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Support for distributed application management in larggesnetworked envi-
ronments remains in its early stages. Although a numberlafisas exist for subtasks
of application deployment, monitoring, and maintenancéisgtributed environments,
few tools provide a unified framework for application marragat. Many of the exist-
ing tools address the management needs of a single type lidatmm or service that
runs in a specific environment, and these tools are not aoleptaough to be used for
other applications or platforms. To this end, we presenttsgn and implementation
of Plush, a fully configurable application management stftacture designed to meet
the general requirements of several different classesstrilolited applications. Plush
allows developers to specifically define the flow of controbehed by their computa-
tions using application building blocks. Through an exielesresource management
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gain an understanding of how Plush manages different dasfsdistributed applica-
tions, we take a closer look at specific applications anduextalhow Plush provides
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Chapter 1

Introduction

No one can deny the success of today’s Internet. What startkd late 1960’s
as a small government-sponsored research project dedigie# together four com-
puters across the United States now connects over onenijiiéople worldwide [112].
Further, the applications that run on the Internet have fnecan integral part of our
lives. The pervasiveness of Internet applications hasdextivancements in many as-
pects of our society—including medicine, education, firarand entertainment—and
these advancements have changed the way we work, learpnapthghare information.
We now manage our investments, make travel arrangements eseail, read breaking
news stories, learn about new medical treatments, holcecance calls, take online col-
lege courses, purchase movies and music, and search thenaetydrom applications
running on computers connected to the Internet in our home®#ices.

Most applications deployed on the Internet today, inclgdimose previously
mentioned, run simultaneously on thousands or even mdliohcomputers spread
around the world. In general, the goal of thestributed applicationss to connect
users to sharedesources where we define a resource as any computing device at-
tached to the Internet capable of hosting an applicationcdybining the computing
power and capabilities of distributed resources, apptinatare able to satisfy the ever-
increasing demand of their users. Some of the most popuiliited applications,

such as Web search engines like Google [44], use over 45@d@Puters to host their



service and meet user demand [68]. Additionally, otherithisted applications, such as
content distribution networks like CoDeen [79] and Coral][3ely on the geographic
diversity of hundreds of computers acting as caches to geavsers with lower latency
retrieval times for commonly accessed Web content. As therhet continues to be-
come more pervasive and spreads into more remote parts pfamet, the user demand
for these services will increase. To satisfy this demand,thmber and geographic
diversity of the computers needed by these services wol @stinue to grow.

While distributed applications offer many benefits withpest to increased
computing power and geographic diversity, they also inioednew challenges asso-
ciated with managing computations and services runningumiteds or thousands of
computers. For example, consider the task of deployingtellised application, which
involves installing the required software and startingdbmputation. When running a
computation or service on a single resource, it is easy totaw any needed software
and verify that the correct version is installed. Howevenew running a distributed
application, ensuring that hundreds of computers arouadvbrid are all running the
correct version of the required software is a cumbersomdedidus task. This task is
further complicated by the heterogeneity—in terms of battdivare and software—of
the computers hosting the application. The second subted&ploying an application
after installing any needed software is starting the comtpart. For applications running
on a single resource, starting an execution is trivial, asuhlly is a matter of running
a single command. In distributed applications, howevartisig a computation requires
synchronizing the beginning of the execution across aibigd set of resources, which
is especially difficult in wide-area settings due to the @ulictable changes in network
connectivity among the resources hosting the application.

In addition to application deployment, there are many otttallenges in-
volved with keeping an application running in distributetwiegonments, such as failure
detection and recovery. In applications that run on a singg®urce, monitoring an
execution and reacting to failures typically consists otching a single process (or

small set of processes) and addressing any problems teat dni distributed applica-



tions, monitoring an execution consists of watching huddi@ thousands of processes
running on resources around the world. If an error or faiisrdetected among these
thousands of processes, recovering from the problem mayresstopping all processes
and restarting them again. The challenges associatediveie tasks can be frustrating
to developers, who end up spending the majority of their tima@aging executions and
trying to detect and react to failures, rather than develppiew optimizations and en-
hancements for increased application performance. Indimainder of this thesis, we
take a closer look at the challenges associated with magé#ayige-scale distributed ap-
plications, and discuss ways to address the problems tisatiardistributed computing

environments.

1.1 Limitations of the Internet

Distributed applications leverage the combined compupiogrer and avail-
ability of multiple distributed resources to provide betsealability than applications
that run on a single resource. They also can provide bettdtr tilerance since the
probability of multiple computers failing simultaneousytypically less than the prob-
ability of a single computer experiencing a failure. Howewvaerely distributing an
application across several resources does not solve dllgmns. Internet design deci-
sions made nearly 40 years ago are beginning to limit thengiateof many distributed
applications. For example, many Internet application$gper poorly when confronted
with unexpected “flash crowds.” The Internet was not designesupport sudden bursts
of activity, and the ability to handle crowds, particulantycrisis situations, is essen-
tial in many applications. Currently, the Internet only @sfes two to three nines of
availability [51], which translates to more than eight reoof downtime per year. The
telephone system, on the other hand, provides five ninesadéaility, implying that the
telephone system experiences less than six minutes of adowper year [9]. Thus, dis-
tributed applications that run on the Internet must proddditional application-level

support for increased availability. Ideally, a distribditepplication should provide at



least as much availability as the telephone system if we\aete rely on it for time
critical operations.

In addition to availability, the Internet does not provideoagh security for
many applications. Malicious users regularly release newng and viruses that have
the ability to take over personal computers or render theateas [98]. Aside from
worms and viruses, the development of advanced phishingnset make it difficult
for users to feel safe when performing confidential financaisactions, and Internet-
based identify theft is becoming a more serious problem eagh[33]. In order for
Internet applications to achieve their maximum potentisérs must be able to trust that
the transactions completed online are safe and secure faokers and thieves. The
current design of the Internet does not provide any capisilfor stopping malicious
users or supporting this level of trust in applications,atgan limit the utility of appli-
cations. In order to overcome this limitation, distributggplications that store sensitive
or confidential information need customized applicatievel support for security. Ad-
ditionally, applications must take steps to prevent theagof viruses and worms.

Aside from security, the Internet’s design also makes ftadlift to support the
addition and integration of new technologies and deviceddi®g new and unconven-
tional resources to the Internet, such as cell phones olegsesensors, is an error-prone
and unreliable process. One of the main problems is thaintieenlet does not support
mobility, so non-stationary devices like phones and wagleensors require additional
functionality that was not originally included in the desigf the Internet. Further,
tracking down problems with network misconfigurations otages is a task we often
still reserve for network engineers or IT (Information Teology) specialists. This is
largely due to the fact that many of the protocols in use tadase not designed to be
easy to use, and thus the complexity of diagnosing problenesmfiguring new hard-
ware is often intimidating to users without a backgroundoamputer networks. As a
result, distributed applications must provide their owrchanisms and abstractions that
simplify the tasks involved with configuring network dewscelhe applications should

expose the needed information to help track down problemsieeao that the average



user need not worry about network-level details in orderuccsessfully connect and

manage their network-capable devices.

1.2 Developing and Evaluating Distributed Applications

The challenges and limitations discussed in the previocisosemake the de-
velopment and evaluation of new distributed applicatioifscdlt. The applications
must provide application-level support for availabiliégcurity, and extensibility to ad-
dress the limitations in the Internet’s design. Thus, befeleasing a new distributed
application to the public for general use, it must be thohdygvaluated in realistic con-
ditions to ensure that it achieves the desired levels obperdnce, availability, security,
and extensibility. Researchers and developers currerfiog three different options
for testing their applications before a public release:usation, emulation, and live de-
ployment. Each of these evaluation techniques allows dpees$ to test different aspects
of their applications, and in this section, we explore theaathiges and disadvantages

of all three approaches.

1.2.1 Simulation

Network simulation is often the first approach used whenuatalg a new
distributed application. Some of the common network sinoutainclude ns-2 [76] and
p2psim [60]. Network simulation does not actually involtie network at all, but rather
a set of programs that run on a single computer and simulatbehavior of hosts and
routers connected to a wide-area network. If a developdresio test their application
in a simulator, it usually requires rewriting the applicaticode to adhere to the APIs of
the target simulation platform. Since simulation usuatiyanvolves a single resource,
deploying and running an application simply involves exegua single command on
the computer hosting the simulator.

One of the main benefits of network simulation is cost. Neknsimulation

is the most inexpensive way to test a distributed appliodbecause typically only one



computer performs the evaluation. Another advantage afilsition is reproducibility.
The application developer has complete control over thailsitead network environ-
ment, and thus running an experiment repeatedly using tme samulated network
conditions yields the exact same results each time. Netgianklators also give users
flexibility with respect to network topologies— applicatialevelopers can create any
arbitrary topology. Barring processor or memory limitagoon the computer hosting
the simulation, topologies scale to large sizes in networkigtors as well, since there
are no real network resources to act as the bottleneck yl.asthther key benefit of sim-
ulation is that it can be used in early stages of applicatevebpment. For example,
while it may not be worthwhile to deploy an unfinished apglima on hundreds of com-
puters worldwide to test one aspect of its design, this isild@and easily accomplished
using a simulator.

Some of the main disadvantages of using a network simulatotefting a
distributed application stem from the fact that there is @& network involved in the
simulation. Thus, it is difficult to accurately model crosaffic, resource contention,
or failures that may occur in the wide-area. As a result, &tman environments limit
the ability of the developer to test the application undaliséic network conditions.
Additionally, most network simulators ignore hardware amekrating system proper-
ties, making it challenging to evaluate how the applicapenforms in heterogeneous
computing environments. The most significant disadvantdgemulators is that they
do not run real application code. Hence, the applicationtib@sewritten for the target
simulation platform, which runs the risk of introducing ptems that do not exist in the

real code, or worse, masking problems that do exist.

1.2.2 Emulation

Another alternative for evaluating a distributed applmais emulation. Some
common and widely-used emulators include ModelNet [108] Bmulab [110]. When
using emulation, computers connected to a local-area metk&N) emulate the be-

havior of a (potentially) larger set of resources spreadsxsthe wide-area. This is



often accomplished using traffic shaping mechanisms in étwork. Thus, when one
computer sends data packets to another in an emulatioroeanvant, emulated network
gueues subject the individual packets to delay and loss tiaét correspond to a wide-
area network topology. In addition, most emulators allowltipie emulated hosts to
reside on the same physical computer. Therefore, usingaonandful of physical com-
puters, developers emulate topologies with several hadneneulated resources. Un-
like simulations, emulation platforms typically suppastining unmodified application
code. Running an application in an emulated environmertives installing software
and simultaneously starting processes on several hundreldted resources. This task
is typically made simpler through the use of scripts progtidg the emulation platform
for executing parallel tasks across all emulated resources

In many ways, emulation provides the same benefits as simmlaith the
added ability of specifying more variable network condigp and, most importantly,
the ability to run real application code. Emulated topodsgilefine network links that
take latency, bandwidth, and loss rate into account. Som#agion platforms also pro-
vide mechanisms for injecting cross traffic into the netwokkhough not as cheap as
simulation, emulation is still relatively inexpensive stha small set of computers can
emulate a large-scale network topology. Like simulatiaonuktion results are repro-
ducible, and some environments support replaying resufeseer or slower speeds for
detailed offline analysis. Emulation environments givedligpers total control over the
conditions to which their application is exposed, allowfoga thorough performance
analysis.

The main disadvantage of emulation is that it is difficult toutate realistic
wide-area network conditions. Although some emulatoryigesupport for injecting
cross traffic into the network, accurately modeling typicaérnet traffic conditions is
still an open area of research. However, recent advancesduagss this limitation in
the near future. The Emulab project recently developed&bef93], a emulation envi-
ronment that supports integrating a wide variety of netwoddels, including models

obtained directly from real, wide-area networks. Anothesadvantage of emulation



environments in general is that they are sometimes oveligbfe and predictable as
compared to volatile wide-area networks, where failures @mmon and expected.
Scalability can be a limiting factor in emulation, as wekpgnding on the amount of
resources available for hosting the emulation and the egoin’s needs with respect
to processor and network capacity. Based on our experiehoe®ver, we believe that

scalability in emulation is usually not a significant prahle

1.2.3 Live Deployment

The third method for evaluating distributed applicatiosdive deployment.
This involves running applications on resources connetdedl “real” network. The
resources are either physical computers or clusters ofialinmachines (such as
VMware[107] and Xen [10]), and the network is either a loaeda or wide-area net-
work. As in emulation, application code does not have to beifisal during live de-
ployment. Running applications in live deployment envir@mnts involves installing
software on each machine separately, and simultaneowstyngtthe execution across
all resources. Application-specific scripts and environtyspecific toolkits often sim-
plify the task of running applications in live-deploymemtveéonments. Some com-
mon live deployment platforms include computational giji@S], local site clusters,
distributed data centers, and PlanetLab [11, 83]. Plametia collection of over 700
(Linux) computers connected to the Internet at 345 sitesbic@untries. One of the
main design goals of PlanetLab is to enable the introduciiomew technologies into
the Internet. PlanetLab exposes many new challenges asstaevith managing dis-
tributed applications running at scale across volatileeragea networks, and thus is the
focus of much of the work in this thesis.

One of the biggest advantages of live deployment envirotsnisnthat the
resources hosting the application are typically connetdgtie Internet, automatically
exposing the application to realistic wide-area netwonkdititons. Note that this is not
entirely true in site clusters and clusters of virtual maekithat reside on local-area

networks, however, where the network conditions of the LA&mot be representative



of those seen across the wide-area. In these settingspgevelmay inject cross traf-
fic using techniques and models similar to those used in gmonlaFor wide-area live
deployment environments like PlanetLab, computationdbgand distributed data cen-
ters, application developers also benefit from the geogeaptersity of the resources.
Perhaps the most important advantage to live deploymehtisréal software runs on
real machines connected to a real network.

The disadvantages of using live deployment are often drsgmog for appli-
cation developers. One problem is that live deployment geasive. Especially for
wide-area platforms, few researchers have the fundingssacg to obtain hundreds or
thousands of resources to spread around the world for gggtirposes. Until recently,
live deployment was typically only achieved by companie®whbuld afford to create
distributed data centers for hosting their applicatiomsatssmall scales by researchers
who obtained accounts on computers from colleagues at atmeersities and com-
panies. Fortunately, recent developments have made lp@ytaent more accessible
to a wider range of developers. By pooling together indigidesources from many
sites worldwide, shared testbeds like PlanetLab and dewenaputational grids now
allow researchers to run their applications on real mashawoss the wide-area. In
addition to the cost, another disadvantage is that liveayepént does not yield repro-
ducible results. Since live deployment environments slgpplications to real Internet
traffic, researchers have little control over the condgitmwhich their application is ex-
posed, making it difficult to analyze results. Future livpldgment environments may
provide ways to address this limitation. For example, GENa ilive deployment en-
vironment that plans to provide a mechanism for resourcéagament and experiment

reproducibility in a global large-scale testbed [39].

1.2.4 Summary

Simulation, emulation, and live deployment are three ciffik techniques for
deploying and evaluating distributed applications. Eaoch offers developers a way

to test different aspects of their applications duringedéht stages of its development.
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Thus rather than choosing one technique for evaluatioreldpers typically use a com-
bination of the three in order to ensure that an applicatsosuited for public release.
For example, simulation is well suited for early developm@erhaps even during the
initial design phase. Simulation allows developers to tlestbehaviors of protocols in
a controlled and predictable environment. After complgarthorough analysis of pro-
tocol behavior and coming up with an acceptable applicadiesign, most developers
then move on to emulation. Because emulation environmemsinmodified appli-

cation code, these platforms are best suited for evalualimimg early code develop-
ment. Emulation affords developers the ability to thordydést their implementations
in large-scale predictable settings. Upon the completianseries of emulation exper-
iments, the code should be in a stable and functional statedavelopers should be
confident that their implementation works in the desired.wale last stage of eval-
uation during application development is live deploymedntze deployment arguably

provides the most realistic evaluation conditions, and ihis important to thoroughly

evaluate an application’s performance using this tecteidiowever, live deployment
is also the least predictable technique, and therefore dess&tiopers complete several
simulation and emulation experiments to gain a full und@erding of the behavior of

their application before running across a real network.

1.3 Distributed Application Management Overview

In the preceding section, we discussed the advantages sadvdntages of
simulation, emulation, and live deployment in the contebdistributed application de-
velopment and evaluation. In addition to the advantagesdesativantages previously
discussed, another key tradeoff between these technigties complexity of the tasks
associated with managing applications. This complexithaigely dependent on the
amount of control afforded to the developer and the numbeesdurces in use for
each evaluation technique. In general, it becomes moreuliffo manage applications

as the developer’s control of the environment decreaseshendumber of resources
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increases. Thus, managing applications during simulasidnivial, since developers
have total control over the environment, and the executsarally only involves a sin-
gle resource. At the opposite end of the spectrum, managiptications during live
deployment can be very complicated, since these platfoffasaevelopers little or no
control over the environment, and also potentially conkaindreds of resources spread
around the world.

Although all three evaluation techniques should be usethdupplication
development, in the remainder of this thesis we focus onltlalenges associated with
managing distributed applications running on multipleotegses in emulation and live
deployment environments. We are especially interestedide-area live deployment
environments, since they are the least predictable and chafienging with respect to
application management. In this context, it is also impdrta realize that we are inter-
ested in the problems associated with distributed applicahanagemerih general—
that is, we are not limiting our work to a single type of distried application or a single
deployment environment. Instead, we discuss the chaleag®ociated with managing
a broad range of distributed applications running on a tsaaecomputing platforms. In
particular, we consider applications with varying exematiimes—ranging from com-
putations that last a few minutes or less to services thatouyears—as well as appli-
cations with varying computational demands—ranging framputationally intensive
scientific applications to bandwidth intensive networklaggions. Chapter 2 discusses
the different types of applications in more detail. In theagnder of this section we give
a high-level overview of the challenges associated wittridigted application manage-
ment.

Managing distributed applications involves deployingyfiguring, executing,
and debugging software running on multiple computers damelously. Particularly
for applications running on resources that are spread sitheswide-area, distributed
application management is a time-consuming and erroregppoocess. After the initial
deployment of the software, the applications must detett@cover from the inevitable

failures and problems endemic to distributed environmentsachieve required levels
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of availability, applications must be carefully monitoraad controlled to ensure contin-
ued operation and sustained performance. Operators igelodeploying and man-

aging these applications face a daunting list of challengescovering and acquiring

appropriate resources for hosting the application, tistimng the necessary software,
and appropriately configuring the resources (and re-comfiguhem if operating con-

ditions change). It is not surprising, then, that a numbeoofs have been developed
to address various aspects of the process in distributedoanvents, but no solution

yet flexibly automates the application deployment and memeamt process across all
environments.

