuration.Namely, Opsware [78] and

Appistry [8] provide software solutions for distributed application management. Op-
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sware System 6 allows customers to visualize many aspects oftheir distributed systems,

and automates software management of complex, multi-tiered applications. Appistry

Enterprise Application Fabric strives to deliver application scalability, dependability,

and manageability in grid-computing environments. Both ofthese tools focus more on

enterprise application versioning and package managementaspects of application con-

figuration, and less on providing support for debugging, configuring, and interacting

with experimental distributed systems.

In grid-computing environments, several different projects address various as-

pects of application management, including Condor [18] andGrADS [12]. Condor [18]

is a workload management system for compute-intensive jobsthat is designed to de-

ploy and manage distributed executions in computational grids. Condor is optimized for

leveraging underutilized cycles in desktop machines within an organization where each

job is parallelizable and compute-bound. GrADS [12] provides a set of programming

tools and an execution environment for easing program development in grids. GrADS

focuses specifically on applications with variable resource requirements during execu-

tion and environments with dynamically-changing resources. vGrADS is a project that

is largely based on GrADS. vGrADS aims to accomplish the samegoals as GrADS, but

provides several extensions related to Virtual Grid [53] environments. Both vGrADS

and GrADS were designed to manage compute intensive scientific grid applications

that are highly dependent on using the best resources available to obtain results. Thus,

once an application starts execution, GrADS/vGrADS maintains resource requirements

through a stop/migrate/restart cycle. All of these systemsare similar in that they focus

on maximizing the application’s performance through job migration and rescheduling

in an attempt to use the best resources available.

Lastly, the Globus Toolkit [34] is a framework for building grid systems and

applications, and is perhaps the most widely used software package for grid develop-

ment. Although Globus does not directly manage applications, it does provide several

components that perform tasks related to application management. With respect to an

application specification, the Globus Resource Specification Language (RSL) provides
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an abstract language for describing resources, though it does not provide a mechanism

for describing entire applications. In the context of resource management, the Globus

Resource Allocation Manager (GRAM) processes requests forresources, allocates re-

sources, and manages active jobs in grid environments. LikeSmartFrog, Globus is a

framework that provides many application configuration options, but each application

must be built specifically using Globus APIs to achieve the desired functionality.

Although all of these tools meet many of the requirements described in Sec-

tion 2.2, none of them meetall of the criteria. In particular, these systems provide a

flexible and robust way to manage applications in distributed environments, but most

are lacking the functionality required to interact with applications from a user-friendly

interface. Further, many of these tools are tied to specific computing environments (e.g.,

Appmanager only works on PlanetLab, GrADS only works in grids), therefore limiting

the developer to a specific computing platform for all experimentation and deployment.

A more desirable application controller combines the features of these application man-

agement systems with the flexibility to execute in differentenvironments and the inter-

activity of the remote job execution tools previously described.

2.3.3 Workflow Management

Workflows are a crucial part of many distributed applications, and thus it is

important for an application controller to provide supportfor workflow management. In

this section we investigate some of the projects that address the challenges associated

with managing workflows in grid environments, starting withGridFlow [26]. GridFlow

focuses on service-level scheduling problems. GridFlow users submit grid jobs to a

batch scheduler, and GridFlow uses a fuzzy timing prediction technique to estimate a

quick solution to resource conflict problems that often arise in shared computing en-

vironments. Since the fuzzy time functions in GridFlow are computed quickly, this

technique is well suited to time-critical grid applications.

Kepler [65] is a framework for designing and modeling scientific workflows.

It builds on the functionality provided by Ptolemy II [88], which provides a set of Java
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packages for heterogeneous, concurrent modeling of workflows. Workflows in Ptolemy

II are described using a XML-based language called MoML. Thegoal of Kepler is to

help scientists who do not have programming experience execute scientific workflows in

grid-computing environments. Hence, Kepler provides an intuitive graphical interface

for building workflows rather than requiring an understanding of XML. Although Kepler

provides basic functionality for executing workflows, the project focuses on designing

workflows, rather than dealing with failures and schedulingproblems during execution.

Karajan [106] is part of the Java CoG Kit [105] and is an extensible workflow

management framework. It implements abstractions for easyintegration with a variety

of grid middleware systems including Globus [34] and Condor[18]. Karajan provides

extensions that emphasize scalability, workflow structure, and workflow error handling.

Workflows are described using a XML-based language that supports both conditional

control flows and loops. Karajan supports a simple, non-interactive command-line in-

terface and a graphical user interface that executes basic interactive commands. Like

Kepler, Karajan focuses more on defining complex scientific workflows rather than exe-

cution, although the framework does provide advanced support for application-specific

error handling.

A variety of other tools are described in [116] that have similar goals as Grid-

Flow, Kepler, and Karajan. In general, these tools specialize in managing workflows,

specifically in grid environments. They aim to simplify the task of describing a sci-

entific application that uses a workflow for execution, so that scientists without a pro-

gramming background can make use of grid resources for compute-intensive calcula-

tions. Further, most the the systems are designed to work in an environment where

access to resources is arbitrated by a batch scheduler. A generic distributed applica-

tion controller should provide similar functionality for easily describing workflows and

supporting batch scheduling environments as these systems. However, since we want

to support a variety of distributed applications, additional functionality is required. For

example, it would not be possible for an application developer who wants to manage

a long running service to use Kepler or Karajan to deploy, monitor, and maintain their
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application. When designing a general purpose distributedapplication controller, addi-

tional extensions are needed to manage applications without workflows that are not run

in batch scheduled environments.

2.3.4 Resource Discovery, Creation, and Acquisition

Since resource discovery, creation, and acquisition are important aspects of

distributed application management, it is useful to examine key work in these areas.

Note that an application controller need not implement these functions directly, but

should provide an interface that allows applications to interact with the existing ser-

vices. Instead of completing an exhaustive survey of all work related to resource dis-

covery, acquisition, and creation, we highlight some of themain projects for several

different computing platforms, including grid-computingenvironments, PlanetLab, and

virtual machine environments.

With respect to resource discovery, there are several toolsdesigned for grid

environments that allow users to find appropriate resourcesfor hosting their applica-

tions. Many of these tools are part of larger application management systems that were

previously described. In the Globus Toolkit [34], for example, resource discovery is ac-

complished using the Monitoring and Discovery Service [117]. MDS2 is a framework

that uses a combination of Information Providers (IP) for measuring resource usage,

Grid Resource Information Services (GRIS) for publishing the measurements, and Grid

Index Information Services (GIIS) for aggregating data provided by the GRISes. MDS3

and MDS4 [41] are successors to MDS2 that have similar goals.In general, MDS is

a service that provides mechanisms for finding available resources that meet an appli-

cation’s resource specifications. The vGrADS project also has a tool for performing

resource discovery and acquisition called vgFAB [53]. vgFAB maintains a database

of resource measurements and pre-computes sets of resources that meet certain crite-

ria. Applications managed by vGrADS use vgFAB to “find and bind” to specific virtual

grid resources. In the Condor [18] execution management system, applications and

resource providers use a resource specification language called ClassAds [62] to ad-
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vertise and describe resources. Condor’s matchmaker matches resource advertisements

with requests using mechanisms called GangMatching [90] and SetMatching [63]. Re-

source acquisition in many grid environments involves waiting for a batch scheduler

to grant permission for an application to use some set of resources. Some of the most

commonly used batch schedulers include Sun Grid Engine (SGE) [40], Portable Batch

System (PBS) [87], Maui [70], and Load Sharing Facility (LSF) [64].

On PlanetLab, there has also been a number of efforts that address various

aspects of resource discovery. Since PlanetLab is a best-effort environment, no addi-

tional steps are required to acquire resources. However dueto the high amounts of

resource contention, services such as SWORD [3, 77] provideusers with a way to find

resources that best meet the needs of their application given the current operating con-

ditions. SWORD defines an XML-based resource description language where users

define queries that describe groups of resources with specific per-node (e.g., load) and

inter-node (e.g., latency) properties. In response to user queries, SWORD returns a list

of hostnames organized into groups, and ranked according tohow well they meet the

requested criteria. Similarly, CoMon [81] is a PlanetLab service that measures resource

usage across all PlanetLab nodes. The statistics measured by CoMon are obtained using

a sensor interface on individual PlanetLab hosts, or viewing a central webpage contain-

ing the aggregate of all the collected data for all hosts. Theweb interface also supports

simple queries for hosts that satisfy basic requirements.

The increasing popularity of virtual machine technologieshas led to the de-

velopment of several projects that explore using virtual machines to host network appli-

cations. Shirako [49] is a toolkit for building utility service architectures that is based on

an extensible resource leasing abstraction. It contains animplementation of Cluster-On-

Demand (COD) [22], which is a physical and virtual machine manager that supports the

dynamic creation of multiple independent “virtual clusters” in a single physical clus-

ter. Specifically, users submit requests for virtual clusters of machines with desired

attributes, and COD instantiates a virtual cluster of Xen machines that contain these at-

tributes. Access to the resources is arbitrated by leases issued by Shirako. Usher [71]
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is a related project that focuses on virtual machine scheduling and placement in clus-

ter environments. After a user submits a request for resources, Usher creates virtual

machines and clusters, and then uses information gathered by virtual machine moni-

tors running on physical machines to make decisions regarding the placement of the

virtual machines. Usher hides the complexity of finding physical machines capable of

hosting virtual machines from users. Other similar projects related to virtual machine

creation and management include Sandpiper [111], In-VIGO [1], VMPlants [57], The

Collective [21], Virtual Workspaces [52], and Virtuoso [97].

2.3.5 Synchronization

Synchronization has been studied for many years in the context of parallel

computing, and is an important aspect of distributed application management. For tradi-

tional parallel programming on tightly coupled multiprocessors,barriersare commonly

used to separate phases of computation within an execution,and form natural synchro-

nization points [50]. Given the importance of fast primitives for coordinating bulk syn-

chronous SIMD applications, most massively parallel processors (MPPs) have hardware

support for barriers [59, 96]. Barriers also form a natural consistency point for software

distributed shared memory systems, often signifying the point where data will be syn-

chronized with remote hosts [54, 13]. In addition to shared memory, another popular

programming model for loosely synchronized parallel machines is message passing.

Popular message passing libraries such as PVM [38] and MPI [72] contain implemen-

tations of barriers as a fundamental synchronization service.

One drawback to traditional barriers is that the throughputof the entire execu-

tion is limited by the throughput of the slowest processor. Gupta’s work on SIMD pro-

gramming for tightly coupled parallel processors addresses this limitation using fuzzy

barriers [46]. Gupta’s approach specifies an entry point fora barrier, followed by a sub-

sequent set of instructions that can be executed before the barrier is released. Thus, a

processor is free to be anywhere within a given region of the overall instruction stream

before being forced to block. In this way, processors that complete a phase of compu-
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tation early can proceed to other computations that do not require strict synchronization

before finally blocking. Fuzzy barriers are especially helpful in SIMD programs where

there can only be a single outstanding barrier at any time.

Another use of barriers in distributed application management is to perform

scheduling and load balancing based on barrier arrival rates. A similar technique is

used in Implicit Coscheduling, where the arrival rate at a barrier (and the associated

communication) is one consideration in making local scheduling decisions to approxi-

mate globally synchronized behavior in a multi-programmedparallel computing envi-

ronment [31]. Further, performing load balancing by reallocating work upon arriving at

a barrier is similar to methods used by work stealing schedulers like CILK [17]. The

fundamental difference here is that idle processors in CILKmake local decisions to seek

out additional pieces of work, whereas all decisions to reallocate work in barrier-based

schemes are often made by a central authority or applicationmanager.

Aside from barriers, virtual synchrony [14, 16] and extended virtual syn-

chrony [74] propose communication models for synchronizing large-scale networked

systems. These communication systems closely tie togethernode inter-communication

with group membership services. They ensure that a message multicast to a group is ei-

ther delivered to all participants or to none. Furthermore,they preserve causal message

ordering [58] between both individual messages and changesin group membership. This

communication model is clearly beneficial to a significant class of distributed systems,

including service replication. In the context of distributed application management,

however, we have a more modest goal: to provide a convenient synchronization point to

loosely coordinate the behavior of applications running onresources in volatile environ-

ments. It is important to stress that in this context synchronization is delivered mostly as

a matter of convenience rather than as a prerequisite for correctness. Any inconsistency

resulting from a relaxed synchronization model is typically detected and corrected by the

application, similar to soft-state optimizations in network protocol stacks that improve

common-case performance but are not required for correctness. Other related work in

consistent group membership/view advancement protocols include Harp [61], Cristian’s
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group membership protocol [28], and Golding’s weakly consistent group membership

protocol [42].

The loose synchronization model required for synchronizing computations in

distributed applications running in failure-prone environments is related in spirit to a

variety of efforts into relaxed consistency models for updates in distributed systems, in-

cluding Epsilon Serializability [89], the CAP principle [36], Bayou [101], TACT [115],

and Delta Consistency [102]. All of these projects recognize the need for relaxed se-

mantics to cope with wide-area inconsistencies and volatility.

2.4 Summary

In this chapter we explored the process of managing distributed applications.

By considering three specific examples from different classes of distributed applica-

tions that run on PlanetLab, we attempted to extract a general set of requirements for

application management. We also described related work that addresses remote exe-

cution, application management, workflow management, resource discovery, creation,

acquisition, and synchronization. While the set of requirements outlined in this chapter

are admittedly challenging, in Chapter 3 we describe Plush,a framework that aims to

address these challenges in a streamlined and powerful manner.
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Chapter 3

Design and Implementation of Plush

We now describe Plush, an extensible distributed application controller, de-

signed to address the requirements of large-scale distributed application management

discussed in Chapter 2. To directly monitor and control distributed applications, Plush

itself must be distributed. Plush uses a client-server architecture, with clients running

on each resource involved in the application. The Plush server, called thecontroller,

interprets input from the user and sends messages on behalf of the user over an overlay

network (typically a tree) to Plushclientsas shown in Figure 3.1. The controller, typi-

cally run from the user’s workstation, directs the flow of control throughout the life of

the distributed application. The clients run alongside each application component on re-

sources spread across the network and perform actions basedupon instructions received

from the controller.

Figure 3.2 shows an overview of the Plush controller architecture. Although

we do not include a detailed overview of the client architecture, it is symmetric to the

controller with only minor differences in functionality. The architecture consists of

three main sub-systems: the application specification, core functional units, and user

interface. The application specification describes the application. Plush parses the ap-

plication specification provided by the user and stores internal data structures and ob-

jects specific to the application being run. The core functional units then manipulate

and act on the objects defined by the application specification to run the application.

41
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Figure 3.1: Plush controller connected to clients.

The functional units also store authentication information, monitor resources, handle

event and timer actions, and maintain the communication infrastructure that enables

the controller to query the status of the distributed application on the clients. The user

interface provides the functionality needed to interact with the other parts of the archi-

tecture, allowing the user to maintain and manipulate the application during execution.

In this chapter, we describe the design and implementation details of each of the Plush

sub-systems. (Note that the components within the sub-systems are highlighted using

boldface throughout the text in the remainder of this chapter.)

3.1 Application Specification

Developing a complete, yet accessible, application specification language was

one of the principal challenges in this work. Our approach, which has evolved over the

past two years, consists of combinations of five different “building block” abstractions

for describing distributed applications. As a preview, Figure 3.3 shows a specific ex-

ample application that uses these abstractions. We discussthe details of the application

later. The five block abstractions are as follows:

1. Process blocks- Describe the processes executed on each resource involvedin an

application. The process abstraction includes runtime parameters, path variables,
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Figure 3.2: The architecture of Plush. Theuser interfaceis shown above the rest of
the architecture and contains methods for interacting withall boxes in the lower sub-
systems of Plush. Boxes below the user interface and above the dotted line indicate
objects defined within theapplication specificationabstraction. Boxes below the line
represent thecore functional unitsof Plush.

runtime environment details, file and process I/O information, and the specific

commands needed to start a process on a resource.

2. Barrier blocks - Describe the barriers that are used to synchronize the various

phases of execution within a distributed application.

3. Workflow blocks - Describe the flow of data in a distributed computation, includ-

ing how the data should be processed. Workflow blocks may contain process and

barrier blocks. For example, a workflow block might describea set of input files

over which a process or barrier block will iterate during execution.

4. Component blocks- Describe the groups of resources required to run the appli-

cation, including expectations specific to a set of metrics for the target resources.

For example, on PlanetLab the metrics might include maximumload requirements

and minimum free memory requirements. Components also define required soft-

ware configurations, installation instructions, and any authentication information
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Application BlockApplication Block /app/app

Component Block 1                /app/comp1 

Senders

Process Block 1             /app/comp1/proc1 

prepare_files.pl

Process Block 2              /app/comp1/proc2

join_overlay.pl

Process Block 3              /app/comp1/proc3

send_files.pl

Barrier Block 1             /app/comp1/barr1

bootstrap_barrier

Component Block 2        /app/comp2 

Receivers

Process Block 1           /app/comp2/proc1

join_overlay.pl

Process Block 2 /app/comp2/proc2

receive_files.pl

Barrier Block 1          /app/comp2/barr1

bootstrap_barrier

Figure 3.3: Example file-distribution application comprised of application, component,
process, and barrier blocks in Plush. Arrows indicate control-flow dependencies. (i.e.,
Block x→ Block y implies that Block x must complete before Block y starts.)

needed to access the resources. Component blocks may contain workflow blocks,

process blocks, and barrier blocks.

5. Application blocks - Describe high-level information about a distributed appli-

cation. This includes one or many component blocks, as well as attributes to help

automate failure recovery.

To better illustrate the use of these blocks in Plush, consider building the spec-

ification for the simple file-distribution application as shown in Figure 3.3. This simple

application consists of two groups of resources. One group,the senders, stores the files,

and the second group, the receivers, attempts to retrieve the files from the senders. The

goal of the application is to experiment with the use of an overlay network to send files

from the senders to the receivers using some new file-distribution protocol. In this ap-

plication, there are two phases of execution. In the first phase, all senders and receivers

join the overlay before any transfers begin. Also, the senders must prepare the files for

transfer during phase one before the receivers start receiving the files in phase two. In

the second phase, the receivers begin receiving the files from the senders. Note that
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in the second phase no new senders or receivers are allowed tojoin the network and

participate in the transfer.

The first step in building the corresponding Plush application specification for

our new file-distribution protocol is to define an application block. The application block

defines general characteristics about the application including the liveness properties

and failure detection and recovery options, which determine default failure recovery

behavior. For our example, we might choose the behavior “restart-on-failure,” which

attempts to restart the failed application instance on a single resource, since it is not

necessary to abort the entire application across all resources if only a single failure

occurs.

The application block also contains one or many component blocks that de-

scribe the groups of resources required to run the application. Our application consists

of a set of senders and a set of receivers, and two separate component blocks describe

the two groups of resources. The sender component block defines the location and in-

stallation instructions for the sender software, and includes authentication information

to access the resources. Similarly, the receiver componentblock defines the receiver

software package. In our example, it may be desirable to require that all resources in

the sender group have a processor speed of at least 1 GHz, and each sender should

have sufficient bandwidth for sending files to multiple receivers at once. These types of

resource-specific requirements are included in the component blocks.

Within each component block, a combination of workflow, process, and bar-

rier blocks describe the computation that will occur on eachresource in the component.

Though our example does not employ workflow blocks, they are used in applications

where data files must be distributed and iteratively processed. We will consider an ex-

ample employing a workflow block in Chapter 6.

Plush process blocks describe the specific commands required to execute the

application. Most process blocks depend on the successful installation ofsoftwarepack-

ages defined in the component blocks. Users specify the commands required to start a

given process, and actions to take upon process exit. The exit policies create a Plush
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process monitorthat oversees the execution of a specific process. Our example defines

several process blocks. In the sender component, process blocks define processes for

preparing the files, joining the overlay, and sending the files. Similarly, the receiver

component contains process blocks for joining the overlay and receiving the files.

Some applications operate in phases, producing output filesin early stages

that are used as input files in later stages. To ensure all resources start each phase of

computation only after the previous phase completes, barrier blocks define loose syn-

chronization semantics between process and workflow blocks. The bootstrap barrier

in our example ensures that all receivers and senders join the overlay in phase one be-

fore beginning the file transfer in phase two. Note that although each barrier block is

uniquely defined within a component block, it is possible forthe same barrier to be

referenced in multiple component blocks. In our example, wespecify barrier blocks in

each component block that refer to the same barrier, meaningthat the application will

wait for all receivers and senders to reach the barrier before allowing either component

to start sending or receiving files.

In Figure 3.3, the outer application block contains our two component blocks

that run in parallel (since there are no arrows indicating control-flow dependencies be-

tween them). Within the component blocks, the different phases are separated by the

bootstrap barrier that is defined by Barrier Block 1 in both components. Component

Block 1, which describes the senders, contains Process Blocks 1 and 2 that define perl

scripts that run in parallel during phase one, synchronize on the bootstrap barrier in Bar-

rier Block 1, and then proceed to Process Block 3 in phase two which sends the files.

Component Block 2, which describes the receivers, runs Process Block 1 in phase one,

synchronizes on the bootstrap barrier in Barrier Block 1, and then proceeds to Process

Block 2 in phase two which runs the process that receives the files from the senders.