Presently, most researchers who want to evaluate theircapiphs in wide-
area distributed environments take one of two managem@mnbaghes. On PlanetLab,
service operators address deployment and monitoring addrog application-specific
fashion using customized scripts. Grid researchers, oottier hand, leverage one or
more software toolkits for application development and aggament. These toolkits
often require tight integration with not only the environmhebut the application itself.
Hence, applications must be rewritten to adhere to the Bpéd?Is in a given toolkit,
making it nearly impossible to run the application in othavieonments. In emula-
tion environments, the management approach largely depamdhe platform. Some
emulation environments provide toolkits and web intersafog manipulating applica-
tions running on emulated resources, while others rely searhers to write their own
management scripts.

Despite the fact that applications must adhere to specifis ARd are not
easily run in other environments, toolkits such as thosensonty used in grid en-
vironments are highly regarded due to their ability to shiéévelopers from the sig-
nificant complexity associated with executing, configuringd managing large-scale
distributed computations. In particular, grid workflow nagement systems are espe-
cially popular. These systems allow researchers to proaideecification of a dis-
tributed computation—a high-level description of whatowses a particular applica-

tion requires, its individual phases of computation, areldependencies between the
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phases—as part of the application logic that actually imTigliets the computation. In
this manner, developers can avoid “hardwiring” particaanfiguration details such as
the characteristics of individual hosts or network linkghie application itself. To this
point, however, such toolkits have seen little use in nad-gnvironments like Plan-
etLab or in publicly available emulation environments IMedelNet or Emulab. The
toolkits are closely tied to the grid environments for whilshy were designed, and thus

are not easily extended to support other computing plagorm

1.4 Hypothesis and Goals

Although the resource-specific low-level tasks associatétl application
management vary in complexity depending on the target emment and number of
resources in use, at a high-level, the goals of applicatianagement across all deploy-
ment platforms are largely similar. Thus if we provide a wayhelp developers cope
with the intricacies of managing different types of res@gre-ranging from emulated
“virtual” hosts to real physical machines spread aroundibgd—it should be easy for
them to seamlessly run applications in a variety of envirents using the same man-
agement interface. Fundamentally the only elements ofpihbécation’s execution that
change are the underlying resources. Similarly, this mamagt interface should not
be tied to a specific application; the interface must be eids and customizable to
support many different applications. To this end, we belithat a unified set of ab-
stractions for shielding developers from the complexided limitations of networked
environments—including the Internet—can be applied toa@abdmrrange of distributed
applications in a variety of execution environments. Thassractions help developers
manage and evaluate distributed applications, to ensatétb applications achieve the
desired levels of availability, scalability, and faultechnce.

The primary goal of this thesis is to understand the abstrastand define
the interfaces for specifying and managing distributed matations run inrany execu-

tion environment. We are not trying to build another toofkit managing distributed
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applications. Rather, we hope to define the way users thin&ataheir applications,
regardless of their target deployment platform. We tooliradion from classical op-
erating systems like UNIX [95] which defined the standardiraotions for managing
applications: files, processes, pipes, etc. For most usemsmunication with these
abstractions is simplified through the use of a shell or condvme interpreter. Of
course, distributed computations are both more difficugecify, because of hetero-
geneous hardware and software bases, and more difficultiiageabecause of failure
conditions and variable host and network attributes. Fuytmany distributed comput-
ing platforms do not provide global file system abstractjovisch complicates the way
users typically manage their data.

As an evaluation of our hypothesis, we present Plush [86greedc applica-
tion management infrastructure that provides a unifiedfssbstractions for specifying,
deploying, and monitoring different types of distributggbhcations in a variety of com-
puting environments. The abstractions in Plush provideraeisms for interacting with
resources, defining computations and services, and aohigynchronization without
making any strong assumptions about the application or xeeution environment.
Plush users describe distributed computations using amgikie application specifica-
tion language. In contrast to other application managemsgstems, however, the lan-
guage allows users to customize various aspects of depliyemed management based
on the needs of an application and its target infrastruetutfeout requiring any changes
to the application itself. Users can, for example, specifyadicular resource discov-
ery service to use during application deployment. Plush pisvides extensive failure
management support to automatically detect and adapttodsiin the application and
the underlying infrastructure. Users interact with Pludstotigh a simple command-line
interface or a graphical user interface (GUI). AdditiopaRlush exports an XML-RPC
interface for programmatically integrating applicationigh Plush if desired.

In order to verify that our hypothesis is correct, in thistisewe show how
Plush manages applications that fall into three differéa$¢ses: short-lived computa-

tions, long-lived services, and parallel grid applicationVe believe that these classes
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encompass the majority of distributed applications, andhmwing that Plush provides
support for each class, we prove that the abstractions ishRian in fact be applied
to a broad range of distributed applications. Further, 8e ahow how Plush interacts
with resources from a variety of computing environmenthait making any strong
assumptions about the underlying infrastructure. In paldr we show how Plush sup-
ports execution using virtual resources, emulated ressyend real physical resources.
Lastly, since one of our goals is to develop a framework thia¢ousers can apply to
a variety of applications in different environments, wecdss the usability features of
the Plush user interfaces, and summarize feedback redeoradsarious Plush users at

different institutions.

1.5 Contributions

In summary, Plush is an application management framewak glhovides
extensible abstractions for managing resource discovatyaaquisition, software dis-
tribution, and process execution in a variety of distribdut@vironments. Combinations
of Plush application “building blocks” specify a custontdzeontrol flow for different
types of distributed applications. Once an applicatiomising, Plush monitors the ex-
ecution for failures or application-level errors for theralion of its lifetime. Upon de-
tecting a problem, Plush performs a number of user-confij@r@covery actions, such
as restarting the application, automatically reconfigyirinor even searching for alter-
nate resources. For applications requiring wide-areahspnization, Plush provides
several efficient synchronization primitives. In partelPlush implements a new set
of barrier semantics designed for increased performanteaustness in failure-prone
environments. Plush users interact with their applicatittmough three different user
interfaces. The remaining chapters that follow descriluh ed these features in detail.

In particular, this thesis makes the following contribugo

e Chapter 2 distills the general requirements of any distetb@pplication manage-

ment infrastructure. In addition, we identify three diffat classes of distributed
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applications: short-lived computations, long-lived seeg, and parallel grid ap-
plications. By outlining the requirements of each of thdssses of applications,
we determine the common elements involved with managirtgloligsed applica-

tions. The list of requirements provides motivation for thesign of Plush. We

conclude Chapter 2 with a discussion of related work.

Chapter 3 builds on the general requirements outlined irp@n& and discusses
the design and implementation of Plush. The architecturBlagh consists of
three key components: the application specification, conetional units, and
user interface. The Plush application specification defansst of application
building blocks that allows users to specify the flow of cohfior distributed
applications. The core functional units define some of theadtestractions in the
internal design of Plush, including barriers and procesBessh provides several
different user interfaces for users to interact with thpplecations, and we discuss
each interface in detail. We also describe how these conmg®meork together
to manage distributed applications. In addition, ChapténcBudes a detailed
discussion on fault tolerance and scalability, which are oivthe key challenges

in the design and implementation of Plush.

Chapter 4 details the Plush resource matcher. One of ourdsgrigoals in Plush
is to support execution in a variety of environments. In otdeachieve this goal,
Plush must provide support for many different types of reses, including Plan-
etLab hosts, virtual machines, and emulated machines.ditiaal we discuss the
abstractions that Plush uses to support execution onelifféypes of resources by
interacting with several external resource managememteinarks using a com-
mon API. We also describe the process that the Plush resauatsher uses to

find and maintain the best set of resources available foirtgpah application.

Chapter 5 describes the design and implementation of pbardaers in Plush. A
key challenge when managing applications in potentiallatie, wide-area en-

vironments is ensuring that the applications continue t&enfarward progress
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in the execution, even in the face of failures. Traditionalrier-based synchro-
nization primitives are too strict to achieve good perfoncgand ensure forward
progress in wide-area environments. Partial barrierriglase traditional syn-
chronization semantics to improve performance across ttie-area. Chapter 5
discusses the relaxations, and explains how Plush useal feantriers during ap-

plication management.

Chapter 6 evaluates Plush’s ability to manage differen¢$ypf applications by
studying several specific distributed applications. Irtipalar, we evaluate ex-
ample applications from multiple classes of distributegl@ations, as discussed
in Chapter 2. The purpose of Chapter 6 is to show that Plustiestiee in pro-

viding useful abstractions for developers to manage th@&c&tions, and also to
show how the performance of the applications actually imgsadue to the fault

tolerance and added reliability mechanisms that Plushigesy

Chapter 7 describes some potential areas for future woitk negpect to the de-
velopment of Plush, makes general conclusions aboutlalisédl application man-
agement, and discusses some lessons that we learned deidgvelopment of
Plush. Chapter 7 also includes several comments about #felisss of Plush

from users at different institutions around the world.



Chapter 2

Requirements for Managing

Distributed Applications

To better understand the requirements of a distributedegtjgn controller,
we first consider how different types of applications aradsldy run on PlanetLab. We
then use the needs of these applications to distill a listemiegal requirements that a

distributed application management infrastructure mugpsrt.

2.1 Classes of Distributed Applications

We start by describing three distinct classes of distrithaggplications: short-

lived computations, long-lived Internet services, andafj@r grid applications.

2.1.1 Short-lived Computations

One common type of distributed application that runs on €tlaeb is the in-
teractive execution of short computations. The computatrange from simple to com-
plex, but many high-level characteristics of the applmagiare the same. In particular,
the computations only run for a few days or less, and the ¢ixawuare closely moni-
tored by the useri.g. the person running the application). To run an applicativst

the user finds and gains access to machines capable of htwsigplication. When

18
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running a short-lived application, most users strive to fiodierful machines with good
connectivity at the time when the application is startedteAfocating suitable ma-
chines, the user installs the required software on the tegldwsts, runs the application
to completion, and collects any output files produced fohyesis If an error or failure
is detected during execution, the application is abortetrastarted.

Now we consider a specific scenario that further examinepribeess of run-
ning a short-lived computation in a distributed environin&uppose a user wants to test
a new file-distribution application on 50 PlanetLab nodedtsced around the world. In
general, file-distribution applications on the Internet aot short-lived. However, sup-
pose that the user is developing a new file-distributioniappbn, and wants to test its
performancei(e., time required for all hosts to download a specific file) asithe wide-
area for files of different sizes. PlanetLab is often usedis mmanner for testing new
applications before making them publicly available. Befarnning the application, the
user must gain access to PlanetLab resources. Autheaticati PlanetLab is based on
public-key cryptography, and access to PlanetLab mach#ashieved through SSH
login using RSA authentication. To obtain SSH login prig#s, the user registers with
PlanetLab Central (PLC) to obtain a user account, and @eateéSSH key pair. Af-
ter uploading the public key to the PLC database, the usecedss their PLC account
with a specific PlanetLaslice A slice is a named set of distributed PlanetLab resources,
forming the basis for both resource allocation and isohetio PlanetLab. The user binds
the newly created slice to a number of physical PlanetLalhinas €.g, using a Web
interface), causing the user’s public key to be copied tontbeées and authorizing the
user to login to the machines [25, 85].

After gaining access to PlanetLab resources, the next stepfind a suitable
set of machines scattered around the world to host the apiplic Resource discovery
tools like SWORD [3, 77] are commonly used to help streamiireprocess on Plan-
etLab. In our example file-distribution application, suppohe user wants 50 machines
with fast processors, low load, and high pairwise avail#aliedwidth to maximize per-

formance. After finding machines that meet these requirésnéme user transfers any
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required software to the 50 chosen machines. PlanetLabradgsovide a global file
system, so each machine separately and individually dassl@and installs the soft-
ware package. This is accomplished using a file transfeopobsuch as scp, wget,
Bullet [56], or CoBlitz [80]. After the machines have beerpared with the software,
the processes are started on all 50 machines by connecteartomachine separately
via SSH and then executing the appropriate commands. Ax#weigon runs, the user
periodically checks the status of each host to ensure tHeappn runs correctly. After
all hosts have finished downloading the specified file, anyareimg processes that did
not cleanly exit are killed, and any desired output or logsftleat were generated on the

PlanetLab machines are copied to a central location foyarsal

2.1.2 Long-lived Internet Services

Aside from short computations, another type of distribuagglication that
is often run on PlanetLab is a continuously running servidalike short-lived appli-
cations, long-running services are not closely-monitptggically run for months or
even years, and provide a service to the general public. ¢j@ém@ddition to the tasks
described above for obtaining and configuring resourceldsting short-lived compu-
tations, service operators must perform additional task®aintain the services over
an extended period of time. The environments in which sesvian change over time,
exposing the applications to a variety of operating condgi Further, the machines that
host the services are often taken offline for software orlard upgrades, and therefore
the services must recover from these changes. Some comrampkes of services in
use today on PlanetLab include CoDeen [79], Coral [37], apdr@HT [92].

Since operators generally do not closely monitor long mgservices, detect-
ing failures is difficult. If the operator does not periodigaheck for errors and users
of the service fall to report outages, it is not uncommon fpr@blem to go unnoticed
by the operator for weeks or even months. When running sived-applications like
the file-distribution example previously described, usaming the application quickly

notice when a failure occurs, and often treat the failurerasl@rrant condition and
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discard the results of the run. For long-running servicafijries are the rule rather than
the exception and, therefore, must be addressed as sucs, rather than aborting the
application in response to failure, the operator attengptietect and recover from the
failure to restore the service as quickly as possible. Thenate goal of the service
maintainer is to minimize downtime and maximize availapileven when failure rates
are high. Additionally, since services run continuously lfmng periods of time, it is
likely that the service itself will need to be upgraded to aamcompatible with under-
lying operating system features. Hence, supporting so&w@grades to the service
itself is another challenge that must be addressed. Id#alyipgrades will not drasti-
cally impact the service’s availability, although achiayithis goal is often difficult.

For example, suppose a service operator wants to deploy aesewrce dis-
covery service on PlanetLab. The application aims to runsomany PlanetLab ma-
chines as possible and be highly available to provide ateuméormation to users of
the service. To deploy such a service on PlanetLab, an apeyaés through the same
process as previously described for establishing autteitn, adding nodes to a Plan-
etLab slice, finding a suitable set of resources, transigrsoftware, and starting the
executable. However, unlike short-lived applicationg tféen run for short periods of
time on powerful machines with good connectivitg,, low-latency and high-bandwidth
connections, services run for months or years, and are @etj¢éo changing network
conditions resulting in machines with slow or lossy conime in addition to more
desirable low-latency, high-bandwidth links. Furthemsgulic resource contention on
PlanetLab often leads to saturated machines with low arsairfitee memory and avail-
able processor power. Thus, choosing nodes to host an étteenvice on PlanetLab
often hinges on avoiding nodes that frequently perform lyamrer relatively long time
periods rather than choosing nodes that perform well at angoint in time [91].

Once the service is running, the operator periodically noosithe individual
processes running on each host for failures. One populgiceenonitoring technique
involves the use of customized scripts or cron jobs that kliee status of the appli-

cation at specified intervals in at attempt to automaticdéyect and recover from the
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more common failure conditions, including network outadesdware failures, operat-
ing system or software incompatibilities, and applicatorors. Another solution is to
monitor application-generated log files for error inforioat If a problem is found in a
log file, it may be possible to restart a misbehaving processré a widespread outage
occurs. When a software upgrade to the service is requinedyierator has two main
options. First, the user can perform a “hot upgrade” on eaabhmne. During a “hot
upgrade” the service is upgraded without ever stoppingrttiidual processes. If this
is not possible, the second option is to shut the service doweach host, install the

new version of the software, and restart the service as yuaskpossible.

2.1.3 Parallel Grid Applications

Though there are many different types of grid applicatiamre of the most
common usage scenarios for computational grids is hamgesssources at one or more
sites to execute a computationally intensive job. A typigad application involves gath-
ering data from specific sites, and then processing thisukitey a compute-intensive
algorithm to produce the desired result. Unlike the filaribsition application previ-
ously described that embraced the geographic diversitylafdfLab machines, most
grid applications are compute-intensive, and view netvemrknectivity and geographic
resource distribution as “necessary evils” to accomptighiheir goals [94]. Since grid
applications tend to be compute-intensive, many are dedigmbe highly parallelizable:
rather than running on a single machine with one or more gsumrs, the computation is
split up and run across several machines in parallel. tizgtion has the potential to
increase the overall performance substantially, but drdgch machine involved makes
progress. The rate of completion for individual tasks i®oftelayed by a few slow
machines or processors. For a researcher running a papfiktation, maintaining an
appropriate and functional set of machines is crucial toesoing good throughput.

Let us again consider a specific example. Suppose a physaiargs to run
EMAN [66] on PlanetLab. EMAN is a publicly-available softreapackage used for

reconstructing 3-D models of particles using 2-D electraoragraphs. The program
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takes a 2-D micrograph image as input and then runs a “refinérpeocess on the

image to create a 3-D model of the particle. The refinemertga®is run repeatedly
until yielding a result with the desired quality. Each iteva of refinement consists of
both computationally inexpensive sequential computatenmd computationally expen-
sive parallel computations. During this process the oabmicrographs are distributed
among several machines that simultaneously run the refimepnecess computations
in parallel. For multiple iterations of refinement, the emtycle is repeated.

As in the other applications, the researcher running EMAKI toagain ac-
cess to PlanetLab, find suitable resources, distributedft@are and data files, install
the software, and start the executables. Unlike the shad-lpplication or the long-
running service described above, however, the performafiE®AN is greatly affected
by the computational resources available on the machinstinigathe parallel compu-
tations of the refinement process. Thus, with each iteraifdhe refinement process,
the researcher running the application wants to use thef $danetLab machines that
has the most available computational resources. Furfreemeachine fails or suddenly
becomes overloaded during execution, the machine shoulelteced by another with
more available resources. Detecting and recovering frasetfbottlenecks is both diffi-

cult and essential to achieving high performance and thput;

2.2 Application Management Requirements

In the preceding section we described the process of exectitiee different
types of distributed applications. Though the low-levehile for managing the applica-
tions are different, at a high-level the requirements faheaxample are largely similar.
Rather than reinvent the same infrastructure for each @i separately, we set out
to identify commonalities across all three classes of ithisted applications, and build
an application control infrastructure that supports gty of applications and execution

environments. Based on the example applications in theqarewiscussion, we now

n reality, PlanetLab is typically not used for running ghelegrid applications like EMAN. Dedicated computa-
tional grids such as NEESgrid [82] and Teragrid [20] arerofised instead. We use PlanetLab in this discussion to
provide a better comparison to the previous two exampleeatns.