In the current Plush implementation, the blocks are represented by XML that is parsed

by the controller when the application is run. For reference, the XML corresponding

to Figure 3.3 is shown in Figure 3.4.
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<plush>
<project name="Application Block" >

<application name="Application Block" >

<execution>
<componentblock name="Component Block 1" >

<processblock name="Process Block 1" >

<process name="prepare_files.pl" >

<path>preparefiles.pl</path>
</process>

</processblock>
<processblock name="Process Block 2" >

<process name="join_overlay.pl" >

<path>join overlay.pl</path>
</process>

</processblock>
<barrier block name="Barrier Block 1" >

<predecessor name="Process Block 1" />
<predecessor name="Process Block 2" />
<barrier name="bootstrap_barrier" />

</barrier block>
<processblock name="Process Block 3" >

<predecessor name="Barrier Block 1" />
<process name="send_files.pl" >

<path>sendfiles.pl</path>
</process>

</processblock>
</componentblock>
<componentblock name="Component Block 2" >

<processblock name="Process Block 1" >

<process name="join_overlay.pl" >

<path>join overlay.pl</path>
</process>

</processblock>
<barrier block name="Barrier Block 1" >

<predecessor name="Process Block 1" />
<barrier name="bootstrap_barrier" />

</barrier block>
<processblock name="Process Block 2" >

<predecessor name="Barrier Block 1" />
<process name="receive_files.pl" >

<path>receivefiles.pl</path>
</process>

</processblock>
</componentblock>

</execution>
</application>

</project>
</plush>

Figure 3.4: XML representing the Plush application specification corresponding to Fig-
ure 3.3. (Note that the resource definitions are not shown here.)

We designed the Plush application specification to support avariety of exe-

cution patterns. With the blocks described above, Plush supports the arbitrary combi-

nation of processes, barriers, and workflows, provided thatthe flow of control between

them forms a directed acyclic graph. Using predecessor tagsin Plush, users specify
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the flow of control and define whether processes run in parallel or sequentially. Ar-

rows between blocks in Figure 3.3, for example, indicate thepredecessor dependencies.

(Process Blocks 1 and 2 in Component Block 1 will run in parallel before blocking at

the bootstrap barrier, and then the execution will continueon to Process Block 3 af-

ter the bootstrap barrier releases.) Internally, Plush stores the blocks in a hierarchical

data structure, and references specific blocks in a manner similar to referencing absolute

paths in a UNIX file system. Figure 3.3 shows the unique path names for each block

from our file-distribution example. This naming abstraction also simplifies coordina-

tion among resources. Each client maintains an identical local copy of the application

specification. Thus, for communication regarding control flow changes, the controller

sends the clients messages indicating which “block” is currently being executed, and the

clients update their local state information accordingly.

3.2 Core Functional Units

After parsing the block abstractions defined by the user within the application

specification, Plush instantiates a set of core functional units to perform the operations

required to configure and deploy the distributed application. Figure 3.2 shows these

units as shaded boxes below the dotted line. The functional units manipulate the ob-

jects defined in the application specification to manage distributed applications. In this

section, we describe the role of each of these units.

Starting at the highest-level, the Plushresource discovery and acquisition

unit uses the resource definitions in the component blocks tolocate and create (if nec-

essary) resources on behalf of the user. The resource discovery and acquisition unit

is responsible for obtaining a valid set, called amatching, of resources that meet the

application’s demands. To determine this matching, Plush may either call an existing

external service to construct a resource pool, such as SWORD[3, 77] for PlanetLab, or

use a statically defined resource pool based on information provided by the user. The

Plushresource matcherthen uses the resources in the resource pool to create a match-
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ing for the application. We discuss this process in detail inChapter 4. All resources

involved in an application run a Plushhost monitor that periodically publishes infor-

mation about the resource. The resource discovery and acquisition unit may use this

information to help find the best matching. Upon acquiring a resource, a Plushresource

managerstores the lease, token, or any necessary user credential needed for accessing

that resource to allow Plush to perform actions on behalf of the user in the future.

The remaining functional units in Figure 3.2 are responsible for application de-

ployment and maintenance. These units connect to resources, install required software,

start the execution, and monitor the execution for failures. One important functional

unit used for these operations is the Plushbarrier manager, which provides advanced

synchronization services for Plush and the application itself. In our experience, tra-

ditional barriers [50] are not well suited for volatile, wide-area network conditions; the

semantics are simply too strict. Instead, Plush uses partial barriers (described in detail in

Chapter 5), which are designed to perform better in failure-prone environments through

the use of relaxed synchronization semantics.

The Plushfile manager handles all files required by a distributed applica-

tion. This unit contains information regarding software packages, file transfer methods,

installation instructions, and workflow data files. The file manager is responsible for

preparing the physical resources for execution using the information provided by the

application specification. It monitors the status of file transfers and installations, and

if it detects an error or failure, the controller is notified and the resource discovery and

acquisition unit may be required to find a new resource to replace the failed one.

Once the resources are prepared with the necessary software, the application

deployment phase completes by starting the execution. Thisis accomplished by starting

a number of processes on the resources. Plushprocessesare defined within process

blocks in the application specification. A Plush process is an abstraction for standard

UNIX processes that run on multiple resources. Processes require information about

the runtime environment needed for an execution including the working directory, path,

environment variables, file I/O, and the command-line arguments.
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The two lowest layers of the Plush architecture consist of acommunication

fabric and theI/O and timer subsystems. The communication fabric handles passing

and receiving messages among Plush overlay participants. Participants communicate

over TCP connections. The default topology for a Plush overlay is a star, although we

also provide support for tree topologies for increased scalability (see Section 3.3.2). In

the case of a star topology, all clients connect directly to the controller, which allows

for quick failure detection and recovery. The controller sends messages to the clients

instructing them to perform certain actions. When the clients complete their tasks, they

report back to the controller for further direction. The communication fabric at the

controller knows what resources are involved in a particular application instance, so that

the appropriate messages reach all necessary resources.

At the bottom of all of the other units is the Plush I/O and timer abstraction.

As messages are received in the communication fabric, message handlers fire events.

These events are sent to the I/O and timer layer and enter a queue. The event loop pulls

events off the queue, and calls the appropriate event handler. Timers are a special type

of event in Plush that fire at a predefined instant.

3.3 Fault Tolerance and Scalability

Two of the biggest challenges that we encountered during thedesign of Plush

was being robust to failures and scaling to hundreds of resources spread across the wide-

area. In this section we explore how Plush supports fault tolerance and scalability.

3.3.1 Fault Tolerance

Plush must be robust to the variety of failures that occur during application

execution. When designing Plush, we aimed to provide the functionality needed to de-

tect and recover from most failures without involving the user running the application.

Rather than enumerate all possible failures that may occur,we discuss how Plush han-

dles three common failure classes—process, resource, and controller failures.
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Table 3.1: Process exit policies in Plush.

Exit Policy Description

POLICY END APPLICATION End the application with success

POLICY FAIL APPLICATION End the application with failure

POLICY RESTARTAPPLICATION Restart the entire application

POLICY RESTARTPROCESS Restart only the process

POLICY CONTINUE Continue to next step in workflow

POLICY IGNORE Log the exit, but do nothing

Process failures.When a resource starts a process defined in a process block,

Plush attaches a process monitor to the process. The role of the process monitor is to

catch any signals raised by the process, and to react appropriately. When a process exits

either due to successful completion or error, the process monitor sends a message to

the controller indicating that the process has exited, and includes its exit status. Plush

defines a default set of behaviors that occur in response to a variety of exit codes (al-

though these can be overridden within an application specification). The default behav-

iors include ignoring the failure, restarting only the failed process, restarting the entire

application, or aborting the entire application. Table 3.1lists the process exit policies

supported by Plush, as well as a description of their behavior.

In addition to process failures, Plush also allows users to monitor the status

of a process that is still running through a specific type of process monitor called a

liveness monitor, whose goal is to detect misbehaving and unresponsive processes that

get stuck in loops and never exit. This is especially useful in the case of long-running

services that are not closely monitored by the user. To use the liveness monitor, the user

specifies a script and a time interval in the process block of the application specification.

The liveness monitor wakes up once per time interval and runsthe script to test for the

liveness of the application, returning either success or failure. If the test fails, Plush kills

the process, causing the process monitor to be alerted and inform the controller.
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Resource failures. Detecting and reacting to process failures is straightfor-

ward since the controller is able to communicate information to the client regarding

the appropriate recovery action. When a resource fails, however, recovering is more

difficult. A resource may fail for a number of reasons, including network outages, hard-

ware problems, and power loss. Under all of these conditions, the goal of Plush is to

quickly detect the problem and reconfigure the application with a new set of resources

to continue execution. The Plush controller maintains a list of the last time success-

ful communication occurred with each connected client. If the controller does not hear

from a client within a specified time interval, the controller sends a ping to the client. If

the controller does not receive a response from the client, Plush assumes resource fail-

ure. Reliable failure detection is an active area of research; while the simple technique

we employ has been sufficient thus far, we certainly intend toleverage advances in this

space where appropriate.

There are three possible actions in response to a resource failure: restart, re-

match, and abort. By default, the controller tries all threeactions in order. The first

and easiest way to recover from a resource failure is to simply reconnect and restart the

application on the failed resource. This technique works ifthe resource experiences a

temporary power or network outage, and is only unreachable for a short period of time.

If the controller is unable to reconnect to the resource, thenext option is to rematch in an

attempt to replace the failed resource with a different resource. In this case, Plush reruns

the resource matcher to find a new resource. Depending on the application, the entire

execution may need to be restarted across all resources after the new resource joins the

Plush control overlay, or the execution may only need to be started on the new resource.

If the controller is unable to find a new resource to replace the failed resource and the

application description specifies a fixed number of requiredresources, Plush then finally

aborts the entire application.

In some applications, it is desirable to mark a resource as failed when it be-

comes overloaded or experiences poor network connectivity. The Plush host monitor

that runs on each resource is responsible for periodically informing the controller about
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each resource’s status. If the controller determines that the performance is less than

the application tolerates, it marks the resource as failed and attempts to rematch. This

functionality is a preference specified at startup. Although Plush currently monitors

host-level metrics including load and free memory, the technique is easily extended to

encompass sophisticated application-level expectationsof resource viability.

Controller failures. Because the controller is responsible for managing the

flow of control across all connected clients, recovering from a failure at the controller

is difficult. One solution is to use a simple primary-backup scheme, where multiple

controllers increase reliability. All messages sent from the clients and primary controller

are sent to the backup controllers as well. If a pre-determined amount of time passes

and the backup controllers do not receive any messages from the primary, the primary is

assumed to have failed. The first backup becomes the primary,and execution continues.

This strategy has several drawbacks. First, it causes extramessages to be sent

over the network, which limits the scalability of Plush. Second, this approach does

not perform well when a network partition occurs. During a network partition, multiple

controllers may become the primary controller for subsets of the clients initially involved

in the application. Once the network partition is resolved,it is difficult to reestablish

consistency among all clients and resources. While we have implemented a version of

this architecture, we are currently exploring other possibilities for handling faults at the

controller.

3.3.2 Scalability

In addition to fault tolerance, an application controller designed for large-scale

environments must scale to hundreds or even thousands of participants. Unfortunately

there is a tradeoff between performance and scalability. The solutions that perform

the best at moderate scale typically provide less scalability than solutions with lower

performance. To balance scalability and performance, Plush provides users with two

topological alternatives for the structure of the control overlay that offer varying levels

of scalability and performance.
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Figure 3.5: Clients connected to Plush controller in star topology.

By default, all Plush clients connect directly to the controller forming a star

topology (Figure 3.5). This architecture scales to approximately 300 resources, limited

by the number of file descriptors allowed per process on the controller machine in ad-

dition to the bandwidth, CPU, and latency required to communicate with all connected

clients. The star topology is easy to maintain, since all clients connect directly to the

controller. In the event of a resource failure, only the failed resource is affected. Further,

the time required for the controller to exchange messages with clients is short due to the

direct connections.

At larger scales, network and file descriptor limitations atthe controller be-

come a bottleneck. To address this, Plush also supports treetopologies (Figure 3.6). In

an effort to reduce the number of hops between the clients andcontroller, Plush con-

structs “bushy” trees, where the depth of the tree is small and each node in the tree has

many children. The controller is the root of the tree. The children of the root are chosen

to be well-connected and historically reliable resources whenever possible. Each child

of the root acts as a “proxy controller” for the resources connected to it. These proxy

controllers send invitations and receive join messages from other resources, reducing the

total number of messages sent back to the root controller. Important messages, such as

failure notifications, are still sent back to the root controller. Using the tree topology, we
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Figure 3.6: Clients connected to Plush controller in tree topology.

have been able to use Plush to manage an application running on 1000 ModelNet virtual

hosts, as well as an application running on 500 PlanetLab clients. We believe that Plush

has the ability to scale by perhaps another order of magnitude with the current design.

While the tree topology has many benefits over the star topology, it also in-

troduces several new problems with respect to resource failures and tree maintenance.

In the star topology, a resource failure is simple to recoverfrom since it only involves

one resource. In the tree topology, however, if a non-leaf resource fails, all children

of the failed resource must find a new parent. Depending on thenumber of resources

affected, a reconfiguration involving several resources often has a significant impact on

performance. Our current implementation tries to minimizethe probability of this type

of failure by making intelligent decisions during tree construction. For example, in the

case of ModelNet, many virtual hosts (and Plush clients) reside on the same physical

machine. When constructing the tree in Plush, only one client per physical machine

connects directly to the controller and becomes the proxy controller. The remaining

clients running on the same physical machine become children of the proxy controller.

In the wide area, similar decisions are made by placing resources that are geographically

close together under the same parent. This decreases the number of hops and latency

between leaf nodes and their parent, minimizing the chance of network failures.
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3.4 Running an Application

In this section, we discuss how the architectural components of Plush interact

to run a distributed application. When starting Plush, the user’s workstation becomes

the controller. The user submits an application specification to the Plush controller. The

controller parses the specification and internally createsthe objects shown above the

dotted line in Figure 3.2.

After parsing the application specification, the controller runs the resource dis-

covery and acquisition unit to find a suitable set of resources that meet the requirements

specified in the component blocks. Upon locating the necessary resources, the resource

manager stores the required access and authentication information. The controller then

attempts to connect to each resource. If the Plush client is not already running, the

controller initiates a bootstrapping procedure to copy thePlush client binary to the re-

source, and then uses SSH to connect to the resource and startthe client process. Once

the client process is running, the controller establishes aTCP connection to the resource,

and transmits anINVITE message to the resource to join the Plush overlay (which is

either a star or tree as discussed in Section 3.3.2).

If a Plush client agrees to run the application, the client sends aJOIN message

back to the controller accepting the invitation. Next, the controller sends aPREPARE

message to the new client, which contains a copy of the application specification (XML

representation). The client parses the application specification, starts a local host mon-

itor, sends aPREPAREDmessage back to the controller, and waits for further instruc-

tion. Once enough resources join the Plush overlay and agreeto run the application, the

controller initiates the beginning of the application deployment stage by sending aGO

message to all connected clients. The file managers then begin installing the requested

software and preparing the resources for execution.

In most applications, the controller instructs the resources to begin execution

after all resources have completed the software installation. (Note that synchronizing the

beginning of the execution is not required if the application does not need all resources
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to start simultaneously.) Since each client creates an exact copy of the controller’s appli-

cation specification, the controller and clients can exchange messages about the applica-

tion’s progress using the block naming abstraction (i.e., /app/comp1/proc1) to identify

the status of the execution. For barriers, a barrier managerrunning on the controller

determines when it is appropriate for resources to be released from the barriers in the

application.

If a client detects a failure, the client notifies the controller, and the controller

attempts to recover from the failure according to the actions enumerated in the applica-

tion specification. Since many failures are application-specific, Plush exports optional

callbacks to the application itself to determine the appropriate reaction for some failure

conditions. When the application completes (or upon a user command), Plush stops all

associated processes, transfers output data back to the controller’s local disk if desired,

performs user-specified cleanup actions on the resources, disconnects the resources from

the Plush overlay by closing the TCP connection, and stops the Plush client processes.

3.5 User Interface

Plush aims to support a variety of applications being run by users with a wide

range of expertise in building and managing distributed applications. Thus, Plush pro-

vides three interfaces which each provide users with techniques for interacting with their

applications. We describe the functionality of each user interface in this section.

In Figure 3.2, the user interface is shown above all other parts of Plush. In

reality, the user interacts with every box shown in the figurethrough the user interface.

For example, the user can force the resource discovery and acquisition unit to find a new

set of resources by issuing a command through one of the user interfaces. We designed

Plush in this way to give the user maximum control over the application. At any stage

of execution, the user can override a default Plush behavior. The overall effect is a

customizable application controller that has the ability to support a variety of distributed

applications and computing environments.
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Figure 3.7: Nebula World View Tab showing an application running on PlanetLab sites
in Europe. Different colored dots indicate sites in variousstages of execution. The
window in the bottom right corner displays CPU usage information about selected hosts.

3.5.1 Graphical User Interface

In an effort to simplify the creation of application specifications and help vi-

sualize the status of executions running on resources around the world, we implemented

a graphical user interface for Plush called Nebula. In particular, we designed Nebula

(as shown in Figure 3.7) to simplify the process of specifying and managing applica-

tions running across PlanetLab. Plush obtains data from thePlanetLab Central (PLC)

database to determine what hosts a user has access to, and Nebula uses this information

to plot the sites on the map. To start using Nebula, users havethe option of building their

Plush application specification from scratch or loading a preexisting XML document

representing an application specification. Upon loading the application specification,

the user runs the application by clicking the Run button fromthe Plush toolbar, which

causes Plush to start locating and acquiring resources.
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Figure 3.8: Nebula SSH tab displaying an SSH connection to a PlanetLab host.

The main Nebula window contains four tabs that show different information

about the user’s application. In the “World View” tab, userssee an image of a world map

with colored dots indicating PlanetLab hosts. Different colored dots on the map indicate

sites involved in the current application. In Figure 3.7, the colored dots (ranging from

red to green) show PlanetLab sites involved in the current application. The grey dots

are other available PlanetLab sites that are not currently being used by Plush. As the

application proceeds through the different phases of execution, the sites change color,

allowing the user to visualize the progress of their application. When failures occur, the

impacted sites turn red, giving the user an immediate visualindication of the problem.

Similarly, green dots indicate that the application is executing correctly. If a user wishes

to establish an SSH connection directly to a particular resource, they can simply right-

click on a host in the map and choose the SSH option from the pop-up menu. This

opens a new tab in Nebula containing an SSH terminal to the host, as shown in Figure

3.8. Users can also mark hosts as failed by right-clicking and choosing the Fail option
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Figure 3.9: Nebula Application View tab displaying a Plush application specification.

from the pop-up menu. Failing a host is helpful if the user is able to determine failure

more quickly than Plush’s automated techniques. Failed hosts are completely removed

from the execution.

Users retrieve more detailed usage statistics and monitoring information about

specific hosts (such as CPU load, free memory, or bandwidth usage) by double clicking

on the individual sites in the map. This opens a second windowthat displays real-time

graphs based on data retrieved from resource monitoring tools, as shown in the bottom

right corner of Figure 3.7. The second smaller window displays a graph of the CPU or

memory usage, and the status of the application on each host.Plush currently provides

built-in support for monitoring CoMon [81] data on PlanetLab machines, which is the

source of the CPU and memory data. Additionally, if the user wishes to view the CPU

usage or percentage of free memory available across all hosts, there is a menu item

under the PlanetLab menu that changes the colors of the dots on the map such that red

means high CPU usage or low free memory, and green indicates low CPU usage or high
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Figure 3.10: Nebula Resource View tab showing resources involved in an application.

free memory. Users can also add and remove hosts from their PlanetLab slice directly

by highlighting regions of the map and choosing the appropriate menu option from the

PlanetLab menu. Additionally, users can renew their PlanetLab slice from Nebula.

The second tab in the Nebula main window is the “Application View.” The

Application View tab, shown in Figure 3.9, allows users to build Plush application spec-

ifications using the blocks described in Section 3.1. Alternatively, users may load an

existing XML file describing an application specification bychoosing the Load Appli-

cation menu option under the File menu. There is also an option to save a new applica-

tion specification to an XML file for later use. After creatingor loading an application

specification, the Run button located on the Application View tab starts the application.

The Plush blocks in the application specification change to green during the execution

of the application to indicate progress. After an application begins execution, users have

the option to “force” an application to skip ahead to the nextphase of execution (which

corresponds to releasing a synchronization barrier), or aborting an application to termi-
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Figure 3.11: Nebula Host View tab showing PlanetLab resources. This tab allows users
to select multiple hosts at once and run shell commands on theselected resources. The
text-box at the bottom shows the output from the shell commands.

nate execution across all resources. Once the application aborts or completes execution,

the user may either save their application specification, disconnect from the Plush com-

munication overlay, restart the same application, or load and run a new application by

choosing the appropriate option from the File menu.

The third tab is the “Resource View” tab. This tab is blank until an application

starts running. During execution, this tab lists the specific PlanetLab hosts that are

involved in the execution. If failures occur during execution, the list of hosts is updated

dynamically, such that the Resource View tab always contains an accurate listing of the

resources that are in use. The resources are separated into components, so that the user

knows which resources are assigned to which tasks in their application. A screenshot

showing the Resource View tab is shown in Figure 3.10.

The fourth tab in Nebula is called the “Host View” tab, shown in Figure 3.11.

This tab contains a table that displays the hostname of all available PlanetLab resources.
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Figure 3.12: Screenshot of Plush command-line interface.

The purpose of the Host View tab is to give users another alternative to visualize the

status of an executing application. In the right column, thestatus of the host is shown.

Each host’s status corresponds to the color of the host’s dotin the World View tab. This

tab also allows users to run shell commands simultaneously on several resources, and

view the output. As shown in Figure 3.11, users can select multiple hosts as once, run a

command, and the output is displayed in the text-box at the bottom of the window. Note

that PlanetLab hosts do not have to be involved in an application in order to take advan-

tage of this feature. Plush will connect to any available resources and run commands

on behalf of the user. Just as in the World View tab, right-clicking on hosts in the Host

View tab opens a pop-up menu that enables users to SSH directly to the hosts.

3.5.2 Command-line Interface

Motivated by the popularity and familiarity of the shell interface in UNIX,

Plush further streamlines the develop-deploy-debug cyclefor distributed application

management through a simple command-line interface where users can deploy, run,

monitor, and debug their distributed applications runningon hundreds of resources. The

Plush command-line (Figure 3.12) combines the functionality of a distributed shell with
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Table 3.2: Sample Plush terminal commands.

Command Description

load <filename > Read an XML application specification

connect <resource > Connect to a Plush client on a resource

disconnect Close all open client connections

info nodes Print summary information about all known resources

info mesh Print the communication overlay status (membership)

info control Print the controller’s state information

info install Print summary information on pending installations

run Start executing the application (after loading specification)

shell <quoted string > Run “quoted string” as a shell command on all resources

slice list <slice name> Show information about a PlanetLab slice

slice renew <slice name> Renew the specified PlanetLab slice

the power of an application controller to provide a robust execution environment for

users to run their applications. From a user’s standpoint, the Plush terminal looks just

like a shell. Plush supports several commands for monitoring the state of an execution,

as well as commands for manipulating the application specification during execution.

Table 3.2 shows a subset of the available commands.

3.5.3 Programmatic Interface

Many commands that are available via the Plush command-lineinterface

are also exported via an XML-RPC interface to deliver similar functionality as the

command-line to those who desire programmatic access. Using XML-RPC, Plush can

be scripted and used for remote execution and automated application management. Ex-

ternal services for resource discovery, creation, and acquisition can also communicate

with Plush using XML-RPC. These external services have the option of registering

themselves with Plush so that the controller can send callbacks to XML-RPC clients

when various actions occur during the execution.
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class PlushXmlRpcServer extends XmlRpcServer{
void plushAddNode(HashMap properties);
void plushRemoveNode(string hostname);
string plushTestConnection();
void plushCreateResources();
void plushLoadApp(string filename);
void plushRunApp();
void plushDisconnectApp(string hostname);
void plushQuit();
void plushFailHost(string hostname);
void setXmlRpcClientUrl(string clientUrl);

}

class PlushXmlRpcCallback extends XmlRpcClient{
void sendPlanetLabSlices();
void sendSliceNodes(string slice);
void sendAllPlanetLabNodes();
void sendApplicationExit();
void sendHostStatus(string host);
void sendBlockStatus(string block);
void sendResourceMatching(HashMap matching);

}

Figure 3.13: Plush XML-RPC API.

Figure 3.13 shows the Plush XML-RPC API. The functions shown

in the PlushXmlRpcServer class are available to users who wish to

access Plush programmatically in scripts, or for external resource dis-

covery and acquisition services that need to add and remove resources

from the Plush resource pool. TheplushAddNode(HashMap) and

plushRemoveNode(string) calls add and remove nodes from the resource

pool, respectively.setXmlRpcClientUrl(string) registers XML-RPC clients

for callbacks, whileplushTestConnection() simply tests the connection to the

Plush server and returns “Hello World.” The remaining function calls in the class

mimic the behavior of the corresponding command-line operations. In Chapter 4 we

will examine some specific uses of this API within the contextof different resource

management frameworks.

Aside from resource discovery and acquisition services, the XML-RPC API

allows for the implementation of different user interfacesfor Plush. Since almost all
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of the Plush terminal commands are available as XML-RPC function calls, users are

free to implement their own customized environment specificuser interface without un-

derstanding or modifying the internals of the Plush implementation. This is beneficial

because it gives the users more flexibility to develop in the programming language of

their choice. Most mainstream programming languages have support for XML-RPC,

and hence users are able to develop interfaces for Plush in any language, provided

that the chosen language is capable of handling XML-RPC. To increase the function-

ality and simplify the development of these interfaces, thePlush XML-RPC server has

the ability to make callbacks to programs that register withthe Plush controller via

setXmlRpcClientUrl(string) . Some of the more common callback functions

are shown in the bottom of Figure 3.13 in classPlushXmlRpcCallback . Note that

these callbacks are only useful if the client implements thecorresponding functions.

3.6 Implementation Details

Plush is a publicly available software package [86]. The Plush codebase con-

sists of over 60,000 lines of C++ code. The same code is used for the Plush controller

and client processes, although there are minor differencesin functionality within the

code. Plush depends on several C++ libraries, including those provided by xmlrpc-c,

curl, xml2, zlib, math, openssl, readline, curses, boost, and pthreads. The command-

line interface also depends on packages for lex and yacc (we use flex and bison). For

optimal performance, we recommend the use of the Native POSIX Threads Library

(NPTL) in Linux environments, as well as the ares package forasynchronous DNS

lookups. In addition to the main C++ codebase, Plush uses several simple perl scripts

for interacting with the PlanetLab Central database and bootstrapping resources. These

perl scripts require the Frontier::Client and Crypt::SSLeay perl modules. Plush runs on

most UNIX-based platforms, including Linux, FreeBSD, and Mac OS X, and a single

Plush controller can manage clients running on different operating systems. The only

prerequisite for using Plush on a resource is the ability to SSH to the resource.



67

One challenge that arises when running Plush on different platforms is incon-

sistencies in execution environments. This is particularly problematic when executables

are dynamically linked to system libraries. In general we found that statically linking

the client executable that runs on potentially remote resources helps to solve this prob-

lem in most cases. Statically linking the client is especially helpful on PlanetLab, since

PlanetLab machines do not include many libraries by default. One caveat to support-

ing statically linking executables, however, is the inability to use architecture-specific

system calls, such as some cryptographic random number generators. The Plush code-

base explicitly avoids architecture-specific system callsto ensure that statically linking

executables function correctly.

Nebula consists of approximately 25,000 lines of Java code.Nebula commu-

nicates with Plush using the XML-RPC interface described inSection 3.5.3. XML-RPC

is implemented in Nebula using the Apache XML-RPC client andserver packages. In

addition, Nebula uses the JOGL implementation of the OpenGLgraphics package for

Java. Since Nebula uses OpenGL, we highly recommend enabling video card hardware

acceleration for optimal performance. Nebula runs in any computing environment that

supports Java, including Windows, Linux, FreeBSD, and Mac OS X among others. Note

that since Nebula and Plush communicate solely via XML-RPC,it is not necessary to

run Nebula on the same physical machine as the Plush controller. When starting Nebula,

users have the option of either starting a local Plush controller or specifying a remote

Plush controller process.

3.7 Summary

Motivated by the requirements of Chapter 2, in this chapter we described the

design and implementation of Plush, a distributed application management framework.

The three main sub-systems of Plush are the core functional units, application specifica-

tion, and user interface. This chapter described how these sub-systems work together to

manage distributed applications, and also discussed how the Plush architecture achieves
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fault tolerance and scalability. Finally, we explored three different user interfaces to

Plush, which give users several different options for interacting with their applications

running on distributed resources.
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Chapter 4

Resource Matcher

Chapter 2 describes the role of resource discovery, creation, and acquisition

in the context of application management. To summarize, themain responsibility of a

resource discovery and acquisition service is to find a set ofresources (called amatching

in Plush) that meet the application’s resource demands. Onegoal in the design of Plush

is to create an architecture flexible enough to work in a variety of computing environ-

ments with different types of resources. Thus, rather than reinvent the functionality of

existing resource discovery and acquisition services for each target environment, we in-

stead employ an extensible resource discovery and acquisition unit (as shown in Figure

3.2) that supports a variety of resources. This is often accomplished by using the Plush

XML-RPC interface for adding and removing resources from the application’sresource

pool. The Plushresource matcherthen uses the resources in the resource pool and the

application’s requirements as defined in the application specification to create a resource

matching.

In this chapter, we examine how the Plush resource matcher interacts with

different types of resources provided by external servicesto construct a valid match-

ing and run applications. In particular, we examine three distinct types of resources:

physical PlanetLab hosts, emulated ModelNet resources, and Xen virtual machines. We

also describe the external services used to manage these resources, including SWORD

for PlanetLab hosts, Mission for ModelNet resources, and Shirako and Usher for Xen

69
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virtual machines. In doing so, we evaluate how effective Plush is in achieving our goal

of supporting execution in a variety of computing environments.

4.1 Plush Resource Pools

Before discussing how a matching is created, we first describe how resource

pools are constructed in Plush. Recall that a resource in Plush is a (virtual or physical)

machine that can host an application on behalf of the user (i.e., the person running the

application). Plush assumes that all resources are accessible via SSH, and requires that

passphrase-less authentication has been establisheda priori by using a combination of

ssh-agent and public key distribution. A resource pool is simply a grouping of resources

that are available to the user and can be reached via passphrase-less SSH authentication.

The simplest way to define a resource pool in Plush is by creating a resource

directory file (typically called directory.xml) that listsavailable resources. This file is

read by the Plush controller at startup, and internally Plush creates aNodeobject for

each resource. A Node in Plush contains a username for logging into the resource, a

fully qualified hostname, the port on which the Plush client will run, and a group name.

The purpose of the group name is to give users the ability to classify resources into

different categories based on application-specific requirements. We discuss how this

name is used when creating a matching in the next section.

The resource file also contains a special section for definingPlanetLab hosts.

Rather than specifically defining which PlanetLab hosts a user has access to, the di-

rectory file instead lists whichslicesare available to the user. In addition to the slice

names, the user specifies their login to PlanetLab Central (PLC), as well as a mapping

(called theportmap) from slice names to port numbers. At startup, Plush uses this login

information to contact PLC directly via XML-RPC. The PLC database returns a list of

hostnames that have been assigned to each available slice. The Plush controller uses this

information to create a Node object for each PlanetLab host available to the user. The

username that is used for logging in to PlanetLab hosts is theslice name, and the port is
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<?xml version="1.0" encoding="UTF-8" ?>

<plush>
<resourcemanager type="planetlab" >

<user>jalbrecht@cs.ucsd.edu</user>
<port map slice="ucsd_plush" port="15415" />
<port map slice="ucsd_sword" port="15416" />

</resourcemanager>
<resourcemanager type="ssh" >

<node hostname="sysnet80.ucsd.edu:15420" user="albrecht" group="local" >

<node hostname="sysnet81.ucsd.edu:15420" user="albrecht" group="local" >

<node hostname="sysnet82.ucsd.edu:15420" user="albrecht" group="local" >

</resourcemanager>
</plush>

Figure 4.1: Plush resource directory file.

determined using the portmap defined in the directory file. The group name is set to be

the same as the slice name by default for PlanetLab hosts. A sample directory.xml file

is shown in Figure 4.1.

In addition to the resources defined in a Plush resource directory file, resources

are also added and removed by external services at any point during an application’s ex-

ecution. This is typically accomplished using the Plush XML-RPC interface described

in Chapter 3. External services that create virtual resources dynamically based on an ap-

plication’s needs, for example, contact the Plush controller with new available resources,

and Plush adds these resources to the user’s resource pool. If these resources become

unavailable, the external service calls Plush again, and Plush subsequently removes the

resources from the resource pool. Note that this may involvestopping the application

running on the resource beforehand. Additionally, when using the Plush command-line

user interface, users have the option of adding resources totheir resource pool directly

by using the “add resource” command from the Plush shell.

4.2 Creating a Matching

After a resource pool has been created, the Plush resource matcher is respon-

sible for finding a valid matching—a subset of resources thatsatisfy the application’s

demands—for the application being managed by Plush. To accomplish this task, the
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matcher first must parse the resource definitions for eachcomponentdefined in the the

application specification. A Plush component is merely a setof resources. Each com-

ponent block defined in the application specification has a corresponding component,

or set of resources, on which the processes and barriers specified in the component

block are run. Component definitions also include required software, desired number of

resources, optional external service usage information (discussed in detail later is this

chapter), and any “static host” specifications. Static hosts are resources thatmustbe

used to host an application. If these resources fail or become unavailable, the entire

application is automatically aborted.

Figure 4.2 shows a Plush software and component definition. Note that the

XML shown is only part of the application specification. Chapter 6 illustrates several

complete application specifications that include softwareand component definitions in

addition to the block descriptions discussed in Chapter 3. The software definitions spec-

ify where to obtain the required software, the file transfer method as indicated by the

“type” attribute for the package element, and the installation method as indicated by

the “type” attribute of the software element. In this particular example, the file trans-

fer method is “web” which means that a web fetching utility such as wget or curl is

used to retrieve the software package. The installation method is “tar.” This implies

that the package has been bundled using the tar utility, and installing the package in-

volves running tar with the appropriate arguments. “destpath” specifies what filename

the package is saved as on the resources.

The component definition begins below the software specification in Figure

4.2. Each component is given a unique name, which is used by the component blocks

later to identify which set of resources should be used. Next, the “rspec” element defines

“num hosts,” which is the number of resources required in the component. The “rspec”

element also optionally specifies any “statichost” resources desired. Note that the use

of static hosts is not recommended for most applications, since the failure of a static

host results in the entire application being aborted. The “software” element within the

component specification refers to the “SimpleSoftware” software package that was pre-
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<?xml version="1.0" encoding="UTF-8" ?>

<plush>
<project name="simple" >

<software name="SimpleSoftware" type="tar" >

<package name="SimplePackage" type="web" >

<path>http://plush.ucsd.edu/software.tar</path>
<dest path>software.tar</dest path>

</package>
</software>
<component name="Group1" >

<rspec>
<num hosts>25</num hosts>
<static host>ucsd plush@planetlab1.cs.duke.edu</static host>

</rspec>
<software name="SimpleSoftware" />
<resources>

<resource type="planetlab" group="ucsd_plush" />
</resources>

</component>
</project>

</plush>

Figure 4.2: Plush software and component definition.

viously defined. Lastly, the “resources” element specifies which resource group (recall

that each Node object includes a group name) to use for creating the matching. In this

case we are interested in PlanetLab hosts assigned to the ucsd plush slice.

After creating the resource pool and parsing the component definition in the

application specification, the resource matcher has all of the information it needs to

create a matching. The matcher starts with the global resource pool, and filters out all

resources that are not in the group specified in the componentdefinition. In our exam-

ple, this includes all hosts not assigned to the ucsdplush slice. Using the remaining re-

sources in the resource pool, the matcher randomly picks 25 (as specified by numhosts

in our example) Node objects and inserts them into the matching. The Plush controller

then begins to configure these 25 resources. If a failure occurs during configuration or

execution, the controller requeries the matcher. The matcher sets the “failed” flag in

the Node that caused the failure1, removes it from the matching, and inserts another

randomly chosen resource from the resource pool. This process is repeated for each
1In addition to setting the failed flag in the Node object, the controller also notes the time at which the flag was set.

In the case of long-running applications, failed flags are periodically unset after a sufficient amount of time passes.
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failure throughout the duration of the application’s execution. Note that resources that

are marked as failed are never chosen to be part of a matching.

In shared, wide-area computing environments like PlanetLab, machines often

experience high load and increased network congestion, especially during peak times

when a conference deadline is approaching. Consequently, it is during these times of

high load and resource contention when obtaining a usable set of resources to host an

application can be difficult. In these situations the resource matcher’s random choos-

ing policy does not always allow users to achieve their desired results. To help address

this problem, Plush allows users to specify a set of “preferred hosts” for running their

application. Internally, each Plush Node has a numerical preference value assigned to

it. In the absence of preferred hosts, all preference valuesare set to zero. If a resource

fails, the preference value for the failed resource is reduced by some number. To in-

crease a resource’s preference value, users have the optionof using the “prefer regex”

command from the Plush command-line interface, which increases the preference value

for any resource whose hostname matches the regular expression specified by “regex.”

Alternatively, the user can load an XML file that specifies theincreased (or decreased)

preference values for the target resources. When the matcher filters through the resource

pool, it automatically chooses resources with the highest preference value first. Using

this simple technique, users are able to loosely pick resources that they know to be more

reliable, and thus are typically able to achieve better results.

4.3 PlanetLab Resource Selection

The preceding section discusses how Plush resources are internally maintained

and organized into resource pools in general. It also describes how the Plush resource

matcher uses these resource pools and the component definition section of the applica-

tion specification to create matchings for the application being run. In this section, we

take a closer look at how Plush interacts with a specific resource discovery service—

SWORD— to select an optimal set of PlanetLab resources from the resource pool.
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4.3.1 SWORD Overview

SWORD [3, 77] is a publicly available service that is designed to perform re-

source discovery for PlanetLab. In the previous section we alluded to the fact that finding

a usable set of resources to host a PlanetLab application during times of high resource

contention can be very challenging. SWORD is designed to address this challenge in

an application-specific manner without requiring the user to select “preferred hosts” for

running their applications. SWORD takes a query describingresource demands for a

specific application as input, and returns a set of resourcesthat satisfy these demands.

Queries define groups of resources that have specific per-node (e.g., load or free memory

on all hosts), inter-node (e.g., all-pairs latency or bandwidth within a group), and inter-

group (e.g., all-pairs latency or bandwidth across groups) properties. Additionally, the

queries allow users to specify ranges of acceptable values for each attribute, rather than

a single value. Associated with this range is a “penalty” value, which basically allows

users to rank the importance of various attributes. SWORD returns a list of resources

organized by group that have the lowest overall penalty. We look at a specific SWORD

query later in this section.

Before describing how Plush interacts with SWORD, it is worthwhile to

briefly discuss the evolution of SWORD from an architecturaland managerial stand-

point. SWORD has been in operation for several years now, andmany valuable lessons

have been learned about application management and maintenance during this time. At a

high-level, the architecture of SWORD has remained largelyunchanged. SWORD con-

sists of three main components, as shown in Figure 4.3: the query, the logical database

and query processor, and the optimizer and matcher. The query is an XML document

that describes application-specific requirements for groups of resources. The logical

database and query processor is responsible for parsing thequery and maintaining the

CoMon [81] measurement data needed to answer the queries2. The query processor fil-

ters through the measurement data, and determines which resources satisfy the per-node
2Originally SWORD used data gathered from ganglia [69] sensors running on all hosts, and an all-pairs-ping

service [99] that measured latency between PlanetLab hosts. These services are no longer maintained on PlanetLab,
and as a result SWORD currently does not support any inter-node attributes.
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Figure 4.3: High-level overview of the SWORD architecture.

requirements in the query. The role of the optimizer and matcher is to use the measure-

ment data and “candidate nodes” provided by the query processor to determine which

groups of resources satisfy the inter-node and inter-grouprequirements, and also find

the groups with the lowest overall penalty relative to the requirements specified in the

query.

Although the high-level view of the architecture did not change over the years,

the implementation and specific details of the design has undergone significant alter-

ations. Initially, SWORD was designed to be mostly distributed. The optimizer and

matcher were never distributed and always ran on a single host, but the logical database

and query processor was originally implemented using a distributed hash table (DHT).

One challenge with using a DHT is performing distributed range queries to gather the

data across several PlanetLab hosts. We experimented with several different techniques,

as shown in Figure 4.4. In the end, we found that a centralizedapproach with replicated

servers performed the best with respect to how long it took toget a response to a query.

However, even this design suffered from poor performance when PlanetLab was expe-

riencing high load and resource contention. The problem wasthat although we were

trying to perform resource discovery to help users find usable resources, SWORD itself
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was running on overloaded PlanetLab machines. Thus SWORD suffered the same fate

as other PlanetLab applications, and was essentially rendered useless during peak usage

times.

The current version of SWORD is now fully centralized (similar to the Fixed

architecture in Figure 4.4), and is run on a machine that is not part of the PlanetLab

infrastructure. Data is still periodically gathered from CoMon and stored in the logical

database (which is now an XML document), and users now submitqueries directly to the

SWORD server that subsequently processes the query, determines the candidate nodes,

and runs the optimizer and matcher. The risk in this design isfault tolerance (a central

server is a single point of failure) and potential scalability limitations; however these

problems are easily addressed if they ever cause problems. SWORD presently supports

a web-based user interface [100] and an XML-RPC interface for submitting queries and

obtaining responses.

4.3.2 Integrating SWORD and Plush

Although setting preferred hosts as described in the previous section helps

find suitable resources on PlanetLab, it is not as effective as using SWORD to find

the best set of resources available for hosting an application. Hence, we decided to

integrate SWORD and Plush, allowing application developers to benefit from the appli-

cation management features of Plush and the advanced resource discovery features of

SWORD. In order to facilitate the integration, we extended both the Plush and SWORD

XML-RPC interfaces so that the two systems could communicate easily. Additionally,

we modified the Plush application specification parser to recognize when an external

service (such as SWORD) should be used. An example of a component definition that

includes a SWORD query is shown in Figure 4.5.