24

Application R‘esource Resource Application Application
Description iscorery Acquisition Deployment Control
and Creation
Ti |

Figure 2.1: Basic requirements and control flow for a distel application controller.

extract some general requirements for a distributed agapdic management infrastruc-
ture. Together, these requirements identify the abstrasteeded for defining the flow

of control for any distributed application, as shown in FgQa.1.

2.2.1 Application Description

A distributed application controller must allow the usectstomize the flow
of control for each application. Thapplication specificatioms an abstraction that de-
scribes distributed computations. A specification idesdifall aspects of the execution
and environment needed to successfully deploy, managemnaidain an application.
It describes the resources required, software needed tiheuarpplication (and instruc-
tions for how to install it), processes that run on each resmwand environment-specific
execution parameters. User credentials for resourceslswereluded in the appli-
cation specification. To manage complex multi-phased egiptins like EMAN, the
specification supports defining application-specific syonlzation requirements. Sim-
ilarly, distributing computations among pools of resogroequires a way to specify a
workflow—a collection of tasks that must be completed in &gierder—within an ap-
plication specification. The application controller pars@d interprets the application
specification, and uses the information to guide the flow ot for the remainder of
the application’s life cycle.

The complexity of distributed applications varies greéithm simple, single-

process applications to elaborate, parallel applicatidimis the challenge in building
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a general application management infrastructure is to eefispecification language
abstraction that provides enough expressibility for camplistributed applications, but
is not too complicated for single-process computationssHart, the language must
be simple enough for novice users to understand, yet alsosexpnough advanced

functionality to run complex scenarios.

2.2.2 Resource Discovery and Creation

In addition to the application description, another keytegtzsion in distributed
application management is@source Put simply, a resource is any network accessible
device capable of hosting an application on behalf of a useluding physical, vir-
tual, and emulated machines. Because resources in distlilelvironments are often
heterogeneous, users naturally want to obtain a resourteatdest satisfies their ap-
plication’s requirements. In shared computing environtsiegven if hardware is largely
homogeneous, dynamic characteristics of a host such dslaeabandwidth or CPU
load can vary over time. The goal of resource discovery isglevironments is to find
the bestturrentset of resources for the distributed application as spédifjethe user.
In environments that support dynamic virtual machine imsédion, these resources may
not exist in advance. Thus, resource discovery involvesiignthe appropriate physical
machines to host the virtual machine configurations, anatiorg the appropriate virtual
machines as needed.

Many solutions exist for resource discovery and creatiodigtributed en-
vironments. On PlanetLab, services like CoMon [81] and SW(R, 77] provide
users with measurements and mechanisms for monitoringomating hosts that meet
application-specific criteria. Distributed computing eomments that support virtual
machines €.g, Xen [10] and VMWare [107]) leverage virtual machine confajion
and management frameworks such as Shirako [49] and Ushidof7éfficient resource
discovery and creation. A distributed application con¢nomust either provide a de-
fault mechanism for performing resource discovery digedt it should interface with

these existing external tools. In the latter case, the rilleeoapplication control infras-
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tructure is to parse the user’s request for resources, $enctuest to an appropriate
resource discovery and creation mechanism, and export moomPI that allows these
services to add and remove resources from the user’s afiptiag@source pool. If the
application control infrastructure provides its own meatken for resource discovery, it
must provide built-in functionality for finding the best sdtavailable resources without

contacting an outside service.

2.2.3 Resource Acquisition

Resource discovery and creation systems often interastttlirwith resource
acquisition systems. After locating the desired resoudcemg resource discovery and
creation, resource acquisition involves obtaining a leaspermission to use the re-
sources. Depending on the application’s target executiwivanment, resource acqui-
sition can take a number of forms. In best-effort computingir®nments €.g, Plan-
etLab), no advanced reservation or lease is required, saolditanal steps are needed
to acquire access to the resources. To support advancegtecegeservations such as
those used in environments where resources are arbitrgtedbdatch scheduler, re-
source acquisition involves potentially waiting for resms to become available and
subsequently obtaining a “lease” from the scheduler. ltualrmachine environments,
resource acquisition includes verifying the successfeton of virtual machines, and
gathering the appropriate informatiomg, IP address, authentication keys) required for
access. If any failures or problems arise while trying tousir@gresources, the applica-
tion controller recontacts the resource discovery andioraechanism to find a new
set of available resources if necessary.

The challenge facing an application controller is to prewacyeneric resource-
management interface that supports execution in all comgpenvironments. The com-
plexities associated with creating and gaining access ysigdl or virtual resources
should be hidden from the user. As the size and popularityiifibuted computing
environments continue to grow, the process of acquiringuess will become increas-

ingly more complex. Currently, most large-scale distrdauénvironments are centrally
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managed, so that obtaining access to resources only irsvgki@ing access to a cen-
tral site. This central site acts as a trusted intermedemg, has the ability to grant
access to resources at all other sites [84]. There are diglhmmitations to this central-
ized approach, however, and as we move toward more dedeettand distributed ap-
proaches for managing large-scale networked environmgaitsing access to resources
may become more complicated and involved. For these reaadatistributed applica-
tion controller must be extensible enough to support a tyagémethods for resource

acquisition.

2.2.4 Application Deployment

Upon obtaining an appropriate set of resources, the apiplicadeployment
abstraction defines the steps required to prepare the pesowith the correct software
and data files, and run the executables to start the applicaflhere are really two
phases that must be completed during application deploymehe general case. The
first phase prepares the resources for execution. Thisvesalownloading, unpacking,
and installing any required software packages, checkingdfiware dependencies, ver-
ifying correct versions, and basically ensuring that albrarces have been correctly con-
figured to run the desired application. Some environmentsimse a common/global
file system, while others may require each resource to sighacgownload and install
all software packages. As a result, the application coetrohust support a variety of
file-transfer and decompression mechanisms for each &xgettion environment, and
should react to failures that occur during the transfer austhilation of all software.
Common file transfer mechanisms include scp, wget, rsypcCioBlitz [80], and Bul-
let [56], and common decompression tools include gunzipzip2, and tar. In addition,
to further simplify resource configuration, the applicataontroller must interface with
package management tools such as yum, apt, and rpm.

The second phase of application deployment begins the gsrclAfter the
resources have been prepared with the required softwakages, the application con-

troller starts the application by running the processesddfin the application spec-
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ification. One key challenge in the application deploymemge is ensuring that the
requested number of resources are correctly running theappn. This often involves
reacting to failures that occur when trying to execute wsiprocesses on the selected
resources. In order to guarantee that a minimum number ofiress are involved in

a distributed application, the application controller nmeed to request new resources
from the resource discovery and acquisition systems to eosgte for failures that
occur during software installation and process executiearther, many applications
require some form olboose synchronizatioacross resources to guarantee that various
phases of computation start at approximately the same tiPmeviding synchroniza-
tion guarantees without sacrificing performance in disteld computing environments

is challenging, especially in failure-prone and volatdegle-scale networks.

2.2.5 Application Control

Perhaps the most difficult requirement for managing androbimgy dis-
tributed applications is monitoring and maintaining anlegagpion after it starts. Thus,
another abstraction that the application controller me$ineé is support for customiz-
able application maintenance. One important aspect ofteramce is application and
resource monitoring, which involves probing resourcedddure due to network out-
ages or hardware malfunctions, and querying applicationslications of failure (of-
ten requiring hooks into application-specific code for obise the progress of an ex-
ecution). Such monitoring allows for more specific erroraming and simplifies the
debugging process. The challenges of application mainteneclude ensuring appli-
cation liveness across all resources, providing detailemt exformation, and achieving
forward progress in the face of failures. In order to accashpihese goals, it is desir-
able that the application controller have a user-friendtgiface where users can obtain
information about their applications, and if necessarkethanges to correct problems
or improve performance.

In some cases, system failures may result in a situationendygplication re-

guirements can no longer be met. A robust application manegeinfrastructure must



29

be able to adapt to “less-than-perfect” conditions andinaetexecution. For example,
if an application is initially configured to be deployed onr@chines, but only 48 are
available and can be acquired at a certain point in time, pb&cation controller should
contact the user, and, if possible, adapt the applicatigmogypiately to continue exe-
cuting with only 48 machines. Similarly, different applicens have different policies
for failure recovery. Some applications may be able to symestart a failed process
on a single resource, while others may require the entireugia across all resources
to abort in case of failure. Thus, the application contradleould support a variety of
options for failure recovery, and allow the user to cust@ntie recovery behaviors sep-
arately for each application. For applications that haxietsesource requirements, the
application controller may need to contact the resourceodliery, creation, and acqui-
sition subsystems to obtain new resources for hosting thicagion and recover from

failures.

2.3 Related Work

The functionality required by an application controller discussed in this
chapter is related to work in a variety of areas, ranging fremote execution tools to
application management systems. In this section we exaseweral projects in these
areas, and discuss the extent to which they fulfill the resouénts outlined in the pre-
ceding section. In addition, we also discuss related waakaddresses workflow man-
agement, resource discovery, creation, and acquisitr@hsgnchronization, since these

are key components in distributed application management.

2.3.1 Remote Execution Tools

With respect to remote job execution, there are severad ena@ilable that pro-
vide a subset of the functionality required for distribuggzplication management. In
particular, cfengine [19] is a language-based softwardigoration system designed to

help system administrators manage networks of machines.goéhl is to allow users
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to describe their configuration requirements in a high{léseguage, such that a sin-
gle cfengine file will describe the setup of every machinensmted to the network.
This saves users from writing customized scripts that gitdmaccount for the subtle
differences that exist across heterogeneous systems.

gexec [23] and pssh [24] are tools designed to perform rejobtexecution
in cluster environments. The goal of both of these projexte simply run a command
on multiple computers simultaneously. The key differeneavMeen pssh and gexec is
that gexec is designed to run mainly in cluster environmemlt®reas pssh is designed
to run on any set of hosts, including those potentially speg@aund the world. Rather
than requiring a user to maintain separate connectionsctor@achine, gexec and pssh
transparently manage the underlying connections and exeounmands on behalf of
the user. The systems are designed to be robust and scabs tlO®0 nodes. vxargs [67]
is a similar tool that extends the functionality providedgssh by providing a wider
range of supported commands, and also by providing a usgfaoe for monitoring the
execution status of processes.

GridShell [108] and GCEShell [75] are distributed shellsigeed specifi-
cally for grid-computing environments. GridShell incorates extensions to the Tenex
C Shell (TCSH) and Bourne Again Shell (BASH) that transp#yesupport distributed
grid-computing operations. GCEShell provides a new sehefl commands that re-
semble common UNIX operations and are actually implemematfor remote Web
Services/Open Grid Service Architecture (OGSA) servibes are executed on behalf
of the user. Both GridShell and GCEShell support script @ssing, and aim to provide
a user-friendly interface for managing remote resources.

The difference between these tools and the requirementslistrébuted ap-
plication controller is that an application controller ug@s more functionality than just
remote job execution. An application controller must beusiland provide mechanisms
for failure detection and recovery, as well as automatioméguration due to changing
conditions. Additionally, most of the remote executionlsodescribed above require

scripts and configuration files that specifically define thteo$enachines on which to
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run commands. A distributed application management itrixatire should support a

variety of different types of resources, and not be tied tpexdic set of machines.

2.3.2 Application Management Systems

In addition to remote job execution tools, application ngaraent projects
such as the PlanetLab Application Manager (Appmanagei) fptis specifically on
managing and configuring distributed applications. Appaggn is a tool designed for
use on PlanetLab that helps users maintain distributedcapiphs and services. It uses
a simple client-server architecture, where the centralesanaintains a database that
stores all pertinent information about the applicatiomeun, and the clients are solely
responsible for periodically updating the server with thplecation’s status. Appman-
ager relies on cron jobs running on the clients for maintejran application and for
retrieving status updates. There is no user interface feranting with the clients run-
ning on the remote PlanetLab hosts directly. In order toinbtdormation about an
individual host, the user views a webpage that is periolyicgddated by the server and
displays information about each host involved in the ajpidn.

HP’s SmartFrog [43] project is a framework for describingplbying, and
controlling distributed applications. It is written ey in Java, and consists of a col-
lection of distributed daemons that manage applicationsaanigh-level language that
describes applications. SmartFrog is a not a turnkey swlut application manage-
ment, but rather a framework or API for building configuragystems. In order to man-
age a distributed application using SmartFrog, the uset muite the application such
that it adheres to the SmartFrog API, or at the very leasldlauSmartFrog “wrapper”
program around their application. SmartFrog also provaleet of scripts for start-
ing, stopping, and manipulating distributed applicaticimsning remotely, and provides
mechanisms for detecting and recovering from failures.

There are several other commercially available produds plerform func-
tions related to application management and configurati@mely, Opsware [78] and

Appistry [8] provide software solutions for distributedpipation management. Op-
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sware System 6 allows customers to visualize many aspettigeioflistributed systems,
and automates software management of complex, multietiapplications. Appistry

Enterprise Application Fabric strives to deliver applicatscalability, dependability,

and manageability in grid-computing environments. Botlthese tools focus more on
enterprise application versioning and package manageaspetts of application con-
figuration, and less on providing support for debugging,figoming, and interacting

with experimental distributed systems.

In grid-computing environments, several different prégeaddress various as-
pects of application management, including Condor [18]@na&iDS [12]. Condor [18]
is a workload management system for compute-intensive tjoditsis designed to de-
ploy and manage distributed executions in computationdsgCondor is optimized for
leveraging underutilized cycles in desktop machines witr organization where each
job is parallelizable and compute-bound. GrADS [12] pregic set of programming
tools and an execution environment for easing program dpuent in grids. GrADS
focuses specifically on applications with variable reseusguirements during execu-
tion and environments with dynamically-changing resosira&rADS is a project that
is largely based on GrADS. vGrADS aims to accomplish the sgoads as GrADS, but
provides several extensions related to Virtual Grid [53liemments. Both vGrADS
and GrADS were designed to manage compute intensive daegtid applications
that are highly dependent on using the best resources laleaitaobtain results. Thus,
once an application starts execution, GrADS/VGrADS maisteesource requirements
through a stop/migrate/restart cycle. All of these systamsssimilar in that they focus
on maximizing the application’s performance through jolgration and rescheduling
in an attempt to use the best resources available.

Lastly, the Globus Toolkit [34] is a framework for buildingig systems and
applications, and is perhaps the most widely used softwackgge for grid develop-
ment. Although Globus does not directly manage applicatidrdoes provide several
components that perform tasks related to application mamagt. With respect to an

application specification, the Globus Resource Specifindtanguage (RSL) provides
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an abstract language for describing resources, thougleg dot provide a mechanism
for describing entire applications. In the context of reseunanagement, the Globus
Resource Allocation Manager (GRAM) processes requestsefmurces, allocates re-
sources, and manages active jobs in grid environments. &ukartFrog, Globus is a
framework that provides many application configurationay, but each application
must be built specifically using Globus APIs to achieve tharee functionality.
Although all of these tools meet many of the requirementsrnilesd in Sec-
tion 2.2, none of them meeitl of the criteria. In particular, these systems provide a
flexible and robust way to manage applications in distrithigavironments, but most
are lacking the functionality required to interact with apgtions from a user-friendly
interface. Further, many of these tools are tied to speaificputing environments(g,
Appmanager only works on PlanetLab, GrADS only works in gjridherefore limiting
the developer to a specific computing platform for all expemtation and deployment.
A more desirable application controller combines the festwf these application man-
agement systems with the flexibility to execute in differentironments and the inter-

activity of the remote job execution tools previously désed.

2.3.3 Workflow Management

Workflows are a crucial part of many distributed applicasioand thus it is
important for an application controller to provide supdortworkflow management. In
this section we investigate some of the projects that addreschallenges associated
with managing workflows in grid environments, starting w@hdFlow [26]. GridFlow
focuses on service-level scheduling problems. GridFloarsisubmit grid jobs to a
batch scheduler, and GridFlow uses a fuzzy timing predictezhnique to estimate a
quick solution to resource conflict problems that oftenearis shared computing en-
vironments. Since the fuzzy time functions in GridFlow ammputed quickly, this
technique is well suited to time-critical grid applicateon

Kepler [65] is a framework for designing and modeling sdientvorkflows.

It builds on the functionality provided by Ptolemy Il [88],hich provides a set of Java
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packages for heterogeneous, concurrent modeling of wargfl@Vorkflows in Ptolemy
Il are described using a XML-based language called MoML. Gbal of Kepler is to
help scientists who do not have programming experiencasgacientific workflows in
grid-computing environments. Hence, Kepler provides amitiie graphical interface
for building workflows rather than requiring an understaugdf XML. Although Kepler
provides basic functionality for executing workflows, th@ject focuses on designing
workflows, rather than dealing with failures and schedupngpblems during execution.

Karajan [106] is part of the Java CoG Kit [105] and is an extaesvorkflow
management framework. It implements abstractions for gdsgration with a variety
of grid middleware systems including Globus [34] and Cond@8]. Karajan provides
extensions that emphasize scalability, workflow structanel workflow error handling.
Workflows are described using a XML-based language that@tgppoth conditional
control flows and loops. Karajan supports a simple, norracteze command-line in-
terface and a graphical user interface that executes basi@ctive commands. Like
Kepler, Karajan focuses more on defining complex scientiickflows rather than exe-
cution, although the framework does provide advanced stipgoapplication-specific
error handling.

A variety of other tools are described in [116] that have Engoals as Grid-
Flow, Kepler, and Karajan. In general, these tools spe&adh managing workflows,
specifically in grid environments. They aim to simplify treesk of describing a sci-
entific application that uses a workflow for execution, sd #@entists without a pro-
gramming background can make use of grid resources for camipiensive calcula-
tions. Further, most the the systems are designed to work iengironment where
access to resources is arbitrated by a batch scheduler. éigefistributed applica-
tion controller should provide similar functionality foasily describing workflows and
supporting batch scheduling environments as these systdmsever, since we want
to support a variety of distributed applications, addiéibfunctionality is required. For
example, it would not be possible for an application devetopho wants to manage

a long running service to use Kepler or Karajan to deploy, itogrand maintain their
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application. When designing a general purpose distribapgdication controller, addi-
tional extensions are needed to manage applications witharkflows that are not run

in batch scheduled environments.

2.3.4 Resource Discovery, Creation, and Acquisition

Since resource discovery, creation, and acquisition apoitant aspects of
distributed application management, it is useful to exanrkay work in these areas.
Note that an application controller need not implement géhiesictions directly, but
should provide an interface that allows applications tenatt with the existing ser-
vices. Instead of completing an exhaustive survey of allkwetated to resource dis-
covery, acquisition, and creation, we highlight some of niein projects for several
different computing platforms, including grid-computiaegvironments, PlanetLab, and
virtual machine environments.

With respect to resource discovery, there are several ttedggned for grid
environments that allow users to find appropriate resouimeblosting their applica-
tions. Many of these tools are part of larger application aggment systems that were
previously described. In the Globus Toolkit [34], for exdepesource discovery is ac-
complished using the Monitoring and Discovery Service [LMDS2 is a framework
that uses a combination of Information Providers (IP) foraswing resource usage,
Grid Resource Information Services (GRIS) for publishing measurements, and Grid
Index Information Services (GIIS) for aggregating dataved by the GRISes. MDS3
and MDS4 [41] are successors to MDS2 that have similar gdalgieneral, MDS is
a service that provides mechanisms for finding availablewe®s that meet an appli-
cation’s resource specifications. The vGrADS project alas & tool for performing
resource discovery and acquisition called vgFAB [53]. vBFAaintains a database
of resource measurements and pre-computes sets of resdbateneet certain crite-
ria. Applications managed by vGrADS use vgFAB to “find anddiito specific virtual
grid resources. In the Condor [18] execution managemernemsysapplications and

resource providers use a resource specification langudigel €lassAds [62] to ad-
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vertise and describe resources. Condor’'s matchmaker ssatelBource advertisements
with requests using mechanisms called GangMatching [99]SetMatching [63]. Re-
source acquisition in many grid environments involves wgitfor a batch scheduler
to grant permission for an application to use some set ofuress. Some of the most
commonly used batch schedulers include Sun Grid Engine Y$4B, Portable Batch
System (PBS) [87], Maui [70], and Load Sharing Facility (D$&4].

On PlanetLab, there has also been a number of efforts thaesslgarious
aspects of resource discovery. Since PlanetLab is a Hest-efivironment, no addi-
tional steps are required to acquire resources. Howevettaltige high amounts of
resource contention, services such as SWORD [3, 77] praxsdes with a way to find
resources that best meet the needs of their applicatiom gineecurrent operating con-
ditions. SWORD defines an XML-based resource descriptioguage where users
define queries that describe groups of resources with speefinode €.g, load) and
inter-node €.g, latency) properties. In response to user queries, SWORDnea list
of hostnames organized into groups, and ranked accordihgwowell they meet the
requested criteria. Similarly, CoMon [81] is a PlanetLatvg® that measures resource
usage across all PlanetLab nodes. The statistics measu@alMbon are obtained using
a sensor interface on individual PlanetLab hosts, or vigwicentral webpage contain-
ing the aggregate of all the collected data for all hosts. Wabk interface also supports
simple queries for hosts that satisfy basic requirements.

The increasing popularity of virtual machine technolodies led to the de-
velopment of several projects that explore using virtuatimaes to host network appli-
cations. Shirako [49] is a toolkit for building utility saoe architectures that is based on
an extensible resource leasing abstraction. It contaimspplementation of Cluster-On-
Demand (COD) [22], which is a physical and virtual machinenager that supports the
dynamic creation of multiple independent “virtual clustein a single physical clus-
ter. Specifically, users submit requests for virtual clisste&f machines with desired
attributes, and COD instantiates a virtual cluster of Xewizes that contain these at-

tributes. Access to the resources is arbitrated by leasasdsby Shirako. Usher [71]
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is a related project that focuses on virtual machine sclwgland placement in clus-
ter environments. After a user submits a request for regsuidsher creates virtual
machines and clusters, and then uses information gathgredtbal machine moni-
tors running on physical machines to make decisions reggurtie placement of the
virtual machines. Usher hides the complexity of finding ptgismachines capable of
hosting virtual machines from users. Other similar prgeelated to virtual machine
creation and management include Sandpiper [111], In-VIGIO{MPIlants [57], The
Collective [21], Virtual Workspaces [52], and Virtuoso |97

2.3.5 Synchronization

Synchronization has been studied for many years in the xbofeparallel
computing, and is an important aspect of distributed appbao management. For tradi-
tional parallel programming on tightly coupled multiprgsersparriersare commonly
used to separate phases of computation within an execuainahform natural synchro-
nization points [50]. Given the importance of fast priméisvfor coordinating bulk syn-
chronous SIMD applications, most massively parallel pssoes (MPPs) have hardware
support for barriers [59, 96]. Barriers also form a natucalsistency point for software
distributed shared memory systems, often signifying thatpshere data will be syn-
chronized with remote hosts [54, 13]. In addition to sharesnory, another popular
programming model for loosely synchronized parallel maekiis message passing.
Popular message passing libraries such as PVM [38] and M kcphtain implemen-
tations of barriers as a fundamental synchronization servi

One drawback to traditional barriers is that the througlgbtite entire execu-
tion is limited by the throughput of the slowest processarpta’s work on SIMD pro-
gramming for tightly coupled parallel processors addresises limitation using fuzzy
barriers [46]. Gupta’s approach specifies an entry poinafoarrier, followed by a sub-
sequent set of instructions that can be executed beforeatteibis released. Thus, a
processor is free to be anywhere within a given region of tregall instruction stream

before being forced to block. In this way, processors thatmete a phase of compu-
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tation early can proceed to other computations that do wpfire strict synchronization
before finally blocking. Fuzzy barriers are especially hdlphn SIMD programs where
there can only be a single outstanding barrier at any time.

Another use of barriers in distributed application manageims to perform
scheduling and load balancing based on barrier arrivakrafe similar technique is
used in Implicit Coscheduling, where the arrival rate at giba(and the associated
communication) is one consideration in making local schiedudecisions to approxi-
mate globally synchronized behavior in a multi-programrpadallel computing envi-
ronment [31]. Further, performing load balancing by rezding work upon arriving at
a barrier is similar to methods used by work stealing scherddike CILK [17]. The
fundamental difference here is that idle processors in Gtidke local decisions to seek
out additional pieces of work, whereas all decisions toloeate work in barrier-based
schemes are often made by a central authority or applicatenmager.

Aside from barriers, virtual synchrony [14, 16] and exteshdértual syn-
chrony [74] propose communication models for synchrowjdarge-scale networked
systems. These communication systems closely tie togetiter inter-communication
with group membership services. They ensure that a messalgjeast to a group is ei-
ther delivered to all participants or to none. Furthermtrey preserve causal message
ordering [58] between both individual messages and changgeup membership. This
communication model is clearly beneficial to a significaasss| of distributed systems,
including service replication. In the context of distriedtapplication management,
however, we have a more modest goal: to provide a convenjanhsonization point to
loosely coordinate the behavior of applications runningesources in volatile environ-
ments. It is important to stress that in this context synoization is delivered mostly as
a matter of convenience rather than as a prerequisite foecoess. Any inconsistency
resulting from a relaxed synchronization model is typicditected and corrected by the
application, similar to soft-state optimizations in netlwprotocol stacks that improve
common-case performance but are not required for correstn@ther related work in

consistent group membership/view advancement protoedisde Harp [61], Cristian’s
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group membership protocol [28], and Golding’s weakly cstesit group membership
protocol [42].

The loose synchronization model required for synchrogiziomputations in
distributed applications running in failure-prone enwuineents is related in spirit to a
variety of efforts into relaxed consistency models for updan distributed systems, in-
cluding Epsilon Serializability [89], the CAP principle§B Bayou [101], TACT [115],
and Delta Consistency [102]. All of these projects recognie need for relaxed se-

mantics to cope with wide-area inconsistencies and viyatil

2.4 Summary

In this chapter we explored the process of managing dis&tbapplications.
By considering three specific examples from different @assf distributed applica-
tions that run on PlanetLab, we attempted to extract a gesetaf requirements for
application management. We also described related wotkatihdresses remote exe-
cution, application management, workflow management,uresodiscovery, creation,
acquisition, and synchronization. While the set of requeats outlined in this chapter
are admittedly challenging, in Chapter 3 we describe Pladsramework that aims to

address these challenges in a streamlined and powerfulenann

2.5 Acknowledgments

Chapter 2, in part, is a reprint of the material as it appaatee ACM Oper-
ating Systems Review, January 2006, Albrecht, JeannigieT@hristopher; Snoeren,
Alex C.; Vahdat, Amin. The dissertation author was the primavestigator and author
of this paper.

Chapter 2, in part, is a reprint of the material as it appearthé USENIX
Annual Technical Conference, 2006, Albrecht, Jeannietld,uChristopher; Snoeren,
Alex C.; Vahdat, Amin. The dissertation author was the primavestigator and author

of this paper.



40

Chapter 2, in part, has been submitted for publication ofritaerial as it
appears in the Large Installation System Administratiomf€eence, 2007, Albrecht,
Jeannie; Braud, Ryan; Dao, Darren; Topilski, Nikolay; TytChristopher; Snoeren,
Alex C.; Vahdat, Amin. The dissertation author was the primavestigator and author

of this paper.



Chapter 3

Design and Implementation of Plush

We now describe Plush, an extensible distributed apptinatontroller, de-
signed to address the requirements of large-scale disgdbapplication management
discussed in Chapter 2. To directly monitor and controlritisted applications, Plush
itself must be distributed. Plush uses a client-serveri@ciure, with clients running
on each resource involved in the application. The Plushesecalled thecontroller,
interprets input from the user and sends messages on béliadf vser over an overlay
network (typically a tree) to Plustlientsas shown in Figure 3.1. The controller, typi-
cally run from the user’s workstation, directs the flow of ttohthroughout the life of
the distributed application. The clients run alongsidehesgaplication component on re-
sources spread across the network and perform actions bpsadnstructions received
from the controller.

Figure 3.2 shows an overview of the Plush controller archite. Although
we do not include a detailed overview of the client architest it is symmetric to the
controller with only minor differences in functionality. h€ architecture consists of
three main sub-systems: the application specificatiorge @amctional units, and user
interface. The application specification describes thdiegmn. Plush parses the ap-
plication specification provided by the user and storegmatedata structures and ob-
jects specific to the application being run. The core fumetiaunits then manipulate

and act on the objects defined by the application specifitadaun the application.

41
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Figure 3.1: Plush controller connected to clients.

The functional units also store authentication informatioonitor resources, handle
event and timer actions, and maintain the communicatiorastfucture that enables
the controller to query the status of the distributed apion on the clients. The user
interface provides the functionality needed to intera¢hwie other parts of the archi-
tecture, allowing the user to maintain and manipulate th@ieation during execution.

In this chapter, we describe the design and implementagbaild of each of the Plush
sub-systems. (Note that the components within the sules\gsare highlighted using

boldface throughout the text in the remainder of this chapte

3.1 Application Specification

Developing a complete, yet accessible, application spatidin language was
one of the principal challenges in this work. Our approadhictv has evolved over the
past two years, consists of combinations of five differentilthng block” abstractions
for describing distributed applications. As a preview, Fg 3.3 shows a specific ex-
ample application that uses these abstractions. We diloeisietails of the application

later. The five block abstractions are as follows:

1. Process blocks Describe the processes executed on each resource involaed

application. The process abstraction includes runtimarpaters, path variables,
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User Interface

Application Block

Component Block

_____________ 3
Resource 1 Workflow Block
Discovery and !
Acquisition : Barrier Block Process Block

=== =l Process

1| Software Monitor
Host Monitor Resource X n_— -

Manager Barriers File
Manager Processes
Communication Fabric
1/O and Timers

Figure 3.2: The architecture of Plush. Tuaser interfaces shown above the rest of
the architecture and contains methods for interacting walithboxes in the lower sub-

systems of Plush. Boxes below the user interface and abevddtted line indicate

objects defined within thapplication specificatiorabstraction. Boxes below the line
represent theore functional unitof Plush.

runtime environment details, file and process I/O inforomtiand the specific

commands needed to start a process on a resource.

2. Barrier blocks - Describe the barriers that are used to synchronize theusri

phases of execution within a distributed application.

3. Workflow blocks - Describe the flow of data in a distributed computation,udel
ing how the data should be processed. Workflow blocks mayagoptocess and
barrier blocks. For example, a workflow block might desciabeet of input files

over which a process or barrier block will iterate during@xeon.

4. Component blocks- Describe the groups of resources required to run the appli-
cation, including expectations specific to a set of metracgtie target resources.
For example, on PlanetLab the metrics might include maxiroad requirements
and minimum free memory requirements. Components alsoedefguired soft-

ware configurations, installation instructions, and anhentication information
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Application Block /app
Component Block 1 /app/compl Component Block 2 /app/comp2
Senders Receivers
__| Process Block 1 /app/comp1/procl _| Process Block 1 /app/comp2/procl
prepare_files.pl Join_overlay.pl
Process Block 2 /app/comp1/proc2

Jjoin_overlay.pl

Barrier Block 1 /app/comp]/barrl Barrier Block 1 /app/comp2/barr]l

1¢

1¢

bootstrap_barrier bootstrap_barrier

Process Block 3 /app/comp1/proc3 Process Block 2 /app/comp2/proc2
= send_files.pl 1 receive_files.pl

Figure 3.3: Example file-distribution application compdsof application, component,
process, and barrier blocks in Plush. Arrows indicate abftow dependencies.i.¢.,
Block x — Block y implies that Block x must complete before Block y sgr

needed to access the resources. Component blocks mayrcantéilow blocks,

process blocks, and barrier blocks.

5. Application blocks - Describe high-level information about a distributed &ppl
cation. This includes one or many component blocks, as weltt@ibutes to help

automate failure recovery.

To better illustrate the use of these blocks in Plush, candidilding the spec-
ification for the simple file-distribution application asostm in Figure 3.3. This simple
application consists of two groups of resources. One gritigpsenders, stores the files,
and the second group, the receivers, attempts to retrieviéléls from the senders. The
goal of the application is to experiment with the use of arrlayenetwork to send files
from the senders to the receivers using some new file-disiwito protocol. In this ap-
plication, there are two phases of execution. In the firssphall senders and receivers
join the overlay before any transfers begin. Also, the sendrist prepare the files for
transfer during phase one before the receivers start iagdie files in phase two. In

the second phase, the receivers begin receiving the files tihe senders. Note that
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in the second phase no new senders or receivers are allowetnh tihe network and
participate in the transfer.

The first step in building the corresponding Plush applicasipecification for
our new file-distribution protocol is to define an applicatlwock. The application block
defines general characteristics about the applicatiomudg the liveness properties
and failure detection and recovery options, which deteemefault failure recovery
behavior. For our example, we might choose the behaviotdresn-failure,” which
attempts to restart the failed application instance on glsiresource, since it is not
necessary to abort the entire application across all ressuf only a single failure
occurs.

The application block also contains one or many componerukisl that de-
scribe the groups of resources required to run the apmica®@ur application consists
of a set of senders and a set of receivers, and two separapooent blocks describe
the two groups of resources. The sender component blockedetfie location and in-
stallation instructions for the sender software, and idetiauthentication information
to access the resources. Similarly, the receiver compdrlenk defines the receiver
software package. In our example, it may be desirable toinredjat all resources in
the sender group have a processor speed of at least 1 GHzaahdsender should
have sufficient bandwidth for sending files to multiple rgees at once. These types of
resource-specific requirements are included in the comydnecks.

Within each component block, a combination of workflow, s and bar-
rier blocks describe the computation that will occur on e@dource in the component.
Though our example does not employ workflow blocks, they aedun applications
where data files must be distributed and iteratively praegssVe will consider an ex-
ample employing a workflow block in Chapter 6.

Plush process blocks describe the specific commands redoiexecute the
application. Most process blocks depend on the successtalliation ofsoftware pack-
ages defined in the component blocks. Users specify the cadsmaquired to start a

given process, and actions to take upon process exit. The@aities create a Plush
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process monitorthat oversees the execution of a specific process. Our egaiefihes
several process blocks. In the sender component, procesisshdiefine processes for
preparing the files, joining the overlay, and sending thesfilSimilarly, the receiver
component contains process blocks for joining the oventaraceiving the files.

Some applications operate in phases, producing outputifilesrly stages
that are used as input files in later stages. To ensure alimes® start each phase of
computation only after the previous phase completes, dvdbtocks define loose syn-
chronization semantics between process and workflow blodke bootstrap barrier
in our example ensures that all receivers and senders jeinwérlay in phase one be-
fore beginning the file transfer in phase two. Note that algfoeach barrier block is
uniquely defined within a component block, it is possible e same barrier to be
referenced in multiple component blocks. In our examplespecify barrier blocks in
each component block that refer to the same barrier, medhaighe application will
wait for all receivers and senders to reach the barrier bedtlowing either component
to start sending or receiving files.