One problem with using SWORD and Plush together is recovering from fail-

ures. SWORD does not store any state after responding to a query. Thus, if a resource

fails, there is no simple way to requery SWORD and obtain a replacement for the failed

host without retrieving a completely new list of resources.Further, SWORD does not
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Figure 4.4: Different distributed range search query techniques used in SWORD.
(a) Multiquery - small queries sent to many nodes in DHT. (b) Singlequery - large
queries sent to only one node in DHT. (c) Index - index serversindicate where to obtain
information in DHT. This approach limits the number of hops through the DHT for each
query. (d) Fixed - centralized approach with replicated servers that hold all measurement
data and respond to queries.

know or care about which hosts are assigned to which slice. Therefore it is entirely

possible for SWORD to return a list of resources that are not available to the user. To

address this problem, we added the functionality to retrieve the list of SWORD “can-

didate nodes” (see Figure 4.3) rather than the final optimized matching. Plush itself

is capable of creating the matching, thus it is not necessaryto use SWORD for this

task. The candidate nodes that SWORD returns are guaranteedto meet the applica-

tion’s constraints (recall that inter-node attribute queries are no longer supported since

the measurement data does not exist). Plush is able to filter the candidate nodes based
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<?xml version="1.0" encoding="utf-8" ?>

<plush>
<project name="simple" >

<software name="SimpleSoftware" type="tar" >

<package name="SimplePackage" type="web" >

<path>http://plush.ucsd.edu/software.tar</path>
<dest path>software.tar</dest path>

</package>
</software>
<component name="Group1" >

<rspec>
<num hosts>25</num hosts>
<sword>

<request>
<group>

<name>Group1</name>
<num machines>all</num machines>
<oneminload>0, 0, 2, 5, 1</oneminload>
<gbfree>1, 2, 10, 50, 2</oneminload>

</group>
</request>

</sword>
</rspec>
<software name="SimpleSoftware" />
<resources>

<resource type="planetlab" group="ucsd_plush" />
</resources>

</component>
</project>

</plush>

Figure 4.5: Plush component definition containing a SWORD query.

on the slice being used to run the application, and then increase the preference value

for the Node objects. This allows Plush to easily recover from failures by choosing

good replacement resources based on the SWORD candidate set, and also filter out the

candidate nodes that are not part of the user’s slice.

The XML that appears between the “sword” tags in Figure 4.5 isa complete

and unmodified sword query. This particular query defines onegroup of resources,

and, since we want the biggest candidate node set possible, we set the “nummachines”

attributes to “all” indicating that we want to know about as many PlanetLab resources as

possible. Next, the query specifies two per-node attributes: “oneminload” and “gbfree.”

oneminload is a measure of the average load for the past minute, and gbfree measures
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how many gigabytes of free disk space are available. Any attribute measured by CoMon

is supported by SWORD. Notice that there are five numbers specified for each per-node

constraint. From left to right, these numbers indicates theabsolute minimum, ideal

minimum, ideal maximum, absolute maximum, and penalty values associated with the

attributes. For example, in the gbfree constraint, we are requesting resources with at

least one free GB and ideally two free GB of disk space, and ideally a max of ten free

GB and no more than fifty free GB of disk space3. For resources with values that fall

outside of the ideal range (which is from two to ten GB) but inside the absolute range

(which is from one to fifty GB), a normalized penalty of two will be assigned. This

means that resources with values close to two and ten GB will have penalties close to

zero, and resources with values close to one and fifty GB will have penalties close to

two. Resources with values outside of the absolute range areassigned an infinite penalty.

Since they do not satisfy the specified per-node constraints, they are not included in the

candidate node set that SWORD returns.

When the Plush controller parses the application specification and discovers

the “sword” portion of the XML, it immediately sends the query to the SWORD server

via XML-RPC. SWORD responds with a list of PlanetLab machines that satisfy the

constraints specified in the query. The Plush resource matcher uses this information to

increase the preference values for the corresponding Node objects. Additionally, Plush

uses the SWORD penalty values to set the preference values according to how well the

resources meet the application’s demands. Hence, resources with low SWORD penalty

values are given high Plush preference values, and resources with high SWORD penalty

values are given lower Plush preference values. After setting the preference values, the

matcher than proceeds as usual, choosing resources with higher preference values before

resources with lower preference values. Plush users also have the option of rerunning

the SWORD query periodically to maintain a “fresh” list of good resources.
3In reality, we would not likely specify an upper limit for gbfree. We are specifying an ideal and absolute max in

this example for illustrative purposes only.
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4.4 Virtual Machine Support

In addition to using SWORD for resource selection on PlanetLab, Plush also

supports using virtual machine management systems for creating and obtaining re-

sources. In particular, Plush provides an interface for using both Shirako [49] and

Usher [71]. Shirako [49] is a utility computing framework. Through programmatic

interfaces, Shirako allows users to create dynamic on-demand clusters of resources,

including storage, network paths, physical servers, and virtual machines. Shirako is

based on a resource leasing abstraction, enabling users to negotiate access to resources.

Usher [71] is a virtual machine scheduling system for cluster environments. It allows

users to create their own virtual machines or clusters. Whena user requests a virtual

machine, Usher uses data collected by virtual machine monitors to make informed de-

cisions about when and where the virtual machine should run.

Through its XML-RPC interface, Plush interacts with both the Shirako and

Usher servers in a similar manner as SWORD. Unlike SWORD, however, in Shirako

and Usher the resources do not exist in advance. The resources must be created and

added to the resource pool before the Plush resource matchercan create a matching.

To support this dynamic resource creation and management, we again augment the

Plush application specification with a description of the desired virtual machines, and

then send this description to the corresponding service forresource creation. Just as

we included a SWORD query within the component definition of aPlush application

specification, we similarly include information about the desired attributes of the vir-

tual machine resources so that this information can be passed on to either Shirako or

Usher. As the Plush controller parses the application specification, it stores the resource

description, and when the “plushCreateResources” commandis issued (either via the

Plush command-line interface or programmatically throughXML-RPC), Plush contacts

the appropriate Shirako or Usher server and submits the resource request. Once the re-

sources are ready for use, Plush is informed via an XML-RPC callback that also contains

contact information about the new resources. This callbackupdates the Plush resource
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pool and the user is free to start applications on the new resources. If the resources

must be removed at any point, the Shirako or Usher server can contact Plush again via

XML-RPC, and the resources will be removed from the resourcepool.

4.4.1 Using Shirako

Similar to the how we included the SWORD query in the application speci-

fication in the preceding section, if a Plush user wants to obtain Shirako resources for

hosting an application, the application specification mustagain be augmented with a

description of the desired resources. The syntax is similarto that of the SWORD query,

except that in the case of Shirako, the attributes define the resources that will be created.

Figure 4.6 shows an example of a Plush component definition that is augmented with a

Shirako resource request. Shirako currently creates Xen [10] virtual machines (as indi-

cated by the “type” flag with value “1” in the resource description) with the CPU speed,

memory, disk space, and maximum bandwidth specified in the resource request. If one

or more of these attributes is not explicitly defined, Shirako uses default values for cre-

ating virtual machines. Also, Shirako arbitrates access toresources using leases. Notice

that the resource description contains a lease parameter which tells Shirako how long

the user intends to use the resources. Lastly, the resource description specifies which

Shirako server to contact with the resource request.

Since Shirako is a lease-based resource management environment, it is possi-

ble that the resources will not be available immediately when Plush contacts the Shirako

server on behalf of the user. Thus, rather than having Plush block on the XML-RPC

call until the resources are available, Plush instead registers a callback with the Shi-

rako server. When the resources become available, the Shirako server contacts the Plush

controller with information regarding the newly created resources. This information

includes the hostname, group name, username, and Plush client port number. Shirako

assumes that the Plush user has registered their SSH key withthe Shirako server ahead

of time, and when Shirako creates the virtual machines, it installs SSH keys directly

onto the resources. This makes accessing the resources via passphrase-less SSH pos-
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<?xml version="1.0" encoding="utf-8" ? >

<plush>
<project name="simple" >

<component name="Group1" >

<rspec>
<num hosts>10</num hosts>
<shirako>

<num hosts>10</num hosts>
<type>1</type>
<memory>200</memory>
<bandwidth>200</bandwidth>
<cpu>50</cpu>
<leaselength>600</leaselength>
<server>http://shirako.cs.duke.edu:20000</serve r>

</shirako>
</rspec>
<resources>

<resource type="ssh" group="shirako " />
</resources>

</component>
</project>

</plush>

Figure 4.6: Plush component definition containing Shirako resources.

sible after the resources are created. When all requested resources are available, Plush

sends a message to the user indicating that the resources areready for use. After the

requested lease length expires, Shirako contacts the Plushcontroller and asks that the

resources be removed from the resource pool.

Plush is currently being used by Shirako users regularly at Duke University.

While Shirako multiplexes resources on behalf of users, it does not provide any abstrac-

tions or functionality for using the resources once they have been created. On the other

hand, Plush provides abstractions for managing applications on distributed resources,

but provides no support for multiplexing resources. A “resource” is merely an abstrac-

tion in Plush to describe a machine that can host a distributed application. Resources can

be added and removed from the application’s resource pool, but Plush relies on external

mechanisms (like Shirako) for the creation and destructionof resources.

The integration of Shirako and Plush allow users to seamlessly leverage the

functionality of both systems. Although Shirako does provide a web based interface
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for creating and destroying resources, it does not provide an interface for using the

new resources, so Shirako users benefit from the interactivity provided by the Plush

command-line interface. Researchers at Duke are currentlyusing Plush to orchestrate

workflows of batch tasks and perform data staging for scientific applications including

BLAST [6] on virtual machine clusters managed by Shirako [45].

4.4.2 Using Usher

The integration of Plush and Usher is very similar to the integration of Plush

and Shirako. Like Shirako, Usher takes a request that describes the characteristics of

the desired resources as input and creates clusters of virtual machines that satisfy the

specified constraints. Figure 4.7 shows an example of a Plushcomponent definition

that includes an Usher resource request. Also like Shirako,Usher creates Xen virtual

machines, and the attributes in the resource request correspond to attributes used by Xen

to create customized resources. Specifically, Usher uses four attributes. The attribute

“count” simply defines how many machines are needed, and “ram” specifies the amount

of required memory. Note that the number of machines needed (count) should be greater

than or equal to the number of resources in the component (numhosts). The “cluster”

attribute specifies an optional name for the virtual cluster. Usher supports one additional

optional parameter, the “kerneluri” attribute (not shown in Figure 4.7), that defines the

location of the desired kernel image.

Unlike Shirako, Usher is not a lease based system. When a userrequests a vir-

tual machine, the machine is created immediately. Thus, rather than requiring a callback

that adds new resources to the resource pool after some potential delay as in Shirako,

Usher returns the information for accessing the newly created machines in response to

the initial “createResource” call. This response includesthe new virtual machine host-

names, usernames, and group identifiers. Similar to Shirako, Usher requires that the

user register their SSH key with the Usher server before requesting resources so that the

key can be automatically installed on the virtual machines,making SSH passphrase-less

authentication possible.
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<?xml version="1.0" encoding="utf-8" ? >

<plush>
<project name="simple" >

<component name="Group1" >

<rspec>
<num hosts>10</num hosts>
<usher>

<count>10</count>
<ram>256</ram>

<cluster>plush</cluster>
</usher>

</rspec>
<resources>

<resource type="ssh" group="usher" />
</resources>

</component>
</project>

</plush>

Figure 4.7: Plush component definition containing Usher resources.

The integration of Plush and Usher is still in a preliminary stage, and has

not yet seen extensive use. Usher has been in use for only a fewmonths, and is still

under development. Also, Usher itself provides a terminal interface that is similar to

the Plush command-line interface, and hence Usher users have been less enthusiastic

about using Plush than Shirako users who benefited from the functionality of the Plush

command-line. Since Usher users already have a user-friendly interface for controlling

resources, there is less motivation for them to try Plush. However, we are hopeful that

as the popularity of Usher increases, we will be able to convince new Usher users who

are managing complex applications to use Plush.

4.5 ModelNet Emulated Resources

Aside from PlanetLab resources and virtual machines, Plushalso supports

running applications on resources in emulated environments. In this section we discuss

how Plush supports adding emulated resources from ModelNet[103] to the resource

pool. Further, we describe how the Plush XML-RPC programmatic interface is used to

perform job execution in a batch scheduler that arbitrates access to ModelNet resources.
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Mission is a simple batch scheduler used to manage the execution of jobs that

run on ModelNet in our research cluster. ModelNet is a network emulation environment

that consists of one or more Linux edge nodes and a set of FreeBSD core machines run-

ning a specialized ModelNet kernel. The code running on the edge hosts routes packets

through the core machines, where the packets are subjected to the delay, bandwidth,

and loss specified in a target topology. A single physical machine hosts multiple “vir-

tual” IP addresses that act as emulated resources on the Linux edge hosts. To setup the

ModelNet computing environment with the target topology, two phases of execution are

required: deploy and run. Before running any applications,the user must firstdeploy

the desired topology on each physical machine, including the FreeBSD core. ModelNet

topologies are defined in two files: the model file and the routefile. The model file

specifies the assignment of emulated hosts to physical machines, as well as the subnet

and IP addresses for the emulated hosts. The route file definesthe properties of the

network links that connect the emulated hosts. The deploy process essentially instanti-

ates the emulated hosts, and installs the topology on all machines. Then, after setting

a few environment variables, the user is free torun applications on the emulated hosts

using virtual IP addresses just as applications are run on physical machines using real

IP addresses.

A single ModelNet experiment typically consumes almost allof the computing

resources available on the physical machines involved. Thus, when running an exper-

iment, it is essential to restrict access to the machines so that only one experiment is

running at a time. Further, there are a limited number of FreeBSD core machines run-

ning the ModelNet kernel available, and access to these hosts must also be arbitrated.

Mission, a simple batch scheduler, was developed locally tohelp accomplish this goal.

ModelNet users submit their jobs to the Mission queue, and asthe machines become

available, Mission pulls jobs off the queue and runs them on behalf of the user. This

ensures that no two jobs are run simultaneously, and also allows the resources to be

shared more efficiently. Rather than partitioning the resources into smaller groups so

that multiple users can reserve machines for exclusive access, all users can share all of
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<?xml version="1.0" encoding="UTF-8" ?>

<plush>
<resourcemanager type="ssh" >

<node hostname="sys80.ucsd.edu:1540" group="phys" flag="core" />
<node hostname="sys81.ucsd.edu:1540" group="phys" />
<node hostname="sys81.ucsd.edu:1541" vip="10.0.0.1" vn="1" group="emul" />
<node hostname="sys81.ucsd.edu:1542" vip="10.0.0.2" vn="2" group="emul" />
<node hostname="sys81.ucsd.edu:1543" vip="10.0.0.3" vn="3" group="emul" />
<node hostname="sys81.ucsd.edu:1544" vip="10.0.0.4" vn="4" group="emul" />

</resourcemanager>

</plush>

Figure 4.8: Plush directory file for a ModelNet topology. sys80 is the FreeBSD core
machine. sys81 is a Linux edge host that is running four emulated virtual hosts.

the resources, allowing for an increased number of total hosts in the emulated topology,

and also maximizing the overall utility of the cluster.

4.5.1 Configuring ModelNet with Plush

A Mission job submission has two components: a Plush application specifi-

cation and directory file. For ModelNet, the directory file contains information about

both the physical and virtual (emulated) resources on whichthe ModelNet experiment

will run. Typically the directory file is generated directlyfrom a ModelNet model file.

Unlike Plush directory files for other environments, the ModelNet directory file entries

contain extra parameters that specify the mapping from physical hosts to virtual IP ad-

dresses. Figure 4.8 shows an example directory file for a ModelNet topology. In this

figure, some of the resources include two extra parameters, “vip” and “vn”, which define

the virtual IP address and virtual number (similar to a hostname) for the emulated re-

sources. Also, notice that different group names are used todistinguish emulated hosts

from physical hosts. The Plush controller parses this file atstartup and populates the

resource pool with both the emulated and physical resources. The matcher then uses

the group information to ensure that the correct resources are used in each stage of the

execution.

In addition to the directory file that is used to populate the Plush resource pool,

users also submit an application specification describing the application they wish to run
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on the emulated topology to the Mission server. This application specification contains

two component blocks. The first component block describes the processes that run

on the physical machines during the deployment phase (wherethe emulated topology

is instantiated). The corresponding component that is associated with this component

block specifies that the resources used during this phase belong to the “phys” group. The

second component block defines the processes associated with the target application.

The component for this component block specifies that resources belong to the “emul”

group. When the controller starts the Plush clients on the emulated hosts, it specifies

extra command-line arguments that are defined in the directory file by the “vip” and

“vn” attributes. These arguments set the appropriate ModelNet environment variables,

ensuring that all commands run on that client on behalf of theuser inherit those settings.

An example application specification that uses the resources defined in Figure 4.8 is

shown in Figure 4.9.

When a user submits a Plush application specification and directory file to

Mission, the Mission server parses the directory file to identify which resources are

needed to host the application. When those resources becomeavailable for use, Mis-

sion starts a Plush controller on behalf of the user using thePlush XML-RPC interface.

Mission passes Plush the directory file and application specification, and continues to

interact with Plush throughout the execution of the application via XML-RPC. After

Plush notifies Mission that the execution has ended, Missionkills the Plush process and

reports back to the user with the results. Any terminal output that is generated is emailed

to the user.

Plush jobs are currently being submitted to Mission on a daily basis at UCSD.

These jobs include experimental content distribution protocols, distributed model check-

ing systems, and other distributed applications of varyingcomplexity. Mission users

benefit from Plush’s automated execution capabilities. Users simply submit their jobs

to Mission and receive an email when their task is complete. They do not have to spend

time configuring their environment or starting the execution. Individual host errors that

occur during execution are aggregated into one message and returned to the user in an
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<?xml version="1.0" encoding="utf-8" ?>

<plush>
<project name="deploy" >

<component name="PhysicalHosts" >

<rspec>
<num hosts>2</num hosts>

</rspec>
<resources>

<resource type="ssh" group="phys" />
</resources>

</component>
<component name="VirtualHosts" >

<rspec>
<num hosts>4</num hosts>

</rspec>
<resources>

<resource type="ssh" group="emul" />
</resources>

</component>
<applicationblock name="modelnet_app" >

<execution>
<componentblock name="phys_block" >

<component name="PhysicalHosts" />
<processblock name="phys" >

<process name="deploy" >

<path>/projects/modelnet/bin/deployhost</path>
<cmdline>

<arg>example.model</arg>
<arg>example.route</arg>

</cmdline>
</process>

</processblock>
</componentblock>
<componentblock name="virt_block" >

<component name="VirtualHosts" />
<predecessor name="phys_block" />
<processblock name="modelnet_virtual" >

<process name="test_hostname" >

<path>/bin/hostname</path>
</process>

</processblock>
</componentblock>

</execution>
</applicationblock>

</project>

</plush>

Figure 4.9: ModelNet application specification. Each emulated resource runs the com-
mand “/bin/hostname.”

email. Logfiles are collected in a public directory on a common file system and labeled

with a job ID, so that users are free to inspect the output fromindividual hosts if desired.

Another key benefit of using Mission is that it allows users tomore easily transition

from an emulation environment to live deployment. Once a Mission user has created

an application specification for execution on ModelNet, thechanges required to adapt

the specification for execution on PlanetLab are trivial, and mostly involve removing
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the component block responsible for deploying the emulatedtopology. In this context,

Plush accomplishes its goal of helping users seamlessly transition from emulation to

live deployment during application development.

4.6 Summary

In this chapter, we discussed how Plush interacts with several external resource

management services—namely SWORD, Shirako, Usher, and Mission—to add and re-

move different types of resources to and from an application’s resource pool. We also

described how the Plush resource matcher uses these resources to create matchings that

contain the best set of resources available for hosting the target application. Using the

extensible resource abstractions provided by Plush for interacting with resources from a

variety of different environments, users are able to run their applications on PlanetLab,

ModelNet, or on clusters of Xen virtual machines without ever having to worry about

the underlying details of the environment.
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Chapter 5

Partial Barriers

This chapter discusses techniques for accomplishing wide-area distributed

synchronization in Plush. Traditionally, synchronization barriers have been used to en-

sure that no cooperating process advances beyond a specifiedpoint until all processes

have reached that point. In heterogeneous large-scale distributed computing environ-

ments, with unreliable network links and machines that may become overloaded and

unresponsive, traditional barrier semantics are too strict to be effective for a broad range

of distributed applications. In response to this limitation, we explore several relaxations

and introduce apartial barrier, which is a synchronization primitive designed to en-

hance liveness in failure-prone computing environments. Partial barriers are robust to

variable network conditions; rather than attempting to hide the asynchrony inherent to

wide-area settings, they enable appropriate application-level responses. In this chapter,

we describe how partial barriers have been integrated into Plush, and in Chapter 6 we

evaluate the improved performance achieved using partial barriers for several wide-area

distributed applications.

5.1 Background and Overview

One of the main goals of Plush is to support the deployment of abroad range

of applications in a variety of distributed environments, including large-scale wide-area

computing platforms, where significant variations in processor performance, network
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connectivity, and node reliability are the norm. These computing environments lie in

stark contrast to the tightly-coupled cluster and supercomputer environments tradition-

ally employed by compute-intensive applications. What remains unchanged, however,

is the need to synchronize various phases of computation across the participating re-

sources. The realities of these failure-prone environments place additional demands

on the synchronization mechanisms required in Plush; whileexisting techniques pro-

vide correct operation in volatile environments, the application’s performance is often

severely degraded due to failures or overloaded resources.In this chapter, we describe

how new, relaxed synchronization semantics in Plush can provide significant perfor-

mance improvements in distributed applications run acrossthe wide-area.

Synchronizing parallel and distributed computations in general has long been

the focus of significant research effort. At a high-level, the goal of synchronization in

this context is to ensure that concurrent computation tasks—across independent threads,

processors, nodes in a cluster, or resources spread across the Internet—are able to make

independent forward progress while still maintaining somehigher-level correctness se-

mantic. Perhaps the simplest synchronization primitive isthe barrier [50], which es-

tablishes a rendezvous point in the computation that all concurrent nodes, processors,

or threads must reach before any are allowed to continue. Bulk synchronous parallel

programs running on massively parallel processors (MPPs) or tightly-coupled clusters

employ barriers to perform computation and communication in phases, transitioning

from one consistent view of shared underlying data structures to another. Thus dur-

ing the design of Plush it only seemed natural to support the barrier synchronization

primitive to accomplish similar synchronization goals.