In Figure 3.3, the outer application block contains our twmponent blocks
that run in parallel (since there are no arrows indicatingticd-flow dependencies be-
tween them). Within the component blocks, the differentggisaare separated by the
bootstrap barrier that is defined by Barrier Block 1 in botmponents. Component
Block 1, which describes the senders, contains Proces&8band 2 that define perl
scripts that run in parallel during phase one, synchronizéhe bootstrap barrier in Bar-
rier Block 1, and then proceed to Process Block 3 in phase thiohwsends the files.
Component Block 2, which describes the receivers, runséBsoBlock 1 in phase one,
synchronizes on the bootstrap barrier in Barrier Block 4 #ren proceeds to Process
Block 2 in phase two which runs the process that receives li® ffiom the senders.
In the current Plush implementation, the blocks are repiteseby XML that is parsed
by the controller when the application is run. For refergribe XML corresponding

to Figure 3.3 is shown in Figure 3.4.
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<plush>
<project name"Application Block" >
<application name"Application Block" >
<execution>
<componentblock name&"Component Block 1" >
<processblock name&"Process Block 1" >
<process nam®'prepare_files.pl" >
<path>preparefiles.pl</path>
<[process-
</processblock>
<processblock name"Process Block 2" >
<process nam®join_overlay.pl" >
<path>join_overlaypl</path>
<[process-
</processblock>
<barrierblock name"Barrier Block 1" >
<predecessor nam#Process Block 1" />
<predecessor naméProcess Block 2" />
<barrier name"bootstrap_barrier" 1>
</barrier.block>
<processblock name"Process Block 3" >
<predecessor namtBarrier Block 1" />
<process nanm¥'send_files.pl" >
<patt>sendfiles.pl</patt>
<Iprocess-
</processblock>
</componentblock>
<componentblock name"Component Block 2" >
<processblock name"Process Block 1" >
<process namejoin_overlay.pl" >
<path>join_overlaypl</path>
<Iprocess-
</processblock>
<barriecblock name"Barrier Block 1" >
<predecessor nam#&Process Block 1" />
<barrier name"bootstrap_barrier" />
</barrier_block>
<processblock name&"Process Block 2" >
<predecessor nameBarrier Block 1" />
<process namereceive_files.pl" >
<path>receivefiles.pl</path>
</process-
</processblock>
</componentblock>
</execution>
</application>
</Iproject>
</plush>

Figure 3.4: XML representing the Plush application speaiftn corresponding to Fig-
ure 3.3. (Note that the resource definitions are not showa her

We designed the Plush application specification to suppudrigty of exe-
cution patterns. With the blocks described above, Plushaip the arbitrary combi-
nation of processes, barriers, and workflows, providedttietlow of control between

them forms a directed acyclic graph. Using predecessoritagtush, users specify
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the flow of control and define whether processes run in pamlsequentially. Ar-
rows between blocks in Figure 3.3, for example, indicateptieelecessor dependencies.
(Process Blocks 1 and 2 in Component Block 1 will run in patdlefore blocking at
the bootstrap barrier, and then the execution will contiongo Process Block 3 af-
ter the bootstrap barrier releases.) Internally, Pluskestthe blocks in a hierarchical
data structure, and references specific blocks in a mamméasto referencing absolute
paths in a UNIX file system. Figure 3.3 shows the unique pathesafor each block
from our file-distribution example. This naming abstractalso simplifies coordina-
tion among resources. Each client maintains an identical lcopy of the application
specification. Thus, for communication regarding cont@hfchanges, the controller
sends the clients messages indicating which “block” isantty being executed, and the

clients update their local state information accordingly.

3.2 Core Functional Units

After parsing the block abstractions defined by the useriwitie application
specification, Plush instantiates a set of core functionasuo perform the operations
required to configure and deploy the distributed applicati&igure 3.2 shows these
units as shaded boxes below the dotted line. The functioméd manipulate the ob-
jects defined in the application specification to manageibiged applications. In this
section, we describe the role of each of these units.

Starting at the highest-level, the Plusdsource discovery and acquisition
unit uses the resource definitions in the component blocksctte and create (if nec-
essary) resources on behalf of the user. The resource digcand acquisition unit
is responsible for obtaining a valid set, callednatching of resources that meet the
application’s demands. To determine this matching, Pluak either call an existing
external service to construct a resource pool, such as SWGRIY] for PlanetLab, or
use a statically defined resource pool based on informatioviged by the user. The

Plushresource matchethen uses the resources in the resource pool to create a-match
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ing for the application. We discuss this process in detaCivapter 4. All resources
involved in an application run a Plugtost monitor that periodically publishes infor-
mation about the resource. The resource discovery andsaigiunit may use this
information to help find the best matching. Upon acquiringsource, a Plustesource
manager stores the lease, token, or any necessary user crederg@gaéor accessing
that resource to allow Plush to perform actions on behalfiefuser in the future.

The remaining functional units in Figure 3.2 are resporediit application de-
ployment and maintenance. These units connect to resqumséa| required software,
start the execution, and monitor the execution for failur@ne important functional
unit used for these operations is the Plbginrier manager, which provides advanced
synchronization services for Plush and the applicatioglfitsin our experience, tra-
ditional barriers [50] are not well suited for volatile, veichrea network conditions; the
semantics are simply too strict. Instead, Plush uses pbatigers (described in detail in
Chapter 5), which are designed to perform better in faifin@e environments through
the use of relaxed synchronization semantics.

The Plushfile manager handles all files required by a distributed applica-
tion. This unit contains information regarding softwarekeges, file transfer methods,
installation instructions, and workflow data files. The filamager is responsible for
preparing the physical resources for execution using tfernmation provided by the
application specification. It monitors the status of filensters and installations, and
if it detects an error or failure, the controller is notifieadethe resource discovery and
acquisition unit may be required to find a new resource tcaapthe failed one.

Once the resources are prepared with the necessary sqftivarapplication
deployment phase completes by starting the execution.ig hiscomplished by starting
a number of processes on the resources. Piusbessesare defined within process
blocks in the application specification. A Plush processiislastraction for standard
UNIX processes that run on multiple resources. Processgsreeinformation about
the runtime environment needed for an execution includuegnorking directory, path,

environment variables, file I/0, and the command-line argis
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The two lowest layers of the Plush architecture consist @dramunication
fabric and thel/O and timer subsystems. The communication fabric handles passing
and receiving messages among Plush overlay participargiciPants communicate
over TCP connections. The default topology for a Plush ayed a star, although we
also provide support for tree topologies for increasedadsiitly (see Section 3.3.2). In
the case of a star topology, all clients connect directlyhe ¢ontroller, which allows
for quick failure detection and recovery. The controllend® messages to the clients
instructing them to perform certain actions. When the tie@omplete their tasks, they
report back to the controller for further direction. The coomication fabric at the
controller knows what resources are involved in a particagglication instance, so that
the appropriate messages reach all necessary resources.

At the bottom of all of the other units is the Plush I/O and tirabstraction.
As messages are received in the communication fabric, medsandlers fire events.
These events are sent to the I/O and timer layer and entenege qliee event loop pulls
events off the queue, and calls the appropriate event haridieers are a special type

of event in Plush that fire at a predefined instant.

3.3 Fault Tolerance and Scalability

Two of the biggest challenges that we encountered duringekgn of Plush
was being robust to failures and scaling to hundreds of ressispread across the wide-

area. In this section we explore how Plush supports fawdtaoice and scalability.

3.3.1 Fault Tolerance

Plush must be robust to the variety of failures that occuinduapplication
execution. When designing Plush, we aimed to provide thetimmality needed to de-
tect and recover from most failures without involving thewusinning the application.
Rather than enumerate all possible failures that may owaidiscuss how Plush han-

dles three common failure classes—process, resource pablter failures.
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Table 3.1: Process exit policies in Plush.

Exit Policy Description
POLICY_END_APPLICATION End the application with success
POLICY_FAIL _APPLICATION End the application with failure
POLICY_RESTARTAPPLICATION Restart the entire application
POLICY_RESTART.PROCESS Restart only the process
POLICY_CONTINUE Continue to next step in workflow
POLICY_IGNORE Log the exit, but do nothing

Process failures.When a resource starts a process defined in a process block,
Plush attaches a process monitor to the process. The rote @rocess monitor is to
catch any signals raised by the process, and to react ajgdedprWhen a process exits
either due to successful completion or error, the processtorosends a message to
the controller indicating that the process has exited, antlides its exit status. Plush
defines a default set of behaviors that occur in response #iety of exit codes (al-
though these can be overridden within an application spatidin). The default behav-
iors include ignoring the failure, restarting only the éailprocess, restarting the entire
application, or aborting the entire application. Table I&ts the process exit policies
supported by Plush, as well as a description of their belhavio

In addition to process failures, Plush also allows users daoitar the status
of a process that is still running through a specific type afcpss monitor called a
liveness monitor, whose goal is to detect misbehaving and unresponsive ggesehat
get stuck in loops and never exit. This is especially usefuhe case of long-running
services that are not closely monitored by the user. To weskvéness monitor, the user
specifies a script and a time interval in the process blockepplication specification.
The liveness monitor wakes up once per time interval and thumscript to test for the
liveness of the application, returning either successituréa If the test fails, Plush kills

the process, causing the process monitor to be alerted torchithe controller.
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Resource failures. Detecting and reacting to process failures is straightfor-
ward since the controller is able to communicate inforrmatio the client regarding
the appropriate recovery action. When a resource fails,eliew recovering is more
difficult. A resource may fail for a number of reasons, inahgdnetwork outages, hard-
ware problems, and power loss. Under all of these condititresgoal of Plush is to
quickly detect the problem and reconfigure the applicatidh & new set of resources
to continue execution. The Plush controller maintains tadighe last time success-
ful communication occurred with each connected clienthéf tontroller does not hear
from a client within a specified time interval, the controlsends a ping to the client. If
the controller does not receive a response from the clidagshRassumes resource fail-
ure. Reliable failure detection is an active area of reseawtile the simple technique
we employ has been sufficient thus far, we certainly interidwerage advances in this
space where appropriate.

There are three possible actions in response to a resouige faestart, re-
match, and abort. By default, the controller tries all thaetions in order. The first
and easiest way to recover from a resource failure is to gingglonnect and restart the
application on the failed resource. This technique workbefresource experiences a
temporary power or network outage, and is only unreachalla ghort period of time.
If the controller is unable to reconnect to the resourcenthe option is to rematch in an
attempt to replace the failed resource with a differentues®. In this case, Plush reruns
the resource matcher to find a new resource. Depending orpfilieation, the entire
execution may need to be restarted across all resourcegstadteew resource joins the
Plush control overlay, or the execution may only need to &egexd on the new resource.
If the controller is unable to find a new resource to replaeefétiled resource and the
application description specifies a fixed number of requiesdurces, Plush then finally
aborts the entire application.

In some applications, it is desirable to mark a resource iledfahen it be-
comes overloaded or experiences poor network connectiVitye Plush host monitor

that runs on each resource is responsible for periodiaafigyrining the controller about
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each resource’s status. If the controller determines tiafperformance is less than
the application tolerates, it marks the resource as faietadtempts to rematch. This
functionality is a preference specified at startup. AltHoljush currently monitors
host-level metrics including load and free memory, the mégple is easily extended to
encompass sophisticated application-level expectatbresource viability.

Controller failures. Because the controller is responsible for managing the
flow of control across all connected clients, recoveringrfra failure at the controller
is difficult. One solution is to use a simple primary-backaheme, where multiple
controllers increase reliability. All messages sent fromdlients and primary controller
are sent to the backup controllers as well. If a pre-detezthiamount of time passes
and the backup controllers do not receive any messages fi@primary, the primary is
assumed to have failed. The first backup becomes the prianragygxecution continues.

This strategy has several drawbacks. First, it causes exssages to be sent
over the network, which limits the scalability of Plush. 8ed, this approach does
not perform well when a network partition occurs. During &vak partition, multiple
controllers may become the primary controller for subsgtiseoclients initially involved
in the application. Once the network partition is resolveds difficult to reestablish
consistency among all clients and resources. While we mapéemented a version of
this architecture, we are currently exploring other paksds for handling faults at the

controller.

3.3.2 Scalability

In addition to fault tolerance, an application controlles@jned for large-scale
environments must scale to hundreds or even thousandstafipants. Unfortunately
there is a tradeoff between performance and scalabilitye 3diutions that perform
the best at moderate scale typically provide less scatalbiian solutions with lower
performance. To balance scalability and performance,hRtusvides users with two
topological alternatives for the structure of the contrediday that offer varying levels

of scalability and performance.
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Figure 3.5: Clients connected to Plush controller in stpotogy.

By default, all Plush clients connect directly to the colémoforming a star
topology (Figure 3.5). This architecture scales to appnately 300 resources, limited
by the number of file descriptors allowed per process on tiraller machine in ad-
dition to the bandwidth, CPU, and latency required to comicate with all connected
clients. The star topology is easy to maintain, since alnt8 connect directly to the
controller. In the event of a resource failure, only thegditesource is affected. Further,
the time required for the controller to exchange messagesaohients is short due to the
direct connections.

At larger scales, network and file descriptor limitationgreg controller be-
come a bottleneck. To address this, Plush also supporttopetgies (Figure 3.6). In
an effort to reduce the number of hops between the clientscanttoller, Plush con-
structs “bushy” trees, where the depth of the tree is smallesth node in the tree has
many children. The controller is the root of the tree. Thedrkin of the root are chosen
to be well-connected and historically reliable resourcbemnever possible. Each child
of the root acts as a “proxy controller” for the resourcesnamed to it. These proxy
controllers send invitations and receive join messages &ther resources, reducing the
total number of messages sent back to the root controllgroiftant messages, such as

failure notifications, are still sent back to the root coléno Using the tree topology, we



55

Plush
Controller

Figure 3.6: Clients connected to Plush controller in trezlogy.

have been able to use Plush to manage an application runmib@0® ModelNet virtual
hosts, as well as an application running on 500 PlanetLabtsli We believe that Plush
has the ability to scale by perhaps another order of magaiith the current design.
While the tree topology has many benefits over the star tgyoib also in-
troduces several new problems with respect to resouragdailand tree maintenance.
In the star topology, a resource failure is simple to recdr@n since it only involves
one resource. In the tree topology, however, if a non-lesbuece fails, all children
of the failed resource must find a new parent. Depending omtingber of resources
affected, a reconfiguration involving several resourcésmofias a significant impact on
performance. Our current implementation tries to minintfee probability of this type
of failure by making intelligent decisions during tree cwastion. For example, in the
case of ModelNet, many virtual hosts (and Plush clientspleesn the same physical
machine. When constructing the tree in Plush, only one tcfien physical machine
connects directly to the controller and becomes the proxyrotler. The remaining
clients running on the same physical machine become chilolréhe proxy controller.
In the wide area, similar decisions are made by placing ressuhat are geographically
close together under the same parent. This decreases th®enoifrhops and latency

between leaf nodes and their parent, minimizing the chahnetwork failures.
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3.4 Running an Application

In this section, we discuss how the architectural compaei®lush interact
to run a distributed application. When starting Plush, teeris workstation becomes
the controller. The user submits an application speciboat the Plush controller. The
controller parses the specification and internally cretitesobjects shown above the
dotted line in Figure 3.2.

After parsing the application specification, the contmallens the resource dis-
covery and acquisition unit to find a suitable set of resauthat meet the requirements
specified in the component blocks. Upon locating the necgssaources, the resource
manager stores the required access and authenticatiometion. The controller then
attempts to connect to each resource. If the Plush clienbtsaineady running, the
controller initiates a bootstrapping procedure to copyRhesh client binary to the re-
source, and then uses SSH to connect to the resource anthstalient process. Once
the client process is running, the controller establishRESR connection to the resource,
and transmits atNVITE message to the resource to join the Plush overlay (which is
either a star or tree as discussed in Section 3.3.2).

If a Plush client agrees to run the application, the clientiseaJOIN message
back to the controller accepting the invitation. Next, tloatcoller sends #REPARE
message to the new client, which contains a copy of the agfait specification (XML
representation). The client parses the application spatidn, starts a local host mon-
itor, sends @REPAREDnessage back to the controller, and waits for further istru
tion. Once enough resources join the Plush overlay and agre@ the application, the
controller initiates the beginning of the application dsphent stage by sending@O
message to all connected clients. The file managers then begalling the requested
software and preparing the resources for execution.

In most applications, the controller instructs the resesito begin execution
after all resources have completed the software inst@afiatiNote that synchronizing the

beginning of the execution is not required if the applicatiimes not need all resources
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to start simultaneously.) Since each client creates art ergy of the controller’s appli-
cation specification, the controller and clients can exgleanessages about the applica-
tion’s progress using the block naming abstractioa, (/app/compl/procl) to identify
the status of the execution. For barriers, a barrier managering on the controller
determines when it is appropriate for resources to be retetem the barriers in the
application.

If a client detects a failure, the client notifies the corégland the controller
attempts to recover from the failure according to the astemumerated in the applica-
tion specification. Since many failures are applicatioaesic, Plush exports optional
callbacks to the application itself to determine the appete reaction for some failure
conditions. When the application completes (or upon a usemeand), Plush stops all
associated processes, transfers output data back to ttrelais local disk if desired,
performs user-specified cleanup actions on the resournsesjshects the resources from

the Plush overlay by closing the TCP connection, and stap®hlissh client processes.

3.5 User Interface

Plush aims to support a variety of applications being rundsrsiwith a wide
range of expertise in building and managing distributediegions. Thus, Plush pro-
vides three interfaces which each provide users with teghes for interacting with their
applications. We describe the functionality of each ustarface in this section.

In Figure 3.2, the user interface is shown above all othetspafrPlush. In
reality, the user interacts with every box shown in the fighreugh the user interface.
For example, the user can force the resource discovery @uision unit to find a new
set of resources by issuing a command through one of the nteefaices. We designed
Plush in this way to give the user maximum control over thdiagton. At any stage
of execution, the user can override a default Plush behavibe overall effect is a
customizable application controller that has the abibtgupport a variety of distributed

applications and computing environments.
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Figure 3.7: Nebula World View Tab showing an applicationmmg on PlanetLab sites
in Europe. Different colored dots indicate sites in varigtsges of execution. The
window in the bottom right corner displays CPU usage infdiomeabout selected hosts.

3.5.1 Graphical User Interface

In an effort to simplify the creation of application spedifions and help vi-
sualize the status of executions running on resources dttberworld, we implemented
a graphical user interface for Plush called Nebula. In paldr, we designed Nebula
(as shown in Figure 3.7) to simplify the process of specdyaimd managing applica-
tions running across PlanetLab. Plush obtains data fronPleetLab Central (PLC)
database to determine what hosts a user has access to, and Nsds this information
to plot the sites on the map. To start using Nebula, usersthawaption of building their
Plush application specification from scratch or loading eegisting XML document
representing an application specification. Upon loadirggapplication specification,
the user runs the application by clicking the Run button fitbe Plush toolbar, which

causes Plush to start locating and acquiring resources.
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Nebula vO0.8 - /home/albrecht/plush/src/tests/planetlab.ml 0% EEC
FEile Edit Plush

fWorId View r Application View rResource View r Host View rSSH:nlanellahl.cs.duke.edu *

[+]

Connecting to planetlabl.cs.duke.edu...
[ucsd_plush@planetlabl ~]$% 1s -Tai
total 12684

6702473 drwx------ 3 ucsd_plush slices 4095 May 25 21:30 .

6701511 drwxr-xr-x 3 root root 4095 May 11 06:25 ..

B702476 -rw-r--r-- 1 ucsd_plush slices 24 May 11 06:25 .bash_logout
6702474 -rw-r--r-- 1 ucsd_plush slices 191 May 11 08:25 .hash_profile
B702475 -rw-r--r-- 1 ucsd_plush slices 124 May 11 06:25 .hashrc

B702480 -rwxr-xr-x 1 ucsd_plush slices 4764 May 11 06:48 hootstrap.pl

6702504 -rwxr-xr-x 1 ucsd_plush slices 6376124 May 23 03:57 cClient

6702499 1rwcrairwy 1 ucsd_plush slices 41 May 29 21:30 client.tut = . Togfile-planetlabl-15415-1180128637. tut
6702484 drwxr--r-- 3 ucsd_plush slices 4086 May 8 21:00 helper-scripts

6702483 -rwxr-xr-x 1 ucsd_plush slices 670 Dec 16 00:14 install_vunm.sh

BT02500 -rw-r--r-- 1 ucsd_plush slices 18941 May 14 21:54 Togfile-planetlabl-15415-11791708445. tyt

6702523 -rw-r--r-- 1 ucsd_plush slices 41382 May 25 21:31 Togfile-planetlahl-15415-1180128637. tht

6702481 -rw-r--r-- 1 ucsd_plush slices 6471680 May 10 23:50 plush-1386-Linux.tar

6702501 Trwxrwxray 1 ucsd_plush slices 35 May 25 21:30 plush-logfile.txt -= . /plush-104Ti1e15415-1180128637 .t
6702502 -rw-r--r-- 1 ucsd_plush slices 281 May 14 21:50 plush-1o0fi11e15415-1179179445, txt

6702524 -rw-r--r-- 1 ucsd_plush slices 468 May 25 21:31 plush-1ogfi1e15415-1180128637 . txt

B702482 -rwxr--r-- 1 ucsd_plush slices 241 May 17 22:34 plush.prefs

[ucsd_plush@planetlabl ~]1% ps auxe

USER PID %CPU %MEM W52 RaS TTY STAT START  TIWE COMMAND

814 5147 0.3 0.1 2304 1288 pts/2 58 21:32 u00 /shindhash -1

814 5223 0.0 0.0 2404 816 pts/2 R+ 21:32 0:00 ps auxwn

[ucsd_plush@planetlabl ~]$ traceroute ww.google.com

traceroute: Warning: wwwy.google.com has nmultiple addresses; using 64.233.169.103
Traceroute To W 1.google.con (64.233.169.103), 30 hops nax, 38 hyte packets
152.3.138.61 (152.3.138.61) 0.722 ms 0.276 ms 0.231 ns

152.3.219.60 (152.3.219.68) 0.200 ms 1.236 ms 0.282 ns
r1gh7600-gw-to-duke7500-gw. ncren. net (128.109.70.17) 1.386 ws 1.146 ns  1.110 ns
rlghl-gw-to-r1gh7600-gw. ncren. net (128.108.70.37) 1.116 ns 1.111 ms 1.101 ms
rtpl-gw-to-rpop-ocd8. noren.net (128.108.52.6) 3.772 ms 1.526 ms 1.466 ms

WKW

aix.pri.atl.google.com (198.32.132.41% 16.357 ms 18.578 ms  16.509 us

64.233.174.84 (64.233.174.84) 22.702 ns  24.489 ns 64.233.174.86 (64.233.174.86) 15.666 ns
72.14.238.96 (72.14.235.96) 22.983 ms 18.640 ms 15.421 ns

10 64.233.175.217 (F4.233.175.217) 24.838 ms  24.367 ms 64.233.175.171 (64.233.175.171) 16.622 ms
11 72.14.232.25 (72.14.232.25) 19.653 ns 19.596 ms  18.790 ns

12 wyo-in-fl03.google.com (64.233.169.103) 16.621 ms 15.551 ms  17.289 ms
[ucsd_plush@planetlabl ~1$ hostname

planetlabl.cs. duke. eduy

[ucsd_plush@planetlabl ~]1$ whoami

ucsd_plush

[ucsd_plush@planetlabl ~15 ||

[N NN

[4]

Figure 3.8: Nebula SSH tab displaying an SSH connection ta@eR_ab host.

The main Nebula window contains four tabs that show diffeneformation
about the user’s application. In the “World View” tab, useeg an image of a world map
with colored dots indicating PlanetLab hosts. Differedbeced dots on the map indicate
sites involved in the current application. In Figure 3.& tolored dots (ranging from
red to green) show PlanetLab sites involved in the currepliegtion. The grey dots
are other available PlanetLab sites that are not curremtilygoused by Plush. As the
application proceeds through the different phases of exetuthe sites change color,
allowing the user to visualize the progress of their apfibea When failures occur, the
impacted sites turn red, giving the user an immediate visuitation of the problem.
Similarly, green dots indicate that the application is exig correctly. If a user wishes
to establish an SSH connection directly to a particularuss® they can simply right-
click on a host in the map and choose the SSH option from theupomenu. This
opens a new tab in Nebula containing an SSH terminal to thg asshown in Figure

3.8. Users can also mark hosts as failed by right-clicking) @mosing the Fail option
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Tip #1: To begin, create a component block or a software package
Tip #2: To load an existing Plush application, select File —> Open Plush Application

Figure 3.9: Nebula Application View tab displaying a Plugiplécation specification.

from the pop-up menu. Failing a host is helpful if the userikedo determine failure
more quickly than Plush’s automated techniques. Failetstave completely removed
from the execution.

Users retrieve more detailed usage statistics and mamgtarformation about
specific hosts (such as CPU load, free memory, or bandwidtha)$y double clicking
on the individual sites in the map. This opens a second wirnttiavdisplays real-time
graphs based on data retrieved from resource monitorirg,tas shown in the bottom
right corner of Figure 3.7. The second smaller window digpla graph of the CPU or
memory usage, and the status of the application on eachPlost currently provides
built-in support for monitoring CoMon [81] data on Planéblaachines, which is the
source of the CPU and memory data. Additionally, if the usishes to view the CPU
usage or percentage of free memory available across als,htb&tre is a menu item
under the PlanetLab menu that changes the colors of the dateeanap such that red

means high CPU usage or low free memory, and green indicateGPU usage or high
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Figure 3.10: Nebula Resource View tab showing resourcedvied in an application.

free memory. Users can also add and remove hosts from tteie®lab slice directly
by highlighting regions of the map and choosing the appad@nnenu option from the
PlanetLab menu. Additionally, users can renew their Plaaieslice from Nebula.

The second tab in the Nebula main window is the “ApplicatiaevwW” The
Application View tab, shown in Figure 3.9, allows users tddRlush application spec-
ifications using the blocks described in Section 3.1. Akéuely, users may load an
existing XML file describing an application specification tiyoosing the Load Appli-
cation menu option under the File menu. There is also anopticave a new applica-
tion specification to an XML file for later use. After creatingloading an application
specification, the Run button located on the Applicationwiab starts the application.
The Plush blocks in the application specification change¢eryduring the execution
of the application to indicate progress. After an applmathegins execution, users have
the option to “force” an application to skip ahead to the nEhdse of execution (which

corresponds to releasing a synchronization barrier), ortadyg an application to termi-
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= EE
[ World View | Application View | Resource View \ Host View |
Host name Status
planetiab2 .millennium.berkeley.edu Disconnected sl
alice.cs.princeton.edu Disconnected
planstiab4 csail. mit.edu Connected
planetiabl2. millennium.berkeley edu Disconnected
planetiabl. csail.mit.edu Disconnected
planetiabl cs duke edu Connected
planatiabs millennium.berkaley adu Disconnected
planetlab? cs duke. edu Disconnected
planstiab3 millennium. berkeley.edu Disconnected
planatiab3. csail. mit.edu Disconnected N
planatiab11 millennium berkeley. adu Disconnected
planatiab2 mnlab.cti.depaul. edu Disconnected
planetiab4. millannium.erkeley edu Connected
planetlab®. csail.mit.edu Disconnected
planatiabs . csail. mit.edu Disconnected =
planstiab3 ucsd adu Disconnected
planatiab4. cs.duke.adu Disconnected
planetiab-1. cs.princeton.edu Disconnected
plansatiab7 millennium. berkaley. sdu Disconnected =
==
Output
ucsd_plush@planetlab4. csail. mit.edu |
FIDTTY STAT TIME COMMAND
164287 Rsl  0:00 /client -¢ ./ -d .5 -P 15415 -b albrecht@strength ucsd edu:15001
164927 R 0:00 ps ax
ucsd_plush@planetiab 1. cs.duke. edu.
FIDTTY STAT TIME COMMAND =
237477 Rsl  0:00 ./client -c ./ -d 5 -P 15415 -b albrecht@strength.ucsd.edu: 15001
238887 R 0:00 psax
ucsd_plush@planatiab4. millennium. berkeley edu:
FIDTTY STAT TIME COMMAND
256267 Rsl  0:00 fclient -c ./ -d 5 -P 15415 -b albrecht@strength ucsd.edu: 15001
25175 7 R 000 psax =
I || Run Command ‘

Figure 3.11: Nebula Host View tab showing PlanetLab resesirthis tab allows users
to select multiple hosts at once and run shell commands oselleeted resources. The
text-box at the bottom shows the output from the shell comdsan

nate execution across all resources. Once the applicdimmsaor completes execution,
the user may either save their application specificatisgatinect from the Plush com-
munication overlay, restart the same application, or lgzdliran a new application by
choosing the appropriate option from the File menu.

The third tab is the “Resource View” tab. This tab is blankillart application
starts running. During execution, this tab lists the spedianetLab hosts that are
involved in the execution. If failures occur during exeoutithe list of hosts is updated
dynamically, such that the Resource View tab always costamaccurate listing of the
resources that are in use. The resources are separatedmpoeents, so that the user
knows which resources are assigned to which tasks in thplication. A screenshot
showing the Resource View tab is shown in Figure 3.10.

The fourth tab in Nebula is called the “Host View” tab, showrFigure 3.11.

This tab contains a table that displays the hostname of ailledole PlanetLab resources.
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& EEE
Fle Edit View Terminal Tabs Help

ucsd_plush2@planetlab2. ucsd. edu: 15414, 26686: Hello World
ucsd_plush2@planetlabl.ucsd. edu: 15414,23486: Hello World
ucsd_plush2eplanetlabs.millenniun.berkeley. edu:15414,19355: Hello world

ucsd_plush2eplanetlabls.millennium. berkeley.edu: 15414, 26698: Hello World H

The experiment has ended.

ucsd_plushzaplanetlal
ucsd_plush2eplanetlabs.

plush> quit

Figure 3.12: Screenshot of Plush command-line interface.

The purpose of the Host View tab is to give users anotherreitie to visualize the
status of an executing application. In the right column,dtatus of the host is shown.
Each host’s status corresponds to the color of the hostesdbe World View tab. This
tab also allows users to run shell commands simultaneousbiewgeral resources, and
view the output. As shown in Figure 3.11, users can seledipfeihosts as once, run a
command, and the output is displayed in the text-box at tt@imoof the window. Note
that PlanetLab hosts do not have to be involved in an apicat order to take advan-
tage of this feature. Plush will connect to any availabl@ueses and run commands
on behalf of the user. Just as in the World View tab, rightkehg on hosts in the Host

View tab opens a pop-up menu that enables users to SSH ditetkie hosts.

3.5.2 Command-line Interface

Motivated by the popularity and familiarity of the shell @nface in UNIX,
Plush further streamlines the develop-deploy-debug ciaralistributed application
management through a simple command-line interface wheseswcan deploy, run,
monitor, and debug their distributed applications runm@ndiundreds of resources. The

Plush command-line (Figure 3.12) combines the functityalia distributed shell with
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Table 3.2: Sample Plush terminal commands.

Command Description

load <filename > Read an XML application specification

connect <resource > Connect to a Plush client on a resource

disconnect Close all open client connections

info nodes Print summary information about all known resources
info mesh Print the communication overlay status (membership)
info control Print the controller’s state information

info install Print summary information on pending installations

run Start executing the application (after loading specifarati
shell <quoted string > Run “quoted string” as a shell command on all resources
slice list <slice _name> Show information about a PlanetLab slice

slice renew <slice _name> Renew the specified PlanetLab slice

the power of an application controller to provide a robustaetion environment for
users to run their applications. From a user’s standpdietPiush terminal looks just
like a shell. Plush supports several commands for mongdhe state of an execution,
as well as commands for manipulating the application spatifin during execution.

Table 3.2 shows a subset of the available commands.

3.5.3 Programmatic Interface

Many commands that are available via the Plush commandHfitezface
are also exported via an XML-RPC interface to deliver simflanctionality as the
command-line to those who desire programmatic access.gU8L-RPC, Plush can
be scripted and used for remote execution and automatetaph management. Ex-
ternal services for resource discovery, creation, andisitigun can also communicate
with Plush using XML-RPC. These external services have & of registering
themselves with Plush so that the controller can send @kitbto XML-RPC clients

when various actions occur during the execution.
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class PlushXmIRpcServer extends XmIRpcSeryer
void plushAddNodéHashMap propertie$;
void plushRemoveNodstring hostnamg
string plushTestConnectidj
void plushCreateResourdgs
void plushLoadApgstring filenameg;
void plushRunAp();
void plushDisconnectApstring hostnamg
void plushQuif);
void plushFailHogstring hostnamig
void setXmIRpcClientUr{string clientUrl);

}

class PlushXmIRpcCallback extends XmIRpcClignt
void sendPlanetLabSlic8s
void sendSliceNodéstring slice);
void sendAllPlanetLabNodé€s
void sendApplicationEx{;
void sendHostStatistring hos);
void sendBlockStatystring block);
void sendResourceMatchifigashMap matching;

Figure 3.13: Plush XML-RPC API.

Figure 3.13 shows the Plush XML-RPC API. The functions shown
in the PlushXmIRpcServer class are available to users who wish to
access Plush programmatically in scripts, or for externaksource dis-
covery and acquisition services that need to add and remasources
from the Plush resource pool. ThelushAddNode(HashMap) and
plushRemoveNode(string) calls add and remove nodes from the resource
pool, respectively.setXmIRpcClientUrl(string) registers XML-RPC clients
for callbacks, whileplushTestConnection() simply tests the connection to the
Plush server and returns “Hello World.” The remaining fumctcalls in the class
mimic the behavior of the corresponding command-line dpmra. In Chapter 4 we
will examine some specific uses of this APl within the contekdifferent resource
management frameworks.

Aside from resource discovery and acquisition services XNL-RPC API

allows for the implementation of different user interfades Plush. Since almost all
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of the Plush terminal commands are available as XML-RPCtianccalls, users are
free to implement their own customized environment speua#er interface without un-
derstanding or modifying the internals of the Plush implatagon. This is beneficial
because it gives the users more flexibility to develop in tttgmmming language of
their choice. Most mainstream programming languages happast for XML-RPC,
and hence users are able to develop interfaces for Plushyidaaguage, provided
that the chosen language is capable of handling XML-RPCn@rease the function-
ality and simplify the development of these interfaces,Rhesh XML-RPC server has
the ability to make callbacks to programs that register il Plush controller via
setXmIRpcClientUrl(string) . Some of the more common callback functions
are shown in the bottom of Figure 3.13 in cl&sshXmIRpcCallback . Note that

these callbacks are only useful if the client implementsctireesponding functions.

3.6 Implementation Details

Plush is a publicly available software package [86]. ThesRlcodebase con-
sists of over 60,000 lines of C++ code. The same code is usatdd’lush controller
and client processes, although there are minor differemcésnctionality within the
code. Plush depends on several C++ libraries, includingetpwovided by xmirpc-c,
curl, xml2, zlib, math, openssl, readline, curses, boast, gthreads. The command-
line interface also depends on packages for lex and yacc $edlex and bison). For
optimal performance, we recommend the use of the Native RO8feads Library
(NPTL) in Linux environments, as well as the ares packageagynchronous DNS
lookups. In addition to the main C++ codebase, Plush usesaesimple perl scripts
for interacting with the PlanetLab Central database anddb@pping resources. These
perl scripts require the Frontier::Client and Crypt::S&.eerl modules. Plush runs on
most UNIX-based platforms, including Linux, FreeBSD, anddMDS X, and a single
Plush controller can manage clients running on differemragng systems. The only

prerequisite for using Plush on a resource is the ability36l %o the resource.
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One challenge that arises when running Plush on differexttqums is incon-
sistencies in execution environments. This is particulproblematic when executables
are dynamically linked to system libraries. In general wenid that statically linking
the client executable that runs on potentially remote resmuhelps to solve this prob-
lem in most cases. Statically linking the client is espégiaélpful on PlanetLab, since
PlanetLab machines do not include many libraries by defdDite caveat to support-
ing statically linking executables, however, is the indpito use architecture-specific
system calls, such as some cryptographic random numberageree The Plush code-
base explicitly avoids architecture-specific system dallsnsure that statically linking
executables function correctly.

Nebula consists of approximately 25,000 lines of Java cbddaula commu-
nicates with Plush using the XML-RPC interface describeSéntion 3.5.3. XML-RPC
is implemented in Nebula using the Apache XML-RPC client aaver packages. In
addition, Nebula uses the JOGL implementation of the Opegfalphics package for
Java. Since Nebula uses OpenGL, we highly recommend egaktieo card hardware
acceleration for optimal performance. Nebula runs in anpmating environment that
supports Java, including Windows, Linux, FreeBSD, and M&>Camong others. Note
that since Nebula and Plush communicate solely via XML-RIP{S,not necessary to
run Nebula on the same physical machine as the Plush camntrdlhen starting Nebula,
users have the option of either starting a local Plush cetror specifying a remote

Plush controller process.

3.7 Summary

Motivated by the requirements of Chapter 2, in this chaptedescribed the
design and implementation of Plush, a distributed apptinananagement framework.
The three main sub-systems of Plush are the core functiontsl application specifica-
tion, and user interface. This chapter described how thdsesgstems work together to

manage distributed applications, and also discussed h®RItish architecture achieves
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fault tolerance and scalability. Finally, we explored thidifferent user interfaces to
Plush, which give users several different options for eténg with their applications

running on distributed resources.
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Chapter 4

Resource Matcher

Chapter 2 describes the role of resource discovery, creadiod acquisition
in the context of application management. To summarizentam responsibility of a
resource discovery and acquisition service is to find a setsafurces (calledmatching
in Plush) that meet the application’s resource demands.goakin the design of Plush
is to create an architecture flexible enough to work in a ¢ computing environ-
ments with different types of resources. Thus, rather tleamvent the functionality of
existing resource discovery and acquisition servicesdohearget environment, we in-
stead employ an extensible resource discovery and agquisiit (as shown in Figure
3.2) that supports a variety of resources. This is oftenmptished by using the Plush
XML-RPC interface for adding and removing resources fromdhplication’sesource
pool. The Plushresource matchethen uses the resources in the resource pool and the
application’s requirements as defined in the applicati@tgjgation to create a resource
matching.