In past work, barriers and other synchronization primitives have defined strict

semantics that ensure safety—i.e., that no node, thread, or processor falls out of lock-

step with the others—at the expense of liveness. In particular, if employed naively, a

parallel or distributed computation using barrier synchronization moves forward at the

pace of the slowest participant and the entire computation must be aborted if any partic-

ipant fails. In closely-coupled supercomputer or cluster environments, these problems
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can be avoided relatively easily. Failure during computation is expected to be rare,

and skillful programmers optimize the performance of theirapplications by leveraging

knowledge about the relative speed of individual processors and nodes in their target

environment. Further, dataflow can be carefully crafted based upon an understanding of

transfer times and access latencies to prevent competing demand for the I/O bus.

In wide-area computing environments—where individual node speeds are

unknown and variable, communication topologies are unpredictable, and failure is

commonplace—applications must be robust to a range of operating conditions. It is

nearly impossible to predict the performance of individualresources, and thus the per-

formance tuning common in cluster and supercomputing environments is impractical.

Further, individual node failures are almost inevitable, hence applications that run in

these volatile environments are generally engineered to adapt to or recover from a vari-

ety of failures. Additionally, due to the unpredictable nature of these environments, it is

often difficult to determine the optimal degree of concurrency a priori. As a result, one

goal in the design of Plush is to provide robust and adaptive mechanisms for adjusting

the degree of concurrency of an application during its execution, which is especially

helpful in cases where parallel execution appears to be degrading performance due to

self-interference.

In addition to providing mechanisms for adaptively determining the optimal

concurrency level in distributed applications, Plush partial barriers address two other

limitations of traditional barriers. Using traditional semantics, a resource arriving at

a barrier blocks and waits for all other resources to arrive before continuing computa-

tion. Using partial barriers, a resource need not necessarily block waiting for all other

resources to arrive—doing so would likely sacrifice efficiency or even liveness as the ap-

plication waits for either slow or failed resources. Similarly, releasing a barrier does not

necessarily imply that all resources should pass through the barrier simultaneously—

e.g., simultaneously releasing thousands of resources to download a software package

effectively mounts a denial-of-service attack against thetarget repository. Instead, par-

tial barriers allow distributed applications to manage theentry and release semantics of
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their logical barriers in an application-specific manner, as described in the Plush appli-

cation specification.

In summary, this chapter discusses the design and implementation of a new

synchronization primitive in Plush that focuses on improving performance in distributed

applications running in wide-area computing environments. In this context, we make the

following contributions:

• We introduce apartial barrier, a synchronization primitive designed for hetero-

geneous failure-prone environments. By relaxing traditional semantics, partial

barriers enhance liveness in the face of slow, failed, and self-interfering resources.

• Based on the observation that the arrival rate at a barrier will often form a heavy-

tailed distribution, we design a heuristic to dynamically detect theknee of the

curve—the point at which arrivals slow considerably—allowing applications to

continue despite slow nodes. We also adapt the rate of release from a barrier to

prevent performance degradation due to self-interfering processes.

• We integrate partial barriers into the core design of Plush,so that Plush and the

applications being managed by Plush can achieve the benefitsthat partial barriers

provide. In Chapter 6 we discuss how we added partial barriers to several ex-

isting distributed applications that are managed by Plush,resulting in significant

performance improvements.

5.2 Motivation

In the remainder of this chapter, we refer to nodes or resources asenteringa

barrier when they reach a point in the computation that requires synchronization. When

a barrierreleasesor fires (we use the terms inter-changeably), the blocked nodes are

allowed to proceed on to the next phase of computation. According to strict barrier

semantics, ensuring safety,i.e., global synchronization, requires all nodes to reach a

synchronization point before any node proceeds. In the faceof wide variability in per-

formance and prominent failures, however, strict enforcement may force the majority of
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nodes to block while waiting for a handful of slow or failed nodes to catch up. Many

wide-area applications already have the ability to reconfigure themselves to tolerate node

failures. We can harness this functionality in Plush to avoid excessive waits at barriers:

once slow nodes are identified, Plush can remove them from thecomputation, and pos-

sibly replace them with quicker nodes for the remainder of the execution.

One of the important questions, then, is determining when torelease a barrier,

even if all nodes have not arrived at the synchronization point. That is, it is impor-

tant to dynamically determine the point where waiting for additional nodes to enter

the barrier will cost the application more than the benefit brought by any additional

arriving nodes in the future. This determination often depends on the semantics of in-

dividual applications. Even with full knowledge of application behavior, making the

decision appropriately requires future knowledge. Duringthe design of Plush we devel-

oped a technique to dynamically identify “knees” in the nodearrival process,i.e.,points

where the arrival process significantly slows. Plush uses these points to make informed

application-specific decisions regarding when to release barriers.

A primary contribution of this work is the definition of relaxed barrier seman-

tics in Plush that provide support for a variety of wide-areadistributed computations.

Although we will look at specific applications that use partial barriers in Chapter 6, to

motivate our proposed extensions consider the following general application scenarios:

Application initialization. Many distributed applications require a startup

phase to initialize their local state and to coordinate withremote participants before be-

ginning their operation. Consider a distributed hash tablethat must initialize routing

tables at a fraction of the participants before performing any lookups, or an overlay

multicast tree that must have most participants join beforebeginning to transmit data.

Typically, developers introduce an artificial delay judgedto be sufficient to allow the

system to stabilize. Alternatively, when using Plush to manage these applications, we

can define partial barriers that cleanly separate the initialization phase from the remain-

der of the execution in our application specification. For example, if each node entered

a barrier and informed the Plush controller upon completingthe initialization phase, the
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Plush controller would know exactly when initialization completes across all partici-

pants, and developers would be freed from introducing arbitrarily chosen delays into the

interactive development/debugging cycle.

Phased computation and communication.Scientific applications and large-

scale computations often operate in phases consisting of one or many sequential, local

computations, followed by periods of global communicationor parallel computation.

For instance, an application might consist of a phase of local computation on a data

source followed by a phase of global communication to distribute the necessary updates

for the next phase of computation. These computations naturally map to the partial

barrier abstraction in Plush: one phase of the computation defined in the application

specification must complete before proceeding to the next phase, and each phase is

separated by a barrier. Other applications operate on a workqueue that distributes tasks

to available machines based on the rate that they complete individual tasks. Here, a

barrier may serve as a natural point for distributing or reallocating work.

Coordinated network operations. Many distributed applications measure

network characteristics. However, uncoordinated measurements can self-interfere, lead-

ing to wasted effort and incorrect results. Such systems benefit from a mechanism that

limits the number of nodes that simultaneously perform probes. Similarly, imagine an

application that requires thousands of nodes to simultaneously download a file from the

same web server. Serving thousands of simultaneous requests at once will cause the

server to thrash and become overloaded. Again we want to limit the number of simulta-

neous downloads based on the speed and network capacity of the server. Partial barriers

are capable of providing this needed functionality in both cases. In these applications,

the Plush application specification defines two barriers to delimit a “critical section” of

activity (e.g., a network measurement or file transfer). The first barrier releases some

maximum number of nodes into the critical section at a time and waits until these nodes

reach the second barrier, thereby exiting the critical section, before releasing the next

round of nodes. In this context, partial barriers provide the functionality of a counting

semaphore that limits the number of simultaneous network operations.
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To further clarify the goal of partial barriers in Plush, it is perhaps worthwhile

to consider what weare nottrying to accomplish. Partial barriers in Plush provide only

a loose form of group membership [28, 42, 74]. In particular,partial barriers do not

provide any ordering of messages relative to barriers as in virtual synchrony [14, 16],

nor do partial barriers require that all participants come to consensus regarding a view

change [61]. In effect, we strive to construct an abstraction that exposes the asynchrony

and the failures prevalent in wide-area computing environments in a manner that allows

Plush to make dynamic and adaptive application-specific decisions as to how to respond.

It is also important to realize that not all applications will benefit from relaxed

synchronization semantics. The correctness of certain classes of applications cannot be

guaranteed without strict synchronization. For example, some applications may require

a specific number of hosts to complete a computation, and thusreleasing a barrier early

without waiting for all participants to arrive will yield incorrect results. Other applica-

tions may approximate a measurement (such as network delay)and continuing without

all nodes reduces the accuracy of the result. However, many distributed applications,

including several shown in Chapter 6, can afford to sacrificeglobal synchronization

without negatively impacting the results. These applications either support dynamically

degrading the computation, or are robust to failures and cantolerate mid-computation

reconfigurations. Our results indicate that for applications that are willing and able to

sacrifice safety, the semantics provided by partial barriers in Plush have the potential to

improve performance significantly, especially in volatilewide-area environments.

5.3 Design and Implementation

Partial barriers are a set of semantic extensions to the traditional barrier syn-

chronization abstraction. Our implementation has a simpleinterface for customizing

barrier functionality in Plush. This section describes these extended semantics, details

our API, and presents the implementation details.
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Figure 5.1: (a) Traditional semantics: All hosts enter the barrier (indicated by the white
boxes) and are simultaneously released (indicated by dotted line). (b) Early entry: The
barrier fires after 75% of the hosts arrive. (c) Throttled release: Hosts are released in
pairs every∆T seconds. (d) Counting semaphore: No more than two hosts are simulta-
neously allowed into a “critical section” (indicated by thegrey regions). When one host
exits the critical section, another host is allowed to enter.

5.3.1 Design

We define two new barrier semantics to provide better supportfor applications

that require synchronization in failure-prone wide-area computing environments. The

new semantics are described below.

Early entry – Traditional barriers require all nodes to enter a barrier before

any node may pass through, as in Figure 5.1(a). A partial barrier with early entry (also

called early release) is instantiated with a timeout, a minimum percentage of entering

nodes, or both. Once the barrier has met either of the specified preconditions, nodes

that have already entered the barrier are allowed to pass through without waiting for the

remaining slow nodes to arrive (Figure 5.1(b)). Alternatively, an application may in-

stead choose to receive callbacks from the Plush controlleras nodes enter and manually

release the barrier, enabling the evaluation of arbitrary predicates.
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Throttled release – Typically, a barrier releases all nodes simultaneously

when a barrier’s precondition is met. A partial barrier withthrottled release specifies

a rate of release, such as two nodes every∆T seconds as shown in Figure 5.1(c). A

special variation of throttled release barriers allows applications to limit the number of

nodes that simultaneously exist in a “critical section” of activity, creating an instance of

a counting semaphore [30] (shown in Figure 5.1(d)), which may be used, for example,

to throttle the number of nodes that simultaneously performnetwork measurements or

software downloads. A critical distinction between traditional counting semaphores and

partial barriers, however, is support for failures. For instance, if a sufficient number of

slow or soon-to-fail nodes pass a counting semaphore, they will limit access to other

participants, possibly forever. Thus, as with early entry barriers, throttled release bar-

riers eventually time out slow or failed nodes, allowing thesystem as a whole to make

forward progress despite individual failures.

One issue that our proposed semantics introduce that does not arise with strict

barrier semantics is handling nodes performing late entry,i.e., arriving at an already

released barrier. Plush supports two options to address this case: i) pass-through seman-

tics that allow the node to proceed with the next phase of the computation even though it

arrived late; ii) catch-up semantics that issue an exception allowing Plush to reintegrate

the node into the mainline computation in an application-specific manner. This may

involve skipping ahead to the next barrier (subsequently omitting the intervening com-

putation) in an effort to “catch up” to the other nodes. Alternatively, Plush may decide

to completely remove the late arriving node from the remainder of the computation, or

ask the resource matcher for a replacement.

5.3.2 Partial Barrier API

Figure 5.2 summarizes the Plush partial barrier API. Note that application

developers who wish to take advantage of partial barriers inPlush need not code to

the APIs shown in this section (although we do support this functionality). Rather,

the API is shown here for clarity, and to help explain our implementation. In most
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class PartialBarrier{
PartialBarrier(string name, int max, int timeout, int percent, int minWait);
static void setManager(string Hostname);
void enter(string label, string Hostname);
void setEnterCallback(bool (*callbackFunc)(string label, string Hostname,

bool default), int timeout);
map<string label, string Hostname> getHosts(void);

}

Figure 5.2: Partial barrier instantiation API.

applications, partial barriers are defined within the Plushapplication specification by

simply specifying a few extra attributes in a typical barrier block.

When an application uses partial barriers, each Plush client becomes a bar-

rier participant. Each barrier participant involved in theapplication initializes a local

barrier with a constructor that takes the following arguments: name, max, timeout ,

percent , andminWait . name is a globally unique identifier for the barrier.max

specifies the maximum number of participants expected to arrive at the barrier. (While

we do not requirea priori knowledge of participant identity, it would be straightforward

to add.) Thetimeout in milliseconds sets the maximum time that can pass from the

point where the first node enters a barrier before the barrieris released. Thepercent

field similarly captures a minimum percentage of the maximumnumber of nodes that

must reach the barrier to activate early release. TheminWait field is associated with

thepercent field and specifies a minimum amount of time to wait (even if thespec-

ified percentage of nodes have reached) before releasing thebarrier with less than the

maximum number of nodes. Without this field, the barrier willdeterministically be re-

leased upon reaching the threshold percent of entering nodes even when all nodes are

entering rapidly. However, the barrier is always released if max nodes arrive, regard-

less ofminWait . The timeout field overrides thepercent field; the barrier will

fire if the timeout is reached, regardless of the percentage of nodes entering the barrier.

Thus timeout must be greater thanminWait —otherwiseminWait is never used.

The last three parameters to the constructor are optional; if left unspecified the barrier

operates as a traditional synchronization barrier, ignoring partial barrier properties.
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Coordination of barrier participants is controlled by a barrier manager, who is

typically (and by default) defined to be the Plush controller. The identity of the barrier

manager can be overridden in the application specification,and is set internally using

thesetManager() method. Plush clients call their local barrier’senter() method

and pass in theirHostname andlabel when they reach the appropriate point in their

execution. Thelabel argument supports advanced functionality such as load balanc-

ing, which we will discuss in detail in Chapter 6. The clients’ enter() method notifies

the barrier manager that the particular node has reached thesynchronization point. Our

implementation supports blocking calls toenter() (as described here) or optionally

a callback-based mechanism where the entering node is free to perform other function-

ality until the appropriate release callback is received, allowing the node to advance to

the next phase of computation.

While the standard Plush partial barrier API provides simplistic support for the

early release of a barrier, an application may maintain its own state to determine when

a particular barrier should fire and to manage any side effects associated with barrier

entry or release. For instance, an application may want the barrier manager to kill all

processes running on a node that arrives late to a particular(already released) barrier. To

support application-specific functionality, thesetEnterCallback() method speci-

fies a function to be called when any node enters a barrier. (Inorder to take advantage of

this advanced functionality, applications must code to theAPI directly, rather than defin-

ing partial barriers within the application specification.) The callback takes thelabel

andHostname passed to theenter() method and a boolean variable that specifies

whether the barrier manager would normally release the barrier upon this entry. The

callback function returns a boolean value to specify whether the barrier should actually

be released or not, potentially overriding the manager’s decision. A second argument

to setEnterCallback() calledtimeout specifies the maximum amount of time

that may pass before successive invocations of the callback, preventing situations where

the application waits an indefinite amount of time for the next node to arrive before

deciding to release.
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class ThrottleBarrier extends PartialBarrier{
void setThrottleReleasePercent(int percent);
void setThrottleReleaseCount(int count);
void setThrottleReleaseTimeout(int timeout);

}

class SemaphoreBarrier extends PartialBarrier{
void setSemaphoreCount(int count);
void setSemaphoreTimeout(int timeout);
void release(string label, string Hostname);
void setReleaseCallback(int (*callbackFunc)(string label, string Hostname,

int default), int timeout);

}

Figure 5.3: ThrottleBarrier and SemaphoreBarrier API.

Barrier participants may wish to learn the identity of all hosts that have passed

through a barrier, similar to (but with relaxed semantics from) view advancement or

GBCAST in virtual synchrony [15]. ThegetHosts() method returns a map of

Hostnames and labels through a remote procedure call with the barrier manager.

If many hosts are interested in membership information, it can optionally be propagated

from the barrier manager to all nodes by default as part of thebarrier release operation.

Figure 5.3 describes a subclass ofBarrier , calledThrottleBarrier ,

with throttled release semantics. These semantics allow for a pre-determined

subset of the maximum number of nodes to be released from the barrier

at a specified rate. The methodssetThrottleReleasePercent() and

setThrottleReleaseCount() periodically release a percentage and number of

nodes, respectively, once the barrier fires.setThrottleReleaseTimeout()

specifies the periodicity of release.

In addition, Figure 5.3 details a variant of throttled release barriers,

SemaphoreBarrier , which specifies a maximum number of nodes that may simulta-

neously enter a critical section. ASemaphoreBarrier extends the throttled release

semantics further by placing a barrier at the beginning and end of a critical section of

activity to ensure that only a specific number of nodes pass into the critical section si-

multaneously. One key difference for this type of barrier isthat it does not require any
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minimum number of nodes to enter the barrier before beginning to release nodes into

the subsequent critical section. It simply mandates a maximum number of nodes that

may simultaneously enter the critical section. ThesetSemaphoreCount() method

sets this maximum number allowed in the critical section. Nodes call the barrier’s

release() method upon completing the activity in the subsequent critical section,

allowing the barrier to release additional nodes.setSemaphoreTimeout() allows

for timing out nodes that enter the critical section but do not complete within a maxi-

mum amount of time. In this case, they are assumed to have failed, enabling the release

of additional nodes. ThesetReleaseCallback() enables application-specific re-

lease policies and timeout of slow or failed nodes in the critical section. The callback

function insetReleaseCallback() returns the number of hosts to be released.

5.3.3 Implementation

Partial barrier participants (which are also Plush clients) implement the inter-

face described above while a separate barrier manager (usually the Plush controller) co-

ordinates communication across nodes. While it is not required that the barrier manager

run on the Plush controller, this is the default behavior forapplications being managed

by Plush that do not explicitly specify another barrier manager. Our implementation of

partial barriers consists of approximately3, 000 lines of C++ code, and is included as

part of the core Plush codebase. At a high-level, a barrier participant callingenter()

transmits aBARRIERREACHEDmessage using TCP to the manager with the calling

host’s unique identifier (hostname), barrier name, and label. The manager updates its

local state for the barrier, including the set of nodes that have thus far entered the barrier,

and performs appropriate callbacks as necessary. The manager starts a timer to support

various release semantics if this is the first node entering the barrier and subsequently

records the inter-arrival times between nodes entering thebarrier.

If a sufficient number of nodes enter the barrier or a specifiedamount of

time passes, the manager transmitsFIRE messages using TCP to all nodes that have

entered the barrier. For throttled release barriers, the manager releases the speci-
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fied number of nodes from the barrier in FIFO order. The manager also sets a timer

as specified bysetThrottleReleaseTimeout() to release additional nodes

from the barrier when appropriate. For semaphore barriers,the manager releases

the number of nodes specified bysetSemaphoreCount() and, if specified by

setSemaphoreTimeout() , also sets a timer to expire for each node entering the

critical section. Each call toenter() transmits aSEMAPHOREREACHEDmessage

to the manager. When there is room in the critical section, the manager transmits a

FIRE message to the node and starts a timer. If the semaphore timerassociated with the

node expires before receiving the correspondingSEMAPHORERELEASEDmessage,

the manager assumes that node has either failed or is proceeding slowly, and an addi-

tional node is released into the critical section. EachSEMAPHORERELEASEDmessage

releases one new node into the critical section.

For all barriers, the manager must gracefully handle nodes arriving late, i.e.,

after the barrier has fired. Plush employs two techniques to address this case. For pass-

through semantics, the manager transmits aLATE FIRE message to the calling node,

releasing it from the barrier. In catch-up semantics, the manager issues an exception

and transmits aCATCHUPmessage to the node. Catch-up semantics allow applications

to respond to the exception in an application-specific manner. Depending on the appli-

cation’s response to the exception, the Plush controller may attempt to reintegrate the

node back into the computation at a later time. The type of barrier—pass-through or

catch-up—is specified at barrier creation time (omitted from Figure 5.2 for clarity).

5.3.4 Fault Tolerance

Similar to our concerns over controller failures in Plush, one concern with

our centralized barrier manager is tolerating manager faults. We improve overall sys-

tem robustness with support for replicated managers—just as we did for the Plush

controllers—with a few added features for maintaining consistency. Our algorithm is

a variant of traditional primary/backup systems: each participant maintains an ordered

list of barrier managers. Any message sent from a client to the logical barrier manager
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is sent to all managers in the list. Because application-specific entry callbacks may be

non-deterministic, a straightforward replicated state machine approach where each bar-

rier manager simultaneously decides when to fire is insufficient. Instead, the primary

manager forwards allBARRIERREACHEDmessages to the backup managers. These

messages act as implicit “keep alive” messages from the primary. If a backup manager

receivesBARRIERREACHEDmessages from clients but not the primary for a sufficient

period of time, the first backup determines the primary has failed and assumes the role

of primary manager. The secondary backup takes over should the primary fail again,

and so on. Note that our approach admits the case where multiple managers simultane-

ously act as the primary manager for a short period of time. Participants ignore duplicate

FIRE messages for the same barrier, so progress is assured, and one manager eventually

emerges as primary.