In this chapter, we examine how the Plush resource matcherasts with
different types of resources provided by external servioesonstruct a valid match-
ing and run applications. In particular, we examine thresimltt types of resources:
physical PlanetLab hosts, emulated ModelNet resourcesXan virtual machines. We
also describe the external services used to manage thesgaes, including SWORD

for PlanetLab hosts, Mission for ModelNet resources, anda8h and Usher for Xen

69
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virtual machines. In doing so, we evaluate how effectivesRlig in achieving our goal

of supporting execution in a variety of computing enviromtse

4.1 Plush Resource Pools

Before discussing how a matching is created, we first des¢rdw resource
pools are constructed in Plush. Recall that a resource shRéua (virtual or physical)
machine that can host an application on behalf of the userthe person running the
application). Plush assumes that all resources are abtesg& SSH, and requires that
passphrase-less authentication has been estabhspedri by using a combination of
ssh-agent and public key distribution. A resource poolrigéy a grouping of resources
that are available to the user and can be reached via pasedbess SSH authentication.

The simplest way to define a resource pool in Plush is by crgatiresource
directory file (typically called directory.xml) that lisevailable resources. This file is
read by the Plush controller at startup, and internally Plereates aNodeobject for
each resource. A Node in Plush contains a username for lgggia the resource, a
fully qualified hostname, the port on which the Plush cliefltmin, and a group name.
The purpose of the group name is to give users the abilitydesdly resources into
different categories based on application-specific reguants. We discuss how this
name is used when creating a matching in the next section.

The resource file also contains a special section for defiflagetLab hosts.
Rather than specifically defining which PlanetLab hosts a haes access to, the di-
rectory file instead lists whicklicesare available to the user. In addition to the slice
names, the user specifies their login to PlanetLab Centtal\Pas well as a mapping
(called theportmap from slice names to port numbers. At startup, Plush usedadgin
information to contact PLC directly via XML-RPC. The PLC dhase returns a list of
hostnames that have been assigned to each available dtie®ldsh controller uses this
information to create a Node object for each PlanetLab hastadle to the user. The

username that is used for logging in to PlanetLab hosts islibe name, and the port is
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<?xml versior="1.0" encoding"UTF-8" 2>
<plush>
<resourcemanager type"planetlab” >
<user>jalbrecht@csucsdedu</user>
<portmap slice"ucsd_plush” port="15415" />
<portmap slice"ucsd_sword”  port="15416" />
</resourcemanager
<resourcemanager type'ssh" >
<node hostnam#'sysnet80.ucsd.edu:15420" user"albrecht" group="local" >
<node hostname'sysnet81.ucsd.edu:15420" user"albrecht” group="local"
<node hostnam@'sysnet82.ucsd.edu:15420" user"albrecht" group="local"
</resourcemanager
</plush>

\ARYS

Figure 4.1: Plush resource directory file.
determined using the portmap defined in the directory filee gitoup name is set to be
the same as the slice name by default for PlanetLab hostsmplsalirectory.xml file
is shown in Figure 4.1.

In addition to the resources defined in a Plush resourcetdisefile, resources
are also added and removed by external services at any pwingdan application’s ex-
ecution. This is typically accomplished using the Plush XREC interface described
in Chapter 3. External services that create virtual ressudynamically based on an ap-
plication’s needs, for example, contact the Plush comrelith new available resources,
and Plush adds these resources to the user’s resource ptwse resources become
unavailable, the external service calls Plush again, anshPiubsequently removes the
resources from the resource pool. Note that this may invstepping the application
running on the resource beforehand. Additionally, whengighe Plush command-line
user interface, users have the option of adding resourdéeitoresource pool directly

by using the “add resource” command from the Plush shell.

4.2 Creating a Matching

After a resource pool has been created, the Plush resoutceenas respon-
sible for finding a valid matching—a subset of resources sh#isfy the application’s

demands—for the application being managed by Plush. Tonaglesh this task, the
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matcher first must parse the resource definitions for eaatponentefined in the the
application specification. A Plush component is merely aofe¢sources. Each com-
ponent block defined in the application specification hasreesponding component,
or set of resources, on which the processes and barrierdisgen the component
block are run. Component definitions also include requitdthare, desired number of
resources, optional external service usage informati@tydsed in detail later is this
chapter), and any “static host” specifications. Static f1@sé resources thatustbe
used to host an application. If these resources fail or beconavailable, the entire
application is automatically aborted.

Figure 4.2 shows a Plush software and component definitiaste that the
XML shown is only part of the application specification. Ctexy6 illustrates several
complete application specifications that include softwaaréd component definitions in
addition to the block descriptions discussed in Chapteh®. software definitions spec-
ify where to obtain the required software, the file transfethmd as indicated by the
“type” attribute for the package element, and the instalfatnethod as indicated by
the “type” attribute of the software element. In this partes example, the file trans-
fer method is “web” which means that a web fetching utilityclswas wget or curl is
used to retrieve the software package. The installatiorhodkets “tar.” This implies
that the package has been bundled using the tar utility, mstdliing the package in-
volves running tar with the appropriate arguments. “qegth” specifies what filename
the package is saved as on the resources.

The component definition begins below the software spetifican Figure
4.2. Each component is given a unique name, which is usedebgdamponent blocks
later to identify which set of resources should be used. Negt‘rspec” element defines
“num_hosts,” which is the number of resources required in the corapt. The “rspec”
element also optionally specifies any “statiost” resources desired. Note that the use
of static hosts is not recommended for most applicatioms;esthe failure of a static
host results in the entire application being aborted. Tlodévisare” element within the

component specification refers to the “SimpleSoftwaretwgafe package that was pre-
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<?xml versior="1.0" encoding"UTF-8" 2>

<plush>
<project name"simple" >
<software name"SimpleSoftware" type="tar" >

<package nam€'SimplePackage"  type="web" >
<path>http://plushucsdedusoftwaretar</path>
<dest path>softwaretar</dest path>
</package-
</software>
<component nam&'Groupl" >
<rspec-
<num_hosts>25</num_hosts>
<static host>ucsd plush@planetlablcs dukeedu</static host>
<Irspec>
<software name"SimpleSoftware" 1>
<resources
<resource type'planetlab” group="ucsd_plush" />
</resources
</component
</project>
</plush>

Figure 4.2: Plush software and component definition.
viously defined. Lastly, the “resources” element specifiagtvresource group (recall
that each Node object includes a group name) to use for ogetdteé matching. In this
case we are interested in PlanetLab hosts assigned to ttiglush slice.

After creating the resource pool and parsing the componedmition in the
application specification, the resource matcher has alhefinformation it needs to
create a matching. The matcher starts with the global resquuol, and filters out all
resources that are not in the group specified in the compaledimition. In our exam-
ple, this includes all hosts not assigned to the yaisigh slice. Using the remaining re-
sources in the resource pool, the matcher randomly picka25gecified by nurhosts
in our example) Node objects and inserts them into the magchiihe Plush controller
then begins to configure these 25 resources. If a failurersauring configuration or
execution, the controller requeries the matcher. The neatséts the “failed” flag in
the Node that caused the faildygemoves it from the matching, and inserts another

randomly chosen resource from the resource pool. This psoiserepeated for each

1n addition to setting the failed flag in the Node object, thatcoller also notes the time at which the flag was set.
In the case of long-running applications, failed flags amsopiécally unset after a sufficient amount of time passes.
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failure throughout the duration of the application’s exemu Note that resources that
are marked as failed are never chosen to be part of a matching.

In shared, wide-area computing environments like Plargtheachines often
experience high load and increased network congestiorcesly during peak times
when a conference deadline is approaching. Consequensyduring these times of
high load and resource contention when obtaining a usablef sesources to host an
application can be difficult. In these situations the reseunatcher’'s random choos-
ing policy does not always allow users to achieve their @esiesults. To help address
this problem, Plush allows users to specify a set of “prefieirosts” for running their
application. Internally, each Plush Node has a numericgfiepence value assigned to
it. In the absence of preferred hosts, all preference valueset to zero. If a resource
fails, the preference value for the failed resource is redudzsy some number. To in-
crease a resource’s preference value, users have the optising the “prefer regex”
command from the Plush command-line interface, which emes the preference value
for any resource whose hostname matches the regular expregecified by “regex.”
Alternatively, the user can load an XML file that specifies ith@eased (or decreased)
preference values for the target resources. When the midiitdes through the resource
pool, it automatically chooses resources with the highesfepence value first. Using
this simple technique, users are able to loosely pick ressuhat they know to be more

reliable, and thus are typically able to achieve betterltesu

4.3 PlanetLab Resource Selection

The preceding section discusses how Plush resourcesamasly maintained
and organized into resource pools in general. It also desstow the Plush resource
matcher uses these resource pools and the component dafseittion of the applica-
tion specification to create matchings for the applicatiemg run. In this section, we
take a closer look at how Plush interacts with a specific nesodiscovery service—

SWORD— to select an optimal set of PlanetLab resources fh@mesource pool.
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4.3.1 SWORD Overview

SWORD [3, 77] is a publicly available service that is desmjtee perform re-
source discovery for PlanetLab. In the previous sectionliuded to the fact that finding
a usable set of resources to host a PlanetLab applicationgdiimes of high resource
contention can be very challenging. SWORD is designed toesddhis challenge in
an application-specific manner without requiring the usesdlect “preferred hosts” for
running their applications. SWORD takes a query describgspurce demands for a
specific application as input, and returns a set of resouhadssatisfy these demands.
Queries define groups of resources that have specific per{aay load or free memory
on all hosts), inter-nodee(g, all-pairs latency or bandwidth within a group), and inter-
group €.9, all-pairs latency or bandwidth across groups) properthetditionally, the
gueries allow users to specify ranges of acceptable vatwe=ath attribute, rather than
a single value. Associated with this range is a “penaltyueawhich basically allows
users to rank the importance of various attributes. SWOR@rme a list of resources
organized by group that have the lowest overall penalty. W& At a specific SWORD
query later in this section.

Before describing how Plush interacts with SWORD, it is \wautile to
briefly discuss the evolution of SWORD from an architectamal managerial stand-
point. SWORD has been in operation for several years nownaard/ valuable lessons
have been learned about application management and memcgduring this time. Ata
high-level, the architecture of SWORD has remained largalshanged. SWORD con-
sists of three main components, as shown in Figure 4.3: tegygthe logical database
and query processor, and the optimizer and matcher. The ¢gan XML document
that describes application-specific requirements for gsoaf resources. The logical
database and query processor is responsible for parsinguérg and maintaining the
CoMon [81] measurement data needed to answer the gtiefies query processor fil-

ters through the measurement data, and determines whmlrces satisfy the per-node

2QOriginally SWORD used data gathered from ganglia [69] sensonning on all hosts, and an all-pairs-ping
service [99] that measured latency between PlanetLab.hbisése services are no longer maintained on PlanetLab,
and as a result SWORD currently does not support any intée-atiributes.
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Figure 4.3: High-level overview of the SWORD architecture.

requirements in the query. The role of the optimizer and he&tés to use the measure-
ment data and “candidate nodes” provided by the query psoces determine which
groups of resources satisfy the inter-node and inter-gregpirements, and also find
the groups with the lowest overall penalty relative to thgureements specified in the
query.

Although the high-level view of the architecture did not sbe over the years,
the implementation and specific details of the design haengode significant alter-
ations. Initially, SWORD was designed to be mostly distrlsi The optimizer and
matcher were never distributed and always ran on a single ihatsthe logical database
and query processor was originally implemented using ailoiged hash table (DHT).
One challenge with using a DHT is performing distributedgaigueries to gather the
data across several PlanetLab hosts. We experimentedevithes different techniques,
as shown in Figure 4.4. In the end, we found that a centrafipgdoach with replicated
servers performed the best with respect to how long it toaleta response to a query.
However, even this design suffered from poor performancen\PlanetLab was expe-
riencing high load and resource contention. The problem thasalthough we were

trying to perform resource discovery to help users find wseddources, SWORD itself
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was running on overloaded PlanetLab machines. Thus SWOR&ad the same fate
as other PlanetLab applications, and was essentially reddeseless during peak usage
times.

The current version of SWORD is now fully centralized (semito the Fixed
architecture in Figure 4.4), and is run on a machine that ispad of the PlanetLab
infrastructure. Data is still periodically gathered froraMon and stored in the logical
database (which is now an XML document), and users now sufuraiies directly to the
SWORD server that subsequently processes the query, dietsrthe candidate nodes,
and runs the optimizer and matcher. The risk in this desidaul tolerance (a central
server is a single point of failure) and potential scal&pilimitations; however these
problems are easily addressed if they ever cause problaMORD presently supports
a web-based user interface [100] and an XML-RPC interfaceifbmitting queries and

obtaining responses.

4.3.2 Integrating SWORD and Plush

Although setting preferred hosts as described in the pusvaection helps
find suitable resources on PlanetLab, it is not as effectsr@issng SWORD to find
the best set of resources available for hosting an apmitatHence, we decided to
integrate SWORD and Plush, allowing application develspebenefit from the appli-
cation management features of Plush and the advanced cestiscovery features of
SWORD. In order to facilitate the integration, we extendethlihe Plush and SWORD
XML-RPC interfaces so that the two systems could commueieasily. Additionally,
we modified the Plush application specification parser togeize when an external
service (such as SWORD) should be used. An example of a canpdefinition that
includes a SWORD query is shown in Figure 4.5.

One problem with using SWORD and Plush together is recogdrom fail-
ures. SWORD does not store any state after responding torg. duwus, if a resource
fails, there is no simple way to requery SWORD and obtain &ogpnent for the failed

host without retrieving a completely new list of resourcesirther, SWORD does not
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Figure 4.4: Different distributed range search query tepes used in SWORD.
(&) Multiquery - small queries sent to many nodes in DHT. (b)g&query - large
gueries sent to only one node in DHT. (c) Index - index serivelteate where to obtain
information in DHT. This approach limits the number of holpough the DHT for each
qguery. (d) Fixed - centralized approach with replicatedeerthat hold all measurement

data and respond to queries.

know or care about which hosts are assigned to which sliceerefbre it is entirely
possible for SWORD to return a list of resources that are wailable to the user. To
address this problem, we added the functionality to regriéae list of SWORD *“can-
didate nodes” (see Figure 4.3) rather than the final optidhinatching. Plush itself
is capable of creating the matching, thus it is not necessanse SWORD for this
task. The candidate nodes that SWORD returns are guarattteadet the applica-
tion’s constraints (recall that inter-node attribute gerre no longer supported since

the measurement data does not exist). Plush is able to fikezandidate nodes based
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<?xml versior="1.0" encoding"utf-8"  ?>

<plush>
<project name"simple" >
<software name"SimpleSoftware" type="tar" >

<package nam€'SimplePackage"  type="web" >
<path>http://plushucsdedusoftwaretar</path>
<dest path>softwaretar</dest path>
</package-
</software>
<component nam&'Groupl" >
<rspec-
<num_hosts>25</num_hosts>
<sword>
<request
<group>
<name>Grouplk/name>
<num_machines-all</num_machines-
<oneminload-0, 0, 2, 5, 1</oneminload-
<gbfree>1, 2, 10, 50, 2</oneminload-
</group>
</request
</sword>
<Irspec-
<software name"SimpleSoftware" />
<resources
<resource type"planetlab” group="ucsd_plush" />
<[resources
</component
</project>

</plush>

Figure 4.5: Plush component definition containing a SWORErgu
on the slice being used to run the application, and then aser¢he preference value
for the Node objects. This allows Plush to easily recovemfifailures by choosing
good replacement resources based on the SWORD candidasmdetiso filter out the
candidate nodes that are not part of the user’s slice.

The XML that appears between the “sword” tags in Figure 4& é¢emplete
and unmodified sword query. This particular query defines gnoip of resources,
and, since we want the biggest candidate node set possibetthe “nummachines”
attributes to “all” indicating that we want to know about aanmy PlanetLab resources as
possible. Next, the query specifies two per-node attribtiteeminload” and “gbfree.”

oneminload is a measure of the average load for the past epiant gbfree measures
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how many gigabytes of free disk space are available. Anipate measured by CoMon
is supported by SWORD. Notice that there are five numbersfggueetor each per-node
constraint. From left to right, these numbers indicatesabgolute minimum, ideal

minimum, ideal maximum, absolute maximum, and penaltyeskassociated with the
attributes. For example, in the gbfree constraint, we ageesting resources with at
least one free GB and ideally two free GB of disk space, andlligl@ max of ten free

GB and no more than fifty free GB of disk spacé-or resources with values that fall
outside of the ideal range (which is from two to ten GB) buideshe absolute range
(which is from one to fifty GB), a normalized penalty of two hlle assigned. This
means that resources with values close to two and ten GB axk Ipenalties close to
zero, and resources with values close to one and fifty GB \adehpenalties close to
two. Resources with values outside of the absolute rangesaigned an infinite penalty.
Since they do not satisfy the specified per-node constrdimdg are not included in the
candidate node set that SWORD returns.

When the Plush controller parses the application spedditand discovers
the “sword” portion of the XML, it immediately sends the quéo the SWORD server
via XML-RPC. SWORD responds with a list of PlanetLab machitigat satisfy the
constraints specified in the query. The Plush resource matdes this information to
increase the preference values for the corresponding Nigjdets. Additionally, Plush
uses the SWORD penalty values to set the preference valuesdany to how well the
resources meet the application’s demands. Hence, resowittelow SWORD penalty
values are given high Plush preference values, and resowittehigh SWORD penalty
values are given lower Plush preference values. Aftemggttie preference values, the
matcher than proceeds as usual, choosing resources whtbrtgeference values before
resources with lower preference values. Plush users aisotha option of rerunning

the SWORD query periodically to maintain a “fresh” list ofagbresources.

3In reality, we would not likely specify an upper limit for giele. We are specifying an ideal and absolute max in
this example for illustrative purposes only.