Although using the replicated manager scheme described above lowers the

probability of losingBARRIERREACHEDmessages, it does not provide any increased

reliability with respect to messages sent from the manager(s) to the remote hosts. All

messages are sent using reliable TCP connections. If a connection fails between the

manager and a remote host, however, messages may be lost. Forexample, suppose the

TCP connections between the manager and some subset of the remote hosts break just

after the manager sends aFIRE message to all participants. Similarly, if a group of

nodes fails after entering the barrier, but before receiving theFIRE message, the failure

may go undetected until after the manager transmits theFIRE messages. In these cases,

the manager will attempt to sendFIRE messages to all participants, and detect the TCP

failures after the connections time out. Such ambiguity is unavoidable in asynchronous

systems; the manager simply informs the application of the failure(s) via a callback and

lets the application decide the appropriate recovery action. As with any other failure

in Plush, the application may choose to continue execution and ignore the failures, find

new hosts to replace the failed ones, or abort the execution entirely.
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5.3.5 Design Alternatives

To address potential scalability problems with our centralized bar-

rier implementation, a tree of barrier managers could be built that aggregates

BARRIERREACHEDmessages from children before sending a single message up the

tree [47, 114, 73]. This tree could be built randomly from theexpected set of hosts,

or it could be crafted to match the underlying communicationtopology, in effect form-

ing an overlay aggregation tree [104, 113]. In these cases, the manager at the root of

the tree would send FIRE messages to its children, which would in turn propagate the

message down the tree to the leaves. One difficult question with this approach is de-

termining when interior nodes should pass summaryBARRIERREACHEDmessages to

their parent. Although a tree-based approach may provide better scalability by aggre-

gating messages up the tree, the latency required to pass a message to all participants

may increase since the number of hops required to reach all participants is greater than

in the centralized approach.

A gossip-based algorithm could also be employed to manage barriers in a fully

decentralized manner [14]. In this case, each node acts as a barrier manager and swaps

barrier status with a set of remote peers. Given sufficient pair-wise exchanges, some

node will eventually observe enough hosts having reached the barrier and it will fire the

barrier locally. Subsequent pair-wise exchanges will propagate the fact that the barrier

was fired to the remainder of the participants, until eventually all active participants are

informed. Alternatively, the node that determines that a barrier should be released could

broadcast theFIRE message to all participants. Fully decentralized solutions like this

gossip-based approach have the benefit of being highly faulttolerant and scalable since

the work is shared equally among participants and there is nosingle point of failure.

However, since information is propagated in a somewhatad hocfashion, it takes more

time to propagate information to all participants, and the total amount of network traffic

is greater. There is also an increased risk of propagating stale information. In our expe-

rience, we have not yet observed significant reliability limitations with our centralized

barrier implementation to warrant exploring a fully decentralized approach.
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We expect that all single-manager algorithms will eventually run into scal-

ability limitations based on a single node’s ability to manage incoming and outgoing

communication with many peers. However, based on our evaluation of scalability (see

Section 5.5), the performance of centralized barriers is acceptable to at least 100 nodes.

In fact, we find that our centralized barrier implementationout-performs an overlay tree

with an out-degree of ten for 100 total participants with regards to the time it takes a

single message to propagate to all participants.

5.4 Adaptive Release

Unfortunately, the extended barrier semantics in Plush partial barriers intro-

duce additional parameters: the threshold for early release and the concurrency level

in throttled release. Experience has shown it is often difficult to select values that are

appropriate across heterogeneous and changing network conditions. Hence, we pro-

vide adaptive mechanisms in Plush to dynamically determineappropriate values during

execution.

5.4.1 Early Release

There is a fundamental tradeoff in specifying an early release threshold. If

the threshold is too large, the application will wait unnecessarily for a relatively modest

number of additional nodes to enter the barrier; if too small, the application will lose the

opportunity to have participation from other nodes had it just waited a bit longer. Thus,

Plush uses the barrier’s callback mechanism to determine release points in response to

varying network conditions and node performance.

In our experience, the distribution of node arrivals at a barrier is often heavy-

tailed: a relatively large portion of nodes arrive at the barrier quickly with a long tail of

stragglers entering late. In these situations, many targetdistributed applications would

wish to dynamically determine the “knee” of a particular arrival process and release

the barrier upon reaching it. Unfortunately, while it can bestraightforward to manually
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Figure 5.4: Dynamically determining the knee of arriving processes. Vertical bars indi-
cate a knee detection.

determine the knee offline once all of the data for an arrival process is available, it is

difficult to determine this point online.

The heuristic used in Plush, inspired by TCP retransmissiontimers and

MONET [7], maintains an exponentially weighted moving average (EWMA) of the host

arrival times (arr), and another EWMA of the deviation from this average for each mea-

surement (arrvar). As each host arrives at the barrier, Plush records the arrival time of

the host, as well as the deviation from the average. Then Plush recomputes the EWMA

for botharr andarrvar, and use the values to compute a maximum wait threshold of

arr + 4 ∗ arrvar. This threshold indicates the maximum time Plush is willingto wait

for the next host to arrive before firing the barrier. If the next host does not arrive at the

barrier before the maximum wait threshold passes, Plush assumes that a knee has been

reached. Figure 5.4 illustrates how these values interact for a simulated group of 100

hosts entering a barrier with randomly generated exponential inter-arrival times. Notice

that a knee occurs each time the host arrival time intersectsthe threshold line.

With the capability to detect multiple knees, it is important to provide a way

for applications to indicate to Plush how to pick the right knee and avoid firing earlier
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or later than desired. Aggressive applications may choose to fire the barrier when the

first knee is detected. Conservative applications may wish to wait until some specified

amount of time has passed, or a minimum percentage of hosts have entered the barrier

before firing. To support both aggressive and conservative applications, Plush partial

barriers allow the application to specify a minimum percentage of hosts, minimum wait-

ing time, or both for each barrier. If an application specifies a minimum waiting time of

five seconds, knees detected before five seconds are ignored.Similarly, if a minimum

host percentage of 50% is specified, the Plush knee detector ignores knees detected be-

fore 50% of the total hosts have entered the barrier. If both values are specified, the knee

detector uses the more conservative threshold so that both requirements (time and host

percentage) are met before firing.

One variation in the Plush approach compared to other related approaches is

the values for the weights in the moving averages. In the RFC for computing TCP re-

transmission timers [27], the weight in the EWMA of thertt places a heavier weight

(0.875) on previous delay measurements. This value works well for TCP since the aver-

age delay is expected to remain relatively constant over time. In distributed applications

running across the wide-area, however, we expect the average arrival time of nodes to

increase, and thus we decrease the weight used in Plush to be0.70 for previous mea-

surements ofarr. This allows thearr value to more closely follow the actual data

being recorded. When measuring the average deviation, which is computed by averag-

ing |sample − arr| (wheresample represents the latest arrival time recorded), Plush

uses a weight of0.75 for previous measurements, which is the same weight used in TCP

for the variation inrtt.

5.4.2 Throttled Release

Plush also employs an adaptive method to dynamically adjustthe amount of

concurrency in the “critical section” of a semaphore barrier. In many applications, it is

impractical to select a single value which performs well under all conditions. Similar

in spirit to SEDA’s thread-pool controller [109], our adaptive release algorithm selects



110

an appropriate concurrency level based upon recent releasetimes. The algorithm starts

with a low-level of concurrency and increases the degree of concurrency until response

times worsen; it then backs off and repeats, oscillating about the optimum value.

Mathematically, the algorithm used in Plush compares the median of the dis-

tributions of recent and overall release times. For example, if there are15 hosts in the

critical section when the45th host is released, the algorithm computes the median re-

lease time of the last15 releases, and of all45. If the latest median is more than 50%

greater than the overall median, no additional hosts are released, thus reducing the level

of concurrency to14 hosts. If the latest median is more than 10% but less than 50%

greater than the overall median, one host is released, maintaining a level of concurrency

of 15. In all other cases, two hosts are released, increasing the concurrency level to16.

The thresholds and differences in size are selected to increase the degree of concurrency

whenever possible, but keep the magnitude of each change small.

5.5 Partial Barriers in Plush

Partial barriers are part of the core design of Plush, enabling all applications

being managed by Plush to experience the benefits of relaxed synchronization seman-

tics. Plush users have the option of specifying traditionalbarriers or partial barriers

using barrier blocks in their application specifications. When defining partial barriers,

extra parameters are defined, including the timeout, minimum percentage of nodes re-

quired, release rate, and whether the adaptive release techniques described in Section 5.4

should be used. In order for applications to achieve the maximum benefits, however, our

centralized implementation of partial barriers must be scalable enough to support many

hosts spread across the wide-area. Further, Plush itself uses partial barriers internally

to separate different stages in an application’s flow of control. Thus it is important to

evaluate how effective partial barriers are in the context of application management. In

this section we evaluate the scalability and performance ofpartial barriers in Plush.
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Figure 5.5: Scalability of centralized Plush barrier implementation. “All hosts”
line shows the average time across five runs for barrier manager to receive
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from 90% of all hosts. Error bars indicate standard deviation.

5.5.1 Scalability

To estimate baseline barrier scalability in Plush, we measure the time it takes

to move between two barriers for an increasing number of PlanetLab hosts. In this

experiment, the Plush controller (and barrier manager) waits for all hosts to reach the

first barrier. All hosts are released, and then immediately enter the second barrier. We

measure the time between when the barrier manager at the Plush controller sends the first

FIRE message for the first barrier and receives the lastBARRIERREACHEDmessage

for the second barrier. No partial barrier semantics are used for these measurements,

since we are trying to evaluate our baseline performance. Figure 5.5 shows the average

completion time for varying numbers of nodes across a total of five runs for each data

point. Error bars in the graph show the standard deviation.

Notice that even for 100 nodes, the average time for the barrier manager to

receive the lastBARRIERREACHEDmessage for the second barrier is approximately

one second. The large standard deviation values indicate that there is much variability
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in our results. This variability is due to the presence of straggler nodes that delay the

firing for several seconds or more. The 90th percentile, on the other hand, has little

variation and is relatively constant as the number of participants increases. This augurs

well for the potential of partial barrier semantics to improve performance in the wide-

area. Overall, we were satisfied with the performance achieved using our centralized

implementation for 100 nodes. Unfortunately we were unableto obtain a larger working

set of PlanetLab hosts at the time this experiment was performed. However, based on our

experience with using tree topologies for scalable communication in Plush (as discussed

in Chapter 3), we are confident that using a tree for barrier communication will allow us

to scale significantly further without sacrificing performance.

5.5.2 Admission Control

In Chapter 3 we discussed the design of the Plush architecture, consisting

of the controller that directs of the flow of the execution, and the distributed clients

that run on the resources involved in the application and execute commands. Thus,

Plush itself is a phased distributed application that has the potential to benefit from

the use of partial barriers in wide-area environments. In particular, partial barriers are

especially helpful during Plush’s application deploymentphase to separate the tasks of

node configuration and process startup. We found that in the heterogeneous and volatile

PlanetLab environment, the time to configure a set of nodes with the requisite software

can vary widely or fail entirely at individual hosts. In thiscase, we found it beneficial

to timeout the internal “software configuration” barrier inPlush and either proceed with

the available nodes or recruit additional nodes.

Similar to our discussion of coordinated network operations in Section 5.2, in

this section we consider the benefits of using a semaphore barrier to perform admission

control for parallel software installations in Plush. As part of application deployment,

Plush configures a set of resources with the software required to execute a particular

application. This process often involves installing the same software packages located

on a central server separately on each resource. Simultaneously downloading the same
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software packages across hundreds of nodes can lead to thrashing at the server hosting

the packages. The overall goal in using partial barriers is to ensure sufficient parallelism

such that the server is saturated (without thrashing) whilebalancing the average time to

complete the download across all participants.

For our results, we measure the time it takes Plush to installthe same 10-MB

file on 100 responsive and randomly chosen PlanetLab hosts while varying the number

of simultaneous downloads using a semaphore barrier. Figure 5.6 shows the results

of this experiment. The data indicates that limiting parallelism can improve the overall

completion rate. Releasing too few hosts does not fully consume server resources, while

releasing too many taxes available resources, increasing the time to completion. This is

evident in the graph since 25 simultaneous downloads finishes more quickly than both

ten and 100 simultaneous transfers.

While statically defining the number of hosts allowed to perform simultaneous

downloads works well for our simple file transfer experiment, varying network condi-

tions means that statically picking any single value is unlikely to perform well under all

conditions. Some applications may benefit from a more dynamic throttled release tech-
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nique that attempts to find the optimal number of hosts that maximizes throughput from

the server without causing saturation. The “Adaptive Simultaneous Transfers” line in

Figure 5.6 shows the performance of the Plush adaptive release technique as described

in Section 5.4.2. In this example, the initial concurrency level is15, and the level varies

according to the duration of each transfer. In this experiment the adaptive algorithm

line reaches 100% before the lines representing a fixed concurrency level of ten or 100,

but the algorithm was too conservative to match the optimal static level of 25 given the

network conditions at the time.

5.6 Summary

To summarize, in this chapter we showed that Plush partial barriers represent

a useful relaxation of the traditional barrier synchronization primitive that targets wide-

area, volatile deployment environments. In the next chapter we will show how partial

barriers are easily integrated in existing applications, and we believe that our simple API

bodes well for their general utility. Although we focused onthe use of partial barriers

in Plush in this chapter, we are hopeful that the semantics provided by partial barriers

in general can be used to bring to the wide area other sophisticated parallel algorithms

initially developed for tightly coupled environments. In our work thus far, we find in

many cases it may be as easy as directly replacing existing synchronization primitives

with their relaxed partial barrier equivalents.
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Chapter 6

Application Case Studies

The preceding chapters explored the design and implementation of the Plush

architecture, including a detailed discussion on resourcemanagement and partial barri-

ers. In this chapter, we revisit some of our initial design goals as described in Chap-

ter 2 and take a closer look at how Plush supports different classes of applications. In

particular, we look at an example short-lived computation,long-lived service, and two

parallel grid applications, and discuss how Plush manages each type of application. Ad-

ditionally, we evaluate various aspects of the Plush design, including partial barriers and

failure recovery, in the context of specific applications running on PlanetLab.

6.1 Short-lived Computations

In Chapter 2 we describe a short-lived computation as one that is closely mon-

itored by the user and runs for a few days or less. In this section, we examine how Plush

manages a specific short-lived computation—namely Bullet [56]—on PlanetLab. Like

the example file-distribution application in Chapter 2, Bullet aims to run on PlanetLab

machines with fast processors and low CPU load. In this section we show how Plush

uses SWORD to satisfy these resource constraints. We also quantify the benefits of

using partial barriers during application initializationwithin the context of Bullet.
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Figure 6.1: Bullet execution with one sender (S) sending to two receivers (R).

6.1.1 Managing Bullet on PlanetLab

Bullet is an overlay-based file-distribution infrastructure. In Bullet, a source

transmits a file to multiple receivers spread across the Internet. Rather than waiting for

the sender to send each byte (or “chunk”) of the file to each receiver separately, however,

Bullet leverages the parallel bandwidth available among receivers by allowing receivers

to also exchange data. This decreases the total download time across all hosts and in-

creases the overall throughput of the application. However, the receivers only benefit

from this technique if they are able to obtain data from otherreceivers that they do not

already possess. Redundant data is useless and wastes valuable network resources. To

alleviate the amount of redundant data transmitted, receivers share information with one

another regarding the location of specific chunks using a protocol called RanSub [55].

RanSub sends uniformly random subsets of global information throughout the overlay

network. Using RanSub, the receivers learn where to obtain missing chunks of the file

without waiting for the sender to send them directly. Figure6.1 illustrates a Bullet exe-

cution with one sender and two receivers. Notice how the sender splits the file into two

chunks and sends each chunk to a different receiver. As the sender transmits the chunks

to each receiver, the receivers also begin exchanging data.The end result is that each

receiver obtains the entire file quicker, maximizing the throughput of the application.
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As part of the application initialization bootstrapping process in Bullet, all re-

ceivers join the overlay by initially contacting the sourcebefore settling on their final

position in the overlay network topology. The published quantitative evaluation of Bul-

let presents a number of experiments across PlanetLab. However, to make performance

results experimentally meaningful when measuring behavior across a large number of

PlanetLab receivers, the authors hard-coded a 30-second delay at the sender from the

time that it starts to the time that it begins data transmission. This delay allowed the

receivers to join the overlay and figure out their position before starting transmission.

While typically sufficient for the particular targeted configuration, the timeout was often

too long, unnecessarily extending turnaround time for experimentation and interactive

debugging. Depending on overall system load and the number of participants, the time-

out was also sometimes too short, meaning that some participants did not complete the

join process before the sender began transmitting. While this latter case was not a prob-

lem for the correct behavior of the application, it made interpreting experimental results

difficult.

To address the limitations associated with using hard-coded initialization time-

outs, we use the partial barrier API in Plush to integrate barriers directly into the Bullet

source code. Since Bullet is also written in C++, this integration is straightforward, and

only requires adding two lines of code to Bullet. Once the join process completes on

an individual host (which means that they have successfullyjoined the overlay and are

ready to receive data), the host simply enters a barrier. TheBullet source also regis-

ters for a callback from the Plush barrier manager to be notified of a barrier release, at

which point the source begins transmitting data. This approach eliminates the problem

associated with arbitrarily choosing an application initialization timeout value, since the

barrier manager knows exactly when all hosts have joined theoverlay. However, with-

out partial semantics for our barriers, Bullet still suffers from poor performance due to

stragglers. We observe that when choosing a substantial number of time-shared Plan-

etLab hosts to perform the same amount of work, the completion time varies widely in

general, often following a heavy-tailed distribution. Thus most Bullet participants are
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stuck waiting for the few stragglers that fall in the “tail ofthe curve” to finish joining

the overlay before starting any file transfers.

A more desirable behavior in the Bullet initialization phase is to dynamically

detect knees in the heavy-tailed join process. When the barrier manager running on the

Plush controller determines that the knee of the join process has been reached, partic-

ipants already in the barrier are released; one side effect is that the Bullet source host

begins data transmission. Further, by calling thegetHosts() method in the partial

barrier API, the sender records the identities of participants that should be considered in

interpreting the experimental results later. Note that forthis particular application, any

late arriving participants who enter the barrier after transmission has started are ignored

by other participants and the barrier manager instructs them to exit immediately.

Figure 6.2 shows the application specification for Bullet onPlanetLab. Notice

that the top of the file defines the software package, which in this case is “bullet.tar.”

The component definition describes the desired resources, which include 130 PlanetLab

hosts assigned to the ucsdbullet slice. The component also includes a SWORD query

that requests resources with fast processors (based on the SWORD attribute “cpuspeed,”

which is measured in gigahertz) and low load (based on the attribute “fiveminload”).

After the component definition, the component block specification defines the actual

execution using the “run” process block. One interesting feature of this particular ap-

plication specification is the redirection of terminal output on the PlanetLab hosts to a

specific file. This redirection is accomplished by creating a“log manager” within the

process block. After the process block, the XML specifies the“bullet barrier” barrier

block that separates application initialization from the data transfer phase. Since we are

using the Plush API directly within the modified Bullet source code, nothing is defined

after the barrier block in the application specification. However, recall that the Bullet

source host registers a callback with the Plush barrier manager. A release of the startup

barrier signals the end of application initialization, andthus begins the transfer of data.
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<?xml version="1.0" encoding="utf-8" ?>

<plush>
<project name="Bullet" >

<software name="bullet" type="tar" >

<package name="bullet.tar" type="web" >

<path>http://strength.ucsd.edu/˜albrecht/bullet.tar</path>
<dest>bullet.tar</dest>

</package>
</software>
<component name="bullet_hosts" >

<rspec>
<num hosts>130</num hosts>
<sword>

<request>
<group>

<name>bullet hosts</name>
<num machines>all</num machines>
<fiveminload>0, 0, 2, 5, 1</fiveminload>
<cpuspeed>1, 2, 5, 5, 1</cpuspeed>

</group>
</request>

</sword>
</rspec>
<software name="bullet" />
<resources>

<resource type="planetlab" group="ucsd_bullet" />
</resources>

</component>
<applicationblock name="Bullet" >

<execution>
<componentblock name="run_bullet" >

<component name="bullet_hosts" />
<processblock name="run" >

<process name="appmacedon" >

<path>./appmacedon</path>
<cwd>bullet</cwd>
<log manager type="default" use api="true" >

<fd fd="1" type="file" path prefix="bulletlog-" path postfix=".txt" />
</log manager>

</process>
</processblock>
<barrier block name="bullet_barrier" >

<predecessor name="run" />
<barrier name="ready to stream" type="1" max="130" knee det="true" />

</barrier block>
</componentblock>

</execution>
</applicationblock>

</project>

</plush>

Figure 6.2: Bullet application specification.

6.1.2 Detecting Knees in Bullet

In this section we quantify the benefits of using partial barriers with knee

detection during the application initialization phase of Bullet. Figure 6.3 plots the cu-

mulative distribution of receivers that enter the startup barrier on they-axis as a function
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Figure 6.3: A startup barrier that regulates participants joining a large-scale overlay
network in Bullet. Vertical bars indicate when the Plush barrier manager detects a knee
and releases the barrier.

of time progressing on thex-axis. Each curve corresponds to an experiment with 50,

90, or 130 PlanetLab receivers in the initial target set. Thegoal is to run with as many

receivers as possible from the given initial set without waiting an undue amount of time

for a small number of stragglers to complete startup. Interestingly, it is insufficient to

filter for any static set of known “slow” resources on PlanetLab as performance tends to

vary on fairly small time scales and is influenced by multiplefactors (such as CPU load,

memory, and changing network conditions). Thus, manually choosing an appropriate

static set may be sufficient for one particular batch of runs but not likely the next.

Vertical lines in Figure 6.3 indicate where the barrier manager detects a knee

and releases the barrier. Although we ran the experiment multiple times, for clarity we

plot the results from a single run. While differences in timeof day or initial host char-

acteristics affect the quantitative behavior, the generalshape of the curve is maintained

in each run. However, in all of our experiments, we are satisfied with our ability to

dynamically determine the knee of the arrival process. The experiments are typically

able to proceed with 85-90% of the initial set participating, and wait no more than eight

seconds to begin transmission.
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6.2 Long-lived Services

In addition to short-lived computations, Chapter 2 describes the typical appli-

cation characteristics of long-running Internet services. To summarize, a long-running

service is not closely monitored by the operator and typically runs for months or years.

Many long-running services aim to run on as many resources aspossible and are exposed

to many different types of failures due to network and host variability and volatility. In

this section, we consider how Plush manages a distributed version of SWORD running

across all available PlanetLab hosts. Further, we evaluatethe ability of the Plush con-

troller to automatically detect and recover from failures in SWORD.

6.2.1 Managing SWORD on PlanetLab

SWORD, which is discussed in detail in Chapter 4, is an example of a long-

running PlanetLab service. Specifically, SWORD is a resource discovery service that

helps PlanetLab users find the best set of resources available to host their applications.

Recall that the original version of SWORD was fully distributed and stored data in a

DHT. In this distributed architecture, data from the DHT is used to respond to queries

for groups of resources that have specific characteristics.Distributed SWORD aims to

run on as many PlanetLab hosts as possible. This distributeddesign spreads the load

of the system across many hosts allowing for increased scalability (since there is less

work for each individual host when the total number of hosts is greater), and also allows

SWORD to accurately respond to queries using information from a larger number of

PlanetLab resources. The following paragraphs describe how Plush manages distributed

SWORD.

The XML application specification for SWORD is shown in Figure 6.4. As

in Bullet, the top half of the specification defines the SWORD software package and

the component required for the application. Notice that SWORD uses one component

consisting of hosts assigned to the ucsdsword PlanetLab slice. An interesting feature of

this component definition is the “numhosts” tag. Since SWORD is a service that wants
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<?xml version="1.0" encoding="utf-8" ?>

<plush>
<project name="sword" >

<software name="sword_software" type="tar" >

<package name="sword.tar" type="web" >

<path>http://plush.ucsd.edu/sword.tar</path>
<dest>sword.tar</dest>

</package>
</software>
<component name="sword_participants" >

<rspec>
<num hosts min="10" max="800" />

</rspec>
<resources>

<resource type="planetlab" group="ucsd_sword" />
</resources>
<software name="sword_software" />

</component>
<applicationblock name="sword_app_block" service="1" reconnectinterval="300" >

<execution>
<componentblock name="participants" >

<component name="sword_participants" />
<processblock name="sword" >

<process name="sword_run" >

<path>dd/planetlab/run−sword</path>
</process>

</processblock>
</componentblock>

</execution>
</applicationblock>

</project>

</plush>

Figure 6.4: SWORD application specification.

to run on as many nodes as possible, we specify a range of acceptable values rather

than a single number. Hence, as long as a minimum of ten hosts are available, Plush

continues managing SWORD. Since the max value is set to 800, Plush does not look

for more than 800 resources to host SWORD. Currently, PlanetLab contains less than

800 hosts, which means that Plush attempts to run SWORD on allavailable PlanetLab

resources. The lower half of the application specification defines the application block,

component block, and process block that describe the SWORD execution.

The application block specification for SWORD is similar to the application

block specification of Bullet, save a few important differences. When defining the appli-

cation block object for SWORD, we include special “service”and “reconnectinterval”

attributes. The service attribute tells the Plush controller that SWORD is a long-running

service and requires different default behaviors for initialization and failure recovery.

For example, during application initialization, the controller does not wait for all par-
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ticipants to install the software before starting all hostssimultaneously. Instead, the

controller instructs individual clients to start the application as soon as they finish in-

stalling the software, since there is no reason to synchronize the execution across all

hosts. Further, if a process fails when the service attribute has been specified, the con-

troller attempts to restart SWORD on that host without aborting the entire application.

The reconnectinterval attribute specifies the period of time the controller waits before

rerunning the resource discovery and acquisition unit. Forlong-running services, hosts

often fail and recover during execution. The reconnectinterval attribute value tells the

Plush controller how often to check for new hosts that have come alive since the last run

of the resource discovery unit. The controller also unsets any “failed host” tags in the

matching Node objects at this time. Rerunning the resource discovery and acquisition

unit is the controller’s way of “refreshing” the list of available hosts. The controller

continues to search for new hosts until reaching the maximumnum hosts value, which

is 800 in our case.

6.2.2 Evaluating Fault Tolerance in SWORD

To demonstrate Plush’s ability to automatically recover from host failures for

long-running services, we run SWORD on PlanetLab with 100 randomly chosen hosts,

as shown in Figure 6.5. The host set includes machines behindDSL links as well as hosts

from other continents. When Plush starts the application, the controller starts the Plush

client on 100 randomly chosen PlanetLab machines, and each machine begins down-

loading the SWORD software package (38-MB). It takes approximately 1000 seconds

for all hosts to successfully download, install, and start SWORD. At timet = 1250s, we

kill the SWORD process on 20 randomly chosen hosts to simulate host failure. (Nor-

mally, Plush would automatically try to restart the SWORD process on these hosts.

However, we disable this feature for this experiment to simulate host failures and force

a rematching.) After killing the SWORD processes, the Plushcontroller detects that the

processes and hosts have failed, and the controller begins to find replacements for the

failed machines. The replacement hosts join the Plush overlay and start downloading
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Figure 6.5: SWORD running on 100 randomly chosen PlanetLab hosts. Att = 1250

seconds, we fail 20 hosts. The Plush controller finds new hosts, who start the Plush
client process and begin downloading and installing the SWORD software. Service is
fully restored at approximatelyt = 2200 seconds.

the SWORD software. As before, Plush chooses the replacements randomly, and low

bandwidth/high latency links have a great impact on the timeit takes to fully recover

from the host failure. Att = 2200s, the service is restored on 100 machines.

Using Plush to manage long-running services like SWORD alleviates opera-

tors of the burden of manually probing for failures and configuring/reconfiguring hosts.

Further, Plush interfaces directly with the PlanetLab Central (PLC) API, which means

that users can automatically add hosts to their slice and renew their slice using Plush.

This feature is beneficial since services typically want to run on as many PlanetLab hosts

as possible, including any new hosts that come online after initially starting the service.

By periodically contacting PLC and retrieving the master list of PlanetLab hosts, the

Plush controller maintains an up-to-date list of all PlanetLab resources, and is able to

notify the service operator if new resources are available.In addition, Plush simplifies

the task of debugging problems by providing a single point ofcontrol for all connected

PlanetLab hosts. Thus, if a user wants to view the memory consumption of their service

across all connected hosts, a single Plush command retrieves this information, making

it easier to monitor a service running on hundreds of resources around the world.
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6.3 Parallel Grid Applications

In this section we consider how Plush manages typical grid applications. Re-

call again from Chapter 2 that grid applications tend to be computationally intensive

and easily parallelizable. Grid applications also tend to operate in phases that are easily

separated by barriers. Thus, many grid applications have the potential to achieve higher

performance by using partial barriers to reassign unfinished tasks on slow hosts to hosts

that have already completed their assigned work. We consider two grid applications in

this section, namely EMAN and MapReduce, and show how Plush manages their execu-

tion. Additionally, we show how partial barriers significantly improve the performance

achieved across the wide-area.

6.3.1 Managing EMAN on PlanetLab

To illustrate how Plush manages applications with workflows, we consider

running EMAN (described in Chapter 2) on PlanetLab. The computationally intense

portion of EMAN’s execution is the refinement stage, which isrun repeatedly on 2-D

electron micrograph images until achieving the desired level of detail in a 3-D model

of the electron. Refinement is often run in parallel on multiple machines to improve

performance. The EMAN refinement stage is a common example ofa workflow in a

scientific parallel application. In this section we describe how Plush runs a single round

of the parallel refinement computation.

Figure 6.6 shows the application specification for EMAN. Note that we did

not change the EMAN source code at all to run these experiments. Instead we wrote

a simple 50-line wrapper perl script (called “eman.pl”) that runs the publicly available

EMAN software package [32]. As in the preceding examples, the application speci-

fication contains two main sections of interest. The top section defines the required

software and components. The software required for EMAN is contained in a tarball

called “eman.tar.” The resources for EMAN, as specified in the component definition,

are 98 PlanetLab hosts from the ucsdplush slice. The lower section of the applica-
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<?xml version="1.0" encoding="utf-8" ?>

<plush>
<project name="eman_proj" >

<software name="EmanSoftware" type="tar" >

<package name="eman.tar" type="web" >

<path>http://plush.ucsd.edu/eman.tar</path>
<dest>eman.tar</dest>

</package>
</software>
<component name="EmanGroup1" >

<rspec>
<num hosts>98</num hosts>

</rspec>
<software name="EmanSoftware" />
<resources>

<resource type="planetlab" group="ucsd_plush" />
<resources>

</component>
<applicationblock name="eman_app_block" >

<execution>
<componentblock name="eman_comp_block" >

<component name="EmanGroup1" />
<workflow block name="eman_workflow_block" id="eman_wf" num tasks="98" >

<processblock name="eman_proc_block" >

<process name="eman" >

<path>./eman.pl</path>
<cmdline>

<substitution name="sub" id="eman_wf" type="workflow" flag="--i" />
</cmdline>

</process>
</processblock>

</workflow block>
</componentblock>

</execution>
</applicationblock>

</project>

</plush>

Figure 6.6: EMAN application specification. Plush uses thisspecification to configure
the resources, which are 98 PlanetLab hosts from the ucsdplush slice. Each host runs
“eman.pl --in”, wheren identifies each unique task, as specified by the workflow block.

tion specification consists of the component, process, and workflow blocks that define

the EMAN refinement execution. One interesting characteristic of this application is

the workflow block within the component block. The workflow block indicates that 98

tasks are shared among the 98 workers requested in the “EmanGroup1” component. The

workflow block also has a process block containing the “eman.pl” process.

The substitution information in the process definition within the process block

is used in conjunction with the EMAN perl script to split the workflow among the re-

sources. Notice how the workflow block has an “id” attribute that is identical to the “id”

attribute in the process substitution. In this case, “eman.pl” uses a command-line argu-
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ment to specify the unique id of the task, which is then used todetermine what fraction

of the data files should be processed by each host. The workflowblock substitutes the

current task id (an integer between 1 and 98) for the command-line argument defined

by the “--i” flag. For example, the first resource runs “./eman.pl --i 1,” the second runs

“./eman.pl --i 2,” and so on. This technique divides and distributes the work evenly

among the 98 PlanetLab workers.

Plush workflow blocks are unique because they actually contain a “hidden”

internal barrier. As workflow tasks are completed, the internal barrier is entered with a

label that specifies the unique id of the completed task. Using the partial barrier knee de-

tector, the barrier manager determines when a knee is reached in the rate of completion

of these tasks, indicating that a subset of resources are notoperating as quickly as the

rest. When a knee is detected, the tasks assigned to the slow resources (due to slow or

busy processors) are redistributed to faster resources that have already completed their

tasks. By using the knee detector to detect stragglers in this way, the knee detector also

detects resources with low bandwidth capacities based on their slow download times and

reallocates their work to machines with higher bandwidth. Our experiment requires ap-

proximately 240-MB of data to be transferred to each participating PlanetLab host, and

machines with low bandwidth links have a significant impact on the overall completion

time if their work is not reallocated to faster machines.

6.3.2 Work Reallocation in EMAN

We now evaluate an alternative use of partial barriers in Plush: to not only

assist with the synchronization of tasks across physical hosts, but also to assist with

work reallocation and load balancing for hosts spread across the wide-area. Further, we

determine whether we can dynamically detect knees in the completion rate of individual

hosts, and subsequently reallocate unfinished work to hoststhat have already completed

their assigned tasks.

To quantify the effectiveness of partial barriers in EMAN, we measure the

time it takes to complete all 98 tasks with and without partial semantics. Without par-
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tial semantics, the 98 tasks are allocated to 98 PlanetLab resources, and we measure the

time it takes for all 98 resources to complete their single task. With partial semantics, we

allow the Plush controller (and barrier manager) to detect aknee in the task completion

curve, and then Plush reallocates unfinished tasks to fasterresources. In this experiment

we run EMAN on98 responsive PlanetLab machines. The workflow consists of a98-

way image classification run in parallel across all resources. We measure the time it

takes for each participant to download a 40-MB software archive containing the EMAN

executables and a wrapper script, unpack the archive, download a unique 200-MB im-

age file, and run the image classification process. At the end of the computation, each

resource generates77 output files stored on the local disk, which are later merged into

77 “master” files once all tasks complete across all resources.

Figure 6.7 shows the results of running EMAN on PlanetLab with and without

partial barrier semantics. The Plush knee detector detectstwo knees in this experiment

at t = 300s andt = 801s. The first knee att = 300s indicates that around21 hosts

have good connectivity to the data repository, while the rest have longer transfer times.

However this first knee is ignored by the Plush controller dueto a minimum threshold of

60% at the partial barrier, which prevents task reconfigurationat this point. The second

knee is detected att = 801s after 78 hosts have completed their work. Since more

than60% of the hosts have entered the barrier at the second knee, the Plush controller

redistributes the20 unfinished tasks. These tasks complete by900 seconds, as shown by

the dotted line in Figure 6.7. The experiment on the originalset of hosts continues past

t = 2700s, as indicated by the solid line in the graph, resulting in an overall speedup

factor of more than three using partial semantics.

6.3.3 Managing MapReduce on PlanetLab

MapReduce [29] is a toolkit for application-specific parallel processing of

large volumes of data. The model involves partitioning the input data into smallersplits

of data, and spreading them across a cluster of worker nodes.Each worker node applies

a mapfunction to the splits of data that they receive, producing intermediate key/value
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Figure 6.7: EMAN. Knee detected at 801 seconds. Total runtime (without knee detec-
tion) is over 2700 seconds.

pairs that are periodically written to specific locations ondisk. The MapReduce master

node tracks these disk locations, and eventually notifies another set of worker nodes that

intermediate data is ready for processing. This second set of workers aggregate the data

and pass it to thereducefunction. This function processes the data to produce a final

output file.

Our implementation of MapReduce leverages partial barriers to manage

phases of the computation and to orchestrate the flow of data among nodes across the

wide-area. Note that we do not code to the partial barrier APIdirectly as in Bullet, but

instead define workflow barriers with partial semantics in our Plush application speci-

fication. In our design of MapReduce, we havem map tasks and corresponding input

files, n total nodes hosting the computation, andr reduce tasks. The Plush controller

distributes them split input files to a set of available nodes, and spawns the map process

on each node. When the map tasks finish, intermediate files arewritten back to a central

repository, and then redistributed tor hosts, who eventually execute ther reduce tasks.

There are a number of natural barriers in this application corresponding to the comple-

tion of: i) the initial distribution ofm split files to appropriate nodes; ii) executingm
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distributed and begin execution. When allr reduce tasks have entered the Reduce bar-
rier, MapReduce is complete. In both barriers, “callback” informs the Plush controller
of task completion rates for possible task rebalancing.

map functions; iii) the redistribution of the intermediatefiles to appropriate nodes, and

iv) executingr reduce functions.

As with the original MapReduce work, the load balancing aspects correspond-

ing to barriers (ii) and (iv) (from the previous paragraph) are of particular interest. These

barriers are shown in Figure 6.8. Recall that although therearem map tasks, the same

physical host may execute multiple map tasks. Hence the goalis not necessarily to wait

for all n hosts to reach the barrier, but for allm or r logical tasks to complete. Thus,

we extended the Plush barrier entry semantics described in Section 5.3 to support syn-

chronizing barriers at the level of a set of logical, uniquely named tasks or processes,

rather than a set of physical hosts. To support this extension, we use a workflow barrier



131

in Plush that internally calls theenter() method of the Plush barrier API (see Figure

5.2) upon completing a particular map or reduce function. Inaddition to the physical

hostname, we send a label corresponding to a globally uniquename for the particular

map or reduce task. Thus, rather than waiting forn hosts to arrive, the barrier instead

waits form or r unique labels to enter the barrier before firing.

Our experiences running EMAN on PlanetLab without partial semantics re-

vealed that while most nodes complete their assigned tasks quickly, the overall com-

pletion time is often dominated by the performance of a smallnumber of slow nodes.

The original MapReduce work also noted that one of the commonproblems experienced

during execution is the presence of straggler nodes that take an unusually long time to

complete a map or reduce task. Although the authors mentioned an application-specific

solution to this problem, by using partial barriers in our implementation, we are able to

provide a more general solution that achieves the same results. In particular, we use the

arrival rate of map/reduce tasks at their respective barriers to respawn a subset of the

tasks that were proceeding slowly.

By using the partial barrier knee detector described in Section 5.4, the Plush

controller dynamically determines the transition point between rapid arrivals and the

long tail of stragglers. However, rather than releasing thebarrier at this point, the Plush

controller instead performs load rebalancing functionality by spawning additional copies

of outstanding tasks on nodes disjoint from the ones hostingthe slower tasks (poten-

tially first distributing the necessary input/intermediate files). This technique is similar

to the previous EMAN example, except that we are now considering multiple tasks per

resource, rather than only one task per resource, allowing for finer granularity reconfig-

uration. Note that as in the original implementation of MapReduce, the barrier is not

concerned with what copies of the computation complete first; the goal is for allm or r

tasks to complete as quickly as possible. Thus is it possiblefor a single task to actually

be completed twice due to reconfiguration.
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6.3.4 Task Reallocation in MapReduce

To evaluate the benefits achieved from rebalancing tasks across hosts after

detecting a knee, we use Plush to manage our MapReduce implementation withm =

480 map tasks andr = 30 reduce tasks running acrossn = 30 PlanetLab hosts. As in

EMAN, we use workflow blocks with hidden internal barriers tohandle the functionality

shown by the map and reduce barriers in Figure 6.8. During each of the map and reduce

rounds, the Plush controller evenly partitions the tasks over 30 PlanetLab resources and

starts the tasks asynchronously. For this experiment, eachmap task simply reads 2000

random words from a local file and counts the number of instances of certain words. This

count is written to an intermediate output file based on the hash of the words. The task

is CPU-bound and requires approximately seven seconds to complete on an unloaded

PlanetLab-class machine. The reduce tasks summarize theseintermediate files with the

same hash values. The application specification for MapReduce is shown in Figure 6.9.

In our MapReduce implementation, each map and reduce task performs an

approximately equal amount of work as in the original MapReduce work, though it

would be useful to generalize to variable-length computation. When complete, a map

or reduce task enters the associated barrier with a unique identifier for the completed

task. The barrier manager running on the Plush controller monitors the arrival rate

and dynamically determines the knee, which is the where the completion rate begins to

slow. We empirically determined that this slowing results from a handful of nodes that

proceed substantially slower than the rest of the system. (Note that this phenomenon

is not restricted to our wide-area environment; Dean and Ghemawat observed the same

behavior for their runs on tightly coupled and more homogeneous clusters [29].) Thus,

upon detecting the knee the Plush controller respawns additional copies of the slow

tasks, ideally on nodes with the smallest number of outstanding tasks. Experience has

shown that in most cases, by the time the knee is detected there are a number of hosts

that have completed their initial allocation of work.

Figure 6.10 shows the performance of one MapReduce run both with and with-

out task respawn upon detecting the knee. Figure 6.10 plots the cumulative number of
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<?xml version="1.0" encoding="UTF-8" ?>

<plush>
<project name="map-reduce" >

<software name="map-reduce" type="tar" >

<package name="map-reduce.tar" type="web" >

<path>http://plush.ucsd.edu/map−reduce.tar</path>
<dest>map−reduce.tar</dest>

</package>
</software>
<component name="Component" >

<software name="map-reduce" />
<rspec>

<num hosts>30</num hosts>
</rspec>
<resources>

<resource type="planetlab" group="ucsd_plush" />
</resources>

</component>
<applicationblock name="map-reduce" >

<execution>
<componentblock name="map-reduce" >

<component name="Component" />
<workflow block name="map" id="map_wf" num tasks="480" num workers="30" >

<processblock name="map-process-block" >

<process name="Map" >

<path>./map.pl</path>
<cmdline>

<arg>−−R</arg>
<arg>30</arg>
<substitution name="map" id="map_wf" type="workflow" flag="--i" />

</cmdline>
</process>

</processblock>
</workflow block>
<workflow block name="reduce" id="reduce_wf" num tasks="30" num workers="30" >

<processblock name="reduce-process-block" >

<process name="Reduce" >

<path>./reduce.pl</path>
<cmdline>

<arg>−−M</arg>
<arg>480</arg>
<substitution name="reduce" id="reduce_wf" type="workflow" flag="--i" />

</cmdline>
</process>

</processblock>
</workflow block>

</componentblock>
</execution>

</applicationblock>
</project>

</plush>

Figure 6.9: MapReduce application specification. Each PlanetLab host will run
“map.pl” and “reduce.pl,” as specified by the workflow blocks.

completed tasks on they-axis as a function of time progressing on thex-axis. We see

that the load balancing enabled by barrier synchronizationon abstract tasks is critical to

overall system performance. With task respawn using knee detection, the barrier man-

ager detects the knee at approximatelyt = 68s after approximately 53% of the tasks
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Figure 6.10: MapReduce:m = 480, r = 30, n = 30 with uniform prepartitioning of the
data. Knee detection occurs at 68 seconds and callbacks enable rebalancing.

have completed. After detecting the knee, the Plush controller repartitions the remain-

ing 47% of the tasks across available wide-area nodes. This point is where the curves

significantly diverge in the graph. Without dynamic rebalancing the completion rate

transitions to a long-tail lasting more than 2500 seconds (though the graph only shows

the first 500 seconds), while the completion rate largely maintains its initial slope when

rebalancing is enabled. Overall, our barrier-based rebalancing results in a factor of six-

teen speedup in completion time compared to proceeding withthe initial mapping of

tasks to hosts. Multiple additional runs showed similar results.