81

4.4 Virtual Machine Support

In addition to using SWORD for resource selection on PlaaktlPlush also
supports using virtual machine management systems fotimgeand obtaining re-
sources. In patrticular, Plush provides an interface fongidioth Shirako [49] and
Usher [71]. Shirako [49] is a utility computing framework.hibugh programmatic
interfaces, Shirako allows users to create dynamic on-ddnctusters of resources,
including storage, network paths, physical servers, andalimachines. Shirako is
based on a resource leasing abstraction, enabling useegdtiate access to resources.
Usher [71] is a virtual machine scheduling system for clustezironments. It allows
users to create their own virtual machines or clusters. Whaser requests a virtual
machine, Usher uses data collected by virtual machine st make informed de-
cisions about when and where the virtual machine should run.

Through its XML-RPC interface, Plush interacts with botlke tBhirako and
Usher servers in a similar manner as SWORD. Unlike SWORD elew in Shirako
and Usher the resources do not exist in advance. The resoomaest be created and
added to the resource pool before the Plush resource matahesreate a matching.
To support this dynamic resource creation and managementgain augment the
Plush application specification with a description of theidk virtual machines, and
then send this description to the corresponding serviceefgource creation. Just as
we included a SWORD query within the component definition &flash application
specification, we similarly include information about thestted attributes of the vir-
tual machine resources so that this information can be gassdo either Shirako or
Usher. As the Plush controller parses the application &paton, it stores the resource
description, and when the “plushCreateResources” comngisdued (either via the
Plush command-line interface or programmatically thro¥§hi_-RPC), Plush contacts
the appropriate Shirako or Usher server and submits theiresoequest. Once the re-
sources are ready for use, Plush is informed via an XML-RRBazk that also contains

contact information about the new resources. This callhgaates the Plush resource
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pool and the user is free to start applications on the newuress. If the resources
must be removed at any point, the Shirako or Usher serveraatact Plush again via

XML-RPC, and the resources will be removed from the resopoxs.

4.4.1 Using Shirako

Similar to the how we included the SWORD query in the applocaspeci-
fication in the preceding section, if a Plush user wants taiolfhirako resources for
hosting an application, the application specification nagdin be augmented with a
description of the desired resources. The syntax is sinaldrat of the SWORD query,
except that in the case of Shirako, the attributes definestbmurces that will be created.
Figure 4.6 shows an example of a Plush component definitmntraugmented with a
Shirako resource request. Shirako currently creates X@nvjttual machines (as indi-
cated by the “type” flag with value “1” in the resource destap) with the CPU speed,
memory, disk space, and maximum bandwidth specified in theuree request. If one
or more of these attributes is not explicitly defined, Shirakes default values for cre-
ating virtual machines. Also, Shirako arbitrates accessdources using leases. Notice
that the resource description contains a lease parameteh wells Shirako how long
the user intends to use the resources. Lastly, the resoasmigtion specifies which
Shirako server to contact with the resource request.

Since Shirako is a lease-based resource management eneimgnt is possi-
ble that the resources will not be available immediatelymfish contacts the Shirako
server on behalf of the user. Thus, rather than having Pligtk lon the XML-RPC
call until the resources are available, Plush instead tesgia callback with the Shi-
rako server. When the resources become available, thek8lsieaver contacts the Plush
controller with information regarding the newly createdaerces. This information
includes the hostname, group name, username, and Plushmdig number. Shirako
assumes that the Plush user has registered their SSH kethei®hirako server ahead
of time, and when Shirako creates the virtual machines,stialls SSH keys directly

onto the resources. This makes accessing the resourceassplpase-less SSH pos-
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<?xml versior="1.0" encoding"utf-8" ? >
<plush>
<project nameg"simple" >
<component nam€'Groupl” >
<rspec-
<num_hosts>10</num_hosts>
<shirako>
<num_hosts>10</num_hosts>
<type>1<itype>
<memory>200</memory>
<bandwidth>200</bandwidth>
<cpu>50</cpu>
<leaselength>600</leaselength>
<server-http://shirako.cs.duke.edu:20000</serve r-
</shiraka>
<[rspec-
<resources
<resource type'ssh" group="shirako " />
</resources
</component
</project>

</plush>

Figure 4.6: Plush component definition containing Shiradsources.
sible after the resources are created. When all requesdedrees are available, Plush
sends a message to the user indicating that the resourcesadiefor use. After the
requested lease length expires, Shirako contacts the Pamloller and asks that the
resources be removed from the resource pool.

Plush is currently being used by Shirako users regularlyueDJniversity.
While Shirako multiplexes resources on behalf of usergaischot provide any abstrac-
tions or functionality for using the resources once theyehasen created. On the other
hand, Plush provides abstractions for managing applicaten distributed resources,
but provides no support for multiplexing resources. A “i@se” is merely an abstrac-
tion in Plush to describe a machine that can host a distidbayelication. Resources can
be added and removed from the application’s resource pobRlosh relies on external
mechanisms (like Shirako) for the creation and destruaifaesources.

The integration of Shirako and Plush allow users to sealglésgerage the

functionality of both systems. Although Shirako does pdeva web based interface
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for creating and destroying resources, it does not providénterface for using the
new resources, so Shirako users benefit from the interycfivovided by the Plush
command-line interface. Researchers at Duke are currasthg Plush to orchestrate
workflows of batch tasks and perform data staging for sdiergpplications including

BLAST [6] on virtual machine clusters managed by Shirakd.[45

4.4.2 Using Usher

The integration of Plush and Usher is very similar to thegragion of Plush
and Shirako. Like Shirako, Usher takes a request that descthe characteristics of
the desired resources as input and creates clusters cdlvmachines that satisfy the
specified constraints. Figure 4.7 shows an example of a Rlastponent definition
that includes an Usher resource request. Also like Shirdkber creates Xen virtual
machines, and the attributes in the resource request porrdgo attributes used by Xen
to create customized resources. Specifically, Usher usgsaftributes. The attribute
“count” simply defines how many machines are needed, and™specifies the amount
of required memory. Note that the number of machines neameahf) should be greater
than or equal to the number of resources in the component _{rasts). The “cluster”
attribute specifies an optional name for the virtual clustisher supports one additional
optional parameter, the “kernealti” attribute (not shown in Figure 4.7), that defines the
location of the desired kernel image.

Unlike Shirako, Usher is not a lease based system. When aaegeFsts a vir-
tual machine, the machine is created immediately. Thuserahan requiring a callback
that adds new resources to the resource pool after sometipbtziay as in Shirako,
Usher returns the information for accessing the newly egeatachines in response to
the initial “createResource” call. This response inclutesnew virtual machine host-
names, usernames, and group identifiers. Similar to Shifdkber requires that the
user register their SSH key with the Usher server beforeasting resources so that the
key can be automatically installed on the virtual machingsking SSH passphrase-less

authentication possible.
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<?xml versior="1.0" encoding"utf-8" ? >
<plush>
<project nameg"simple" >
<component nam€'Groupl” >
<rspec-
<num_hosts>10</num_hosts>
<usher-
<count-10</count>
<ran>256</ram>
<cluster>plush</cluster-
<lusher-
<Irspec-
<resources
<resource type'ssh" group="usher" />
</resources
</component
<Iproject>

</plush>

Figure 4.7: Plush component definition containing Ushesueses.

The integration of Plush and Usher is still in a preliminatgge, and has
not yet seen extensive use. Usher has been in use for only mfewhs, and is still
under development. Also, Usher itself provides a termintdriace that is similar to
the Plush command-line interface, and hence Usher useeslie®n less enthusiastic
about using Plush than Shirako users who benefited from tiaiénality of the Plush
command-line. Since Usher users already have a userfyiaridrface for controlling
resources, there is less motivation for them to try Plushwéler, we are hopeful that
as the popularity of Usher increases, we will be able to cwre&vnew Usher users who

are managing complex applications to use Plush.

45 ModelNet Emulated Resources

Aside from PlanetLab resources and virtual machines, Palsh supports
running applications on resources in emulated environsnéntthis section we discuss
how Plush supports adding emulated resources from Mod¢lN&{ to the resource
pool. Further, we describe how the Plush XML-RPC progranomaterface is used to

perform job execution in a batch scheduler that arbitratesss to ModelNet resources.
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Mission is a simple batch scheduler used to manage the éxeaitobs that
run on ModelNet in our research cluster. ModelNet is a netveonulation environment
that consists of one or more Linux edge nodes and a set of Bi2eBre machines run-
ning a specialized ModelNet kernel. The code running on tlgedrosts routes packets
through the core machines, where the packets are subjextbe delay, bandwidth,
and loss specified in a target topology. A single physicallmmechosts multiple “vir-
tual” IP addresses that act as emulated resources on the édge hosts. To setup the
ModelNet computing environment with the target topology phases of execution are
required: deploy and run. Before running any applicatidhs,user must firstleploy
the desired topology on each physical machine, includied-tieeBSD core. ModelNet
topologies are defined in two files: the model file and the rdilée The model file
specifies the assignment of emulated hosts to physical meghas well as the subnet
and IP addresses for the emulated hosts. The route file defiagsroperties of the
network links that connect the emulated hosts. The deploggss essentially instanti-
ates the emulated hosts, and installs the topology on alhmes. Then, after setting
a few environment variables, the user is freeun applications on the emulated hosts
using virtual IP addresses just as applications are run geigdd machines using real
IP addresses.

A single ModelNet experiment typically consumes almosbiihe computing
resources available on the physical machines involved.s,TWwhen running an exper-
iment, it is essential to restrict access to the machinesi&oanly one experiment is
running at a time. Further, there are a limited number of B&® core machines run-
ning the ModelNet kernel available, and access to theses magst also be arbitrated.
Mission, a simple batch scheduler, was developed localhetp accomplish this goal.
ModelNet users submit their jobs to the Mission queue, anth@snachines become
available, Mission pulls jobs off the queue and runs them @mali of the user. This
ensures that no two jobs are run simultaneously, and alswslthe resources to be
shared more efficiently. Rather than partitioning the resesiinto smaller groups so

that multiple users can reserve machines for exclusivesaced users can share all of
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<?xml versior="1.0" encoding"UTF-8" 2>

<plush>
<resourcemanager type'ssh" >
<node hostnhan'sys80.ucsd.edu:1540" group="phys" flag="core" />
<node hostname'sys81.ucsd.edu:1540" group="phys" />
<node hostnan'sys81.ucsd.edu:1541" vip="10.0.0.1" vn="1" group="emul" />
<node hostname'sys81.ucsd.edu:1542" vip="10.0.0.2" vn="2" group="emul" />
<node hostname'sys81.ucsd.edu:1543" vip="10.0.0.3" vn="3" group="emul" />
<node hostnanm@'sys81.ucsd.edu:1544" vip="10.0.0.4" vn="4" group="emul" />
</resourcemanager
</plust>

Figure 4.8: Plush directory file for a ModelNet topology. 89ss the FreeBSD core
machine. sys81 is a Linux edge host that is running four eradbartual hosts.

the resources, allowing for an increased number of totakhinghe emulated topology,

and also maximizing the overall utility of the cluster.

4.5.1 Configuring ModelNet with Plush

A Mission job submission has two components: a Plush agmitapecifi-
cation and directory file. For ModelNet, the directory filent@ins information about
both the physical and virtual (emulated) resources on wthiehModelNet experiment
will run. Typically the directory file is generated directiyom a ModelNet model file.
Unlike Plush directory files for other environments, the Midékt directory file entries
contain extra parameters that specify the mapping fromipalysosts to virtual IP ad-
dresses. Figure 4.8 shows an example directory file for a Mde¢opology. In this
figure, some of the resources include two extra parametaps,and “vn”, which define
the virtual IP address and virtual number (similar to a haste) for the emulated re-
sources. Also, notice that different group names are usdistimguish emulated hosts
from physical hosts. The Plush controller parses this filstattup and populates the
resource pool with both the emulated and physical resour€es matcher then uses
the group information to ensure that the correct resouneesiged in each stage of the
execution.

In addition to the directory file that is used to populate thesRresource pool,

users also submit an application specification descriliiagpplication they wish to run
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on the emulated topology to the Mission server. This apptinsspecification contains
two component blocks. The first component block describesptiocesses that run
on the physical machines during the deployment phase (wheremulated topology
is instantiated). The corresponding component that iscéestsal with this component
block specifies that the resources used during this phasedtd the “phys” group. The
second component block defines the processes associatetheitarget application.
The component for this component block specifies that regsurelong to the “emul”
group. When the controller starts the Plush clients on thel&ied hosts, it specifies
extra command-line arguments that are defined in the dimedile by the “vip” and
“vn” attributes. These arguments set the appropriate Mdeteénvironment variables,
ensuring that all commands run on that client on behalf otiger inherit those settings.
An example application specification that uses the ressudedined in Figure 4.8 is
shown in Figure 4.9.

When a user submits a Plush application specification arettdiy file to
Mission, the Mission server parses the directory file to idgmwhich resources are
needed to host the application. When those resources beaariable for use, Mis-
sion starts a Plush controller on behalf of the user using’theh XML-RPC interface.
Mission passes Plush the directory file and applicationiBpation, and continues to
interact with Plush throughout the execution of the apgpiicavia XML-RPC. After
Plush notifies Mission that the execution has ended, Midsitsthe Plush process and
reports back to the user with the results. Any terminal ouipat is generated is emailed
to the user.

Plush jobs are currently being submitted to Mission on aydsakis at UCSD.
These jobs include experimental content distributiongarols, distributed model check-
ing systems, and other distributed applications of vangamplexity. Mission users
benefit from Plush’s automated execution capabilities. ré&Jsenply submit their jobs
to Mission and receive an email when their task is completeyTdo not have to spend
time configuring their environment or starting the exeautimdividual host errors that

occur during execution are aggregated into one messagesandead to the user in an
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<?xml versiorr"1.0" encoding"utf-8"  ?>

<plust>
<project name"deploy" >
<component name'PhysicalHosts" >
<rspec>
<numhosts>2 </num.hosts>
<Irspec>
<resources
<resource type'ssh" group="phys" />
<[resources
</component
<component nam@VirtualHosts" >
<rspec>
<num.hosts>4</num_hosts>
<lIrspec>
<resources
<resource type'ssh" group="emul" />
<Iresources
</component
<applicationblock name"modelnet_app" >
<execution>
<componentblock name"phys_block" >
<component name'PhysicalHosts" />
<processblock name"phys" >
<process name'deploy” >
< path>/projectgmodelnetbin/deployhost/path>
<cmdline>
<arg>examplemodek:/arg>
<arg>exampleroute</arg>
</cmdline>
<Iprocess-
</processblock>
</componentblock>
<componentblock name"virt_block" >
<component nam#'VirtualHosts" />
<predecessor naméphys_block" />
<processblock name"modelnet_virtual" >
<process nan¥'test_hostname" >
< path>/bin/hostname:/pattr>
<Iprocess-
</processblock>
</componentblock>
</execution>
</applicationblock>
</project>
<Iplush>

Figure 4.9: ModelNet application specification. Each enadaesource runs the com-
mand “/bin/hostname.”

email. Logdfiles are collected in a public directory on a comrfite system and labeled
with a job ID, so that users are free to inspect the output fradividual hosts if desired.
Another key benefit of using Mission is that it allows usersrtore easily transition
from an emulation environment to live deployment. Once asMis user has created
an application specification for execution on ModelNet, thanges required to adapt

the specification for execution on PlanetLab are triviald amostly involve removing
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the component block responsible for deploying the emulaipdlogy. In this context,
Plush accomplishes its goal of helping users seamlessigitian from emulation to

live deployment during application development.

4.6 Summary

In this chapter, we discussed how Plush interacts with aéegternal resource
management services—namely SWORD, Shirako, Usher, ansldviis-to add and re-
move different types of resources to and from an applicaimsource pool. We also
described how the Plush resource matcher uses these resooiicreate matchings that
contain the best set of resources available for hostingattget application. Using the
extensible resource abstractions provided by Plush feraeting with resources from a
variety of different environments, users are able to ruir @ggplications on PlanetLab,
ModelNet, or on clusters of Xen virtual machines withoutrewvaving to worry about

the underlying details of the environment.
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Chapter 5

Partial Barriers

This chapter discusses techniques for accomplishing atda-distributed
synchronization in Plush. Traditionally, synchronizatimarriers have been used to en-
sure that no cooperating process advances beyond a spgufreduntil all processes
have reached that point. In heterogeneous large-scal@dted computing environ-
ments, with unreliable network links and machines that magome overloaded and
unresponsive, traditional barrier semantics are tootstrioe effective for a broad range
of distributed applications. In response to this limitatiove explore several relaxations
and introduce aartial barrier, which is a synchronization primitive designed to en-
hance liveness in failure-prone computing environmentsatid barriers are robust to
variable network conditions; rather than attempting taehige asynchrony inherent to
wide-area settings, they enable appropriate applicdéesl-responses. In this chapter,
we describe how partial barriers have been integrated iltshPand in Chapter 6 we
evaluate the improved performance achieved using padraidss for several wide-area

distributed applications.

5.1 Background and Overview

One of the main goals of Plush is to support the deploymentwbad range
of applications in a variety of distributed environmenisluding large-scale wide-area

computing platforms, where significant variations in pssm® performance, network
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connectivity, and node reliability are the norm. These cotimg environments lie in
stark contrast to the tightly-coupled cluster and supepdsT environments tradition-
ally employed by compute-intensive applications. Whata® unchanged, however,
is the need to synchronize various phases of computatiamssithe participating re-
sources. The realities of these failure-prone environmetdace additional demands
on the synchronization mechanisms required in Plush; wehiisting techniques pro-
vide correct operation in volatile environments, the aggilon’s performance is often
severely degraded due to failures or overloaded resouhedBis chapter, we describe
how new, relaxed synchronization semantics in Plush cawmigecsignificant perfor-
mance improvements in distributed applications run adfussvide-area.

Synchronizing parallel and distributed computations inegal has long been
the focus of significant research effort. At a high-leveg tioal of synchronization in
this context is to ensure that concurrent computation tasisoss independent threads,
processors, nodes in a cluster, or resources spread doedsgdrnet—are able to make
independent forward progress while still maintaining sdriggher-level correctness se-
mantic. Perhaps the simplest synchronization primitivihésbarrier [50], which es-
tablishes a rendezvous point in the computation that alteoent nodes, processors,
or threads must reach before any are allowed to continuek 8uichronous parallel
programs running on massively parallel processors (MPP8ylatly