Note that this load balancing approach differs from the alternate approach of

trying to predict the set of nodes likely to deliver the highest level of performancea pri-

ori. Unfortunately, predicting the performance of tasks with complex resource require-

ments on a shared computing infrastructure with dynamically varying CPU, network,

and I/O characteristics is challenging in the best case and potentially intractable. We ad-

vocate a simpler approach that does not attempt to predict performance characteristics

in advance. Rather, we simply choose nodes likely to performwell and empirically ob-

serve the utility of our decisions. Of course, this approachmay only be appropriate for
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a particular class of distributed applications and comes atthe cost of performing more

work in absolute terms because certain computations are repeated. For the case depicted

in Figure 6.10, approximately 30% of the work is repeated if we assume that the work

on both the fast and slow nodes are run to completion (a pessimistic assumption as it is

typically easy to kill tasks running on slow nodes once the fast instances complete).

6.4 Summary

In this chapter we discussed Plush’s ability to manage different types of appli-

cations that were run on PlanetLab, including short-lived computations, long-lived ser-

vices, and parallel grid applications. In particular, we started by describing how Plush

managed Bullet, and showed that partial barriers with automatic knee detection allowed

us to remove the arbitrary timeout value previously used forapplication initialization.

Next, we evaluated how Plush automatically recovered from failures in SWORD, and

showed that Plush successfully detected the failures, found replacement hosts, and fully

restored the service in less than 20 minutes. To better understand how parallel grid ap-

plications are managed by Plush and benefit from the use of partial barriers, we provided

two example applications: EMAN and MapReduce. In both cases, the use of partial bar-

riers to detect slow participants and redistribute work resulted in a significant speedup

with respect to total task completion time. Based on our experiences with using Plush

to manage all of these applications, we believe that Plush iswell-suited for a range of

distributed applications.

6.5 Acknowledgments

Chapter 6, in part, is a reprint of the material as it appears in the USENIX

Annual Technical Conference, 2006, Albrecht, Jeannie; Tuttle, Christopher; Snoeren,

Alex C.; Vahdat, Amin. The dissertation author was the primary investigator and author

of this paper.



136

Chapter 6, in part, has been submitted for publication of thematerial as it

appears in the Large Installation System Administration Conference, 2007, Albrecht,

Jeannie; Braud, Ryan; Dao, Darren; Topilski, Nikolay; Tuttle, Christopher; Snoeren,

Alex C.; Vahdat, Amin. The dissertation author was the primary investigator and author

of this paper.



Chapter 7

Conclusions and Future Work

In conclusion, Plush is an extensible application control infrastructure de-

signed to meet the demands of a variety of distributed applications. Plush provides

abstractions for resource discovery, creation, acquisition, software installation, process

execution, and failure management in distributed environments. When an error is de-

tected, Plush has the ability to perform several application-specific actions, including

restarting the computation, finding a new set of resources, or attempting to adapt the

application to continue execution and maintain liveness. In addition, Plush provides

relaxed synchronization primitives in the form of partial barriers that help applications

achieve good throughput even in unpredictable wide-area conditions where traditional

synchronization primitives are too strict to be effective.The mechanisms provided by

Plush help researchers cope with the limitations inherent to large-scale networked sys-

tems, allowing them to focus on the design and performance oftheir application rather

than managing the deployment during the application development life cycle.

To evaluate the effectiveness of the abstractions providedby Plush, we used

Plush to manage several different distributed applications—namely, Bullet, SWORD,

EMAN, and MapReduce—run across the wide-area. In addition,we showed that the

performance of these applications improved due to Plush’s failure recovery mechanisms

and relaxed synchronization semantics. Further, we showedhow Plush manages re-

sources from a variety of deployment environments by using acommon interface to

137
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interact with external resource management services, including SWORD, Mission, Shi-

rako, and Usher. By integrating Plush with these external services, Plush supports exe-

cution on PlanetLab hosts, Xen virtual machines, and ModelNet emulated resources.

Plush is in daily use by researchers worldwide, and user feedback has been

largely positive. Most users find Plush to be an “extremely useful tool”1 that provides

a user-friendly interface to a powerful and adaptable application control infrastructure.

Other users claim that Plush is “flexible enough to work across many administrative

domains (something that typical scripts do not do).” Further, unlike many related tools,

Plush does not require applications to adhere to a specific API, making it easy to run

distributed applications in a variety of environments. Ourusers tell us that Plush is

“fairly easy to get installed and setup on a new machine. The structure of the application

specification largely makes sense and is easy to modify and adapt.”

Although Plush has been in development for over three years now, some fea-

tures still need improvement. One important area for enhancements is error reporting.

Debugging applications is inherently difficult in distributed environments. Plush tries to

make it easier for researchers to locate and diagnose errors, but accomplishing this is a

difficult task. For example, one user says that “when things go wrong with the exper-

iment, it’s often difficult to figure out what happened. The debug output occasionally

does not include enough information to find the source of the problem.” We are currently

investigating ways to allow application-specific error reporting in Plush, and ultimately

simplify the task of debugging distributed applications involatile environments.

7.1 Lessons Learned

One of the main goals of our work with the design and implementation of

Plush was to address the requirements described in Chapter 2. Accomplishing this goal

was not an easy task, and this section describes a few of the challenges we faced and the

lessons learned during the development of Plush.
1The user feedback presented in this section was obtained through email and conversations with various Plush

users at UCSD, Duke University, and EPFL.
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7.1.1 Application Specification Design

One of the first challenges that we addressed in the design of Plush was cre-

ating an application specification capable of succinctly describing application require-

ments. In order for application developers to accept and usePlush, we needed to design a

specification that was easy to understand but also expressive enough to support complex

scenarios. Additionally, users needed the ability to defineeach phase of an application’s

life cycle within the specification. Based on early user experiences, we discovered that

it is important to establish a balance between functionality and usability in the design

of the application specification. If the specification is toocomplicated, the complexity

discourages and intimidates novice users, who often get frustrated and give up. How-

ever, without support for advanced features, experienced users are unable to express all

of their requirements.

When designing the XML syntax for the application specification of Plush,

we decided to require only a small set of easily defined attributes, while also optionally

supporting a variety of specialized features. We believe that this establishes a balance

between functionality and ease of use. We separated the various components of a dis-

tributed application and described them using an extensible schema that allows users

to make the application specifications as complicated or basic as desired. In the sim-

plest case, the user only needs to define the required software (if any), the number of

resources desired, and the command to run on the resources. We also supported creating

the specifications graphically with the GUI so users were notforced to understand the

intricate details of the XML syntax to define even complicated applications.

7.1.2 Satisfying Different Application Demands

Another problem that we overcame in the design of Plush was building a

generic infrastructure that satisfied the demands of a variety of distributed applications,

and yet was just as powerful as tools designed specifically for a single application. We

needed to control all aspects of the distributed application life cycle without sacrific-

ing important features available in specialized tools. We quickly realized that the best
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way to do this was to use the existing tools directly, rather than trying to reinvent them.

Hence, Plush is a customizable framework that provides the ability to incorporate ex-

ternal tools and services. Users can modify their application description to plug in the

specialized tools that they need to manage their applications or the resources on which

their applications will run. It is this “pluggable” aspect of Plush that allows users to

run their applications in a variety of environments and interact with different resource

management frameworks.

One challenge in designing an infrastructure that supportsthe ability to plug

in arbitrary existing tools was implementing the glue code necessary to integrate each

tool into Plush. This task is somewhat simplified in grid environments due to the APIs

that are inherited from the Globus Toolkit [34]. Since most tools written for grid envi-

ronments adhere to the same standards, writing support for new tools is easier. Unfor-

tunately, there are no official standards or common APIs for developers to use in most

other distributed environments. Hence, the integration ofeach tool must be addressed

separately.

7.1.3 Achieving Scalability

A third challenge that we faced was scalability. We needed todesign an appli-

cation management infrastructure that scaled to hundreds or even thousands of heteroge-

neous machines. Currently, PlanetLab consists of over 700 machines at approximately

345 different locations around the world. Other computing environments contain thou-

sands of machines distributed worldwide. In order to support distributed applications

in these environments, Plush must scale to potentially thousands of machines while

maintaining acceptable levels of performance. The initialdesign of Plush used a star

topology, so that every host running the application connected directly to the controller.

The limiting factor in the star design was the number of simultaneous connections that

the controller could support. To address this limitation, we added support for the tree

topology in addition to the star. Using trees allowed Plush to scale much further without

sacrificing performance to a great extent, as discussed in Chapter 3.
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Other factors aside from the communication topology in Plush also con-

tributed to its scalability. In particular, we explored thetradeoffs between threads and

events in several different architectural designs, and experienced varying degrees of

success with respect to scalability and performance. First, we used a fixed-size pool

of threads and looped through client connections. The problem with this approach was

that the progress of the entire application was limited by a few slow hosts. Although we

could scale to several hundred machines, the performance was unacceptable. To avoid

the potential bottleneck created by slow hosts, we increased the number of threads in

use so that each client connection used two separate threads. The performance of this

technique was much improved over the fixed-size thread pool.However this approach

suffered from a variety of new problems, and ultimately could not scale beyond approx-

imately 200 connections before some machines ran out of threads. Finally, we moved to

the current event-driven design that uses a single thread and an event loop for execution.

We are pleased with the performance of this approach thus far, and the number of client

connections can scale to approximately 800 per machine, which is more than sufficient

for even large tree topologies.

7.2 Future Work

Moving forward, one important problem that we have recentlystarted to ad-

dress in Plush is debugging and monitoring running applications. We plan to extend

Plush to allow users to specify application-specific metrics and error detection tech-

niques, so that potential problems are easily identified before a failure occurs, further

increasing application reliability. Related to monitoring is visualizing distributed appli-

cations. On wide-area platforms, understanding exactly what each host is doing at a

given point in time is no easy task. Real-time distributed application visualization is an

interesting problem that we have only begun to investigate during the development of

Nebula. We still have many ideas that we plan to incorporate into Nebula that will further

enhance the user’s ability to visualize applications. We believe that visualization is also a
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key component to lowering the entry barrier for distributedsystems research. The func-

tionality provided by Nebula should make it easier for novice researchers—including

undergraduates—to focus on the design and analysis of theirapplications rather than

spending the majority of their time managing their testing environment. A key benefit

of shared distributed computing platforms like PlanetLab is resource accessibility and

availability, and we hope to take advantage of this benefit byusing Plush in undergrad-

uate classroom settings in the future.

Aside from monitoring and visualization, we hope to furtherincrease the ex-

tensibility of Plush by providing support for emerging execution environments. While

most of the work in this thesis focused on PlanetLab, Plush also supports (as discussed

in Chapter 4) virtual machine resources. We believe it is important to extend Plush’s

current abstractions even further and provide advanced support for virtualization. One

way to achieve this goal is to provide a tighter integration with virtual machine man-

agement systems, including Shirako and Usher. When dealingwith virtual machine

management systems, Plush can be used in one of two ways. In one approach, Plush

manages all aspects of the application’s execution, and theresource management system

simply provides Plush with the resources needed to host the application. In the second

approach, the resource management system runs the application using the remote ex-

ecution functionality provided by Plush. Thus, the resource management framework

creates the virtual machine resources, and then uses the Plush XML-RPC programmatic

interface to run the user’s applications. Note that the end result is the same in both

cases—put simply, Plush runs an application on virtual machine resources. However

from a design standpoint, there are significant differencesrelating to the delegation of

control. Moving forward, we would like to explore the tradeoffs associated with both

approaches, and ensure that Plush continues to support bothusage scenarios,

Virtual machine environments also introduce new scalability challenges for

Plush. Virtualization allows tens to hundreds of virtual machines to run on a single

physical computer, resulting in an increased number of machines on which to run dis-

tributed applications. Hence, a single cluster composed of500 physical computers each
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running 100 virtual machines yields 5,000 total machines. Scaling Plush to manage

applications on 5,000 machines is a significant research challenge that we have not yet

explored.

In addition to advanced support for virtualization, we alsoenvision Plush be-

ing a core component for experiment management and support in the GENI (Global

Environment for Network Innovations) project [39]. GENI issupported by the National

Science Foundation, and many view it as a blueprint for the Future Internet. The goal

of GENI is to increase the quality and quantity of experimental research in computer

networks and distributed systems. For GENI to achieve this,it must be accessible to the

broadest set of researchers. One of the biggest benefits of shared platforms like Planet-

Lab and GENI is that they enable researchers at small schoolswith limited resources to

perform large-scale research in distributed systems. However many of these researchers

are inexperienced with the complexities of deploying and monitoring applications in

volatile environments, and struggle to make progress. We believe that Plush provides

the functionality needed to help platforms like GENI and PlanetLab be more accessible

by simplifying distributed application management, and thus we hope that Plush will be

instrumental in making the GENI vision a success.

7.3 Acknowledgments

Chapter 7, in part, is a reprint of the material as it appears in the ACM Oper-

ating Systems Review, January 2006, Albrecht, Jeannie; Tuttle, Christopher; Snoeren,

Alex C.; Vahdat, Amin. The dissertation author was the primary investigator and author

of this paper.



Bibliography

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Mat-
sunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu. FromVirtualized
Resources to Virtual Computing Grids: The In-VIGO system.Future Generation
Computing Systems (FGCS), 21(6), 2005.

[2] J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C. Snoeren, and A. Vah-
dat. Remote Control: Distributed Application Configuration, Management, and
Visualization with Plush. InProceedings of the Large Installation System Admin-
istration Conference (LISA), 2007. In Submission.

[3] J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat. Design and Imple-
mentation Tradeoffs for Wide-Area Resource Discovery.ACM Transactions on
Internet Technology (TOIT), 8(2), 2008.

[4] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. Loose Synchronization for
Large-Scale Networked Systems. InProceedings of the USENIX Annual Techni-
cal Conference (USENIX), 2006.

[5] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. PlanetLab Application
Management Using Plush.ACM Operating Systems Review (OSR), 40(1), 2006.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local
Alignment Search Tool.Journal of Molecular Biology, 215, 1990.

[7] D. G. Andersen, H. Balakrishnan, and F. Kaashoek. Improving Web Availability
for Clients with MONET. InProceedings of the ACM/USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2005.

[8] Appistry. http://www.appistry.com/ .

[9] G. Audin. Reality Check On Five-Nines.Business Communications Review, May
19, 2002.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the
ACM Symposium on Operating System Principles (SOSP), 2003.

144



145

[11] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating SystemsSupport for
Planetary-Scale Network Services. InProceedings of the ACM/USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), 2004.

[12] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng,
J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,
G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, M. Patel,
D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan. New Grid Scheduling and
Rescheduling Methods in the GrADS Project.International Journal of Parallel
Programming (IJPP), 33(2-3), 2005.

[13] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway Distributed Shared
Memory System. InProceedings of the IEEE Computer Conference (COMP-
CON), 1993.

[14] K. Birman. Replication and Fault-Tolerance in the ISISSystem. InProceedings
of the ACM Symposium on Operating System Principles (SOSP), 1985.

[15] K. Birman. The Process Group Approach to Reliable Distributed Computing.
Communications of the Association for Computing Machinery(CACM), 36(12),
1993.

[16] K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems.
In Proceedings of the ACM Symposium on Operating System Principles (SOSP),
1987.

[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. InProceedings of the
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), 1995.

[18] A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. Technical
Report 1069, University of Wisconsin–Madison, CS Department, 1991.

[19] M. Burgess. Cfengine: A Site Configuration Engine.USENIX Computing Sys-
tems, 8(3), 1995.

[20] C. Catlett. The Philosophy of TeraGrid: Building an Open, Extensible, Dis-
tributed TeraScale Facility. InProceedings of the IEEE International Symposium
on Cluster Computing and the Grid (CCGrid), 2002.

[21] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.The Collec-
tive: A Cache-Based System Management Architecture. InProceedings of the
ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2005.



146

[22] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle. Dynamic
Virtual Clusters in a Grid Site Manager. InProceedings of the IEEE Symposium
on High Performance Distributed Compuuting (HPDC), 2003.

[23] B. Chun. gexec.http://www.theether.org/gexec/ .

[24] B. Chun. pssh.http://www.theether.org/pssh/ .

[25] B. Chun and T. Spalink. Slice Creation and Management. Technical Report
PDN–03–013, PlanetLab Consortium, 2003.

[26] J. Coa, S. Jarvis, S. Saini, and G. Nudd. GridFlow: Workflow Managament for
Grid Computing. InProceedings of the IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), 2003.

[27] Computing TCP’s Retransmission Timers (RFC).http://www.faqs.org/rfcs/

rfc2988.html .

[28] F. Cristian. Reaching Agreement on Processor-Group Membership in Syn-
chronous Distributed Systems.Distributed Computing (DC), 4(4), 1991.

[29] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters . InProceedings of the ACM/USENIX Symposium on Operating System
Design and Implementation (OSDI), 2004.

[30] E. Dijkstra. The Structure of the “THE”-Multiprogramming System.Communi-
cations of the Association for Computing Machinery (CACM), 11(5), 1968.

[31] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Distributed Scheduling
of Parallel Workloads. InProceedings of the ACM SIGMETRICS Conference
(SIGMETRICS), 1996.

[32] EMAN, 2005.http://ncmi.bcm.tmc.edu/EMAN/ .

[33] A. Emigh. Online Identity Theft: Phishing Technology,Chokepoints and Coun-
termeasures.Internet Theft Technology Council Report, 2005.

[34] I. Foster. A Globus Toolkit Primer, 2005.http://www.globus.org/toolkit/

docs/4.0/key/GT4_Primer_0.6.pdf .

[35] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed SystemsIntegration. Global
Grid Forum, 2002.

[36] A. Fox and E. Brewer. Harvest, Yield, and Scalable Tolerant Systems. InPro-
ceedings of the IEEE Workshop on Hot Topics in Operating Systems (HotOS),
1999.



147

[37] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing Content Publi-
cation with Coral. InProceedings of the ACM/USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2004.

[38] G. A. Geist and V. S. Sunderam. Network-based Concurrent Computing on the
PVM System.Concurrency: Practice and Experience (C: P&E), 4(4), 1992.

[39] GENI. http://www.geni.net .

[40] W. Gentzsch. Sun Grid Engine: Towards Creating A Compute Power Grid. In
Proceedings of the IEEE International Symposium on ClusterComputing and the
Grid (CCGrid), 2001.

[41] Globus Toolkit Monitoring and Discovery System: MDS4.http://www-unix.

mcs.anl.gov/˜schopf/Talks/mds4SC nov2004.ppt .

[42] R. Golding. A Weak-Consistency Architecture for Distributed Information Ser-
vices.Computing Systems, 5(4), 1992.

[43] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, and P. Toft. Smart-
Frog: Configuration and Automatic Ignition of Distributed Applications. InHP
Openview University Association Conference (HP OVUA), 2003.

[44] Google.http://www.google.com .

[45] L. Grit, D. Irwin, V. Marupadi, P. Shivam, A. Yumerefendi, J. Chase, and J. Al-
brecht. Harnessing Virtual Machine Resource Control for Job Management. In
Proceedings of the First Workshop on System-level Virtualization for High Per-
formance Computing (HPCVirt), 2007.

[46] R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed Synchronization of
Processors. InProceedings of Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1989.

[47] R. Gupta and C. R. Hill. A Scalable Implementation of Barrier Synchronization
Using an Adaptive Combining Tree.International Journal of Parallel Program-
ming (IJPP), 18(3), 1990.

[48] R. Huebsch. PlanetLab Application Manager.http://appmanager.berkeley.

intel-research.net .

[49] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum. Shar-
ing Networked Resources with Brokered Leases. InProceedings of the USENIX
Annual Technical Conference (USENIX), 2006.

[50] H. F. Jordan. A Special Purpose Architecture for FiniteElement Analysis. InPro-
ceedings of the International Conference on Parallel Processing (ICPP), 1978.



148

[51] F. Kaashoek, B. Liskov, D. Andersen, M. Dahlin, C. Ellis, S. Gribble, A. Joseph,
H. Levy, A. Myers, J. Mogul, I. Stoica, and A. Vahdat. Report of the NSF Work-
shop on Research Challenges in Distributed Computer Systems. GENI Design
Document 05-06, 2005.

[52] K. Keahey, K. Doering, and I. Foster. From Sandbox to Playground: Dynamic
Virtual Environments in the Grid. InProceedings of the International Workshop
in Grid Computing (Grid), 2004.

[53] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien. Efficient Re-
source Description and High Quality Selection for Virtual Grids. InProceedings
of the IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid), 2005.

[54] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems. In
Proceedings of the Winter USENIX Conference (USENIX), 1994.
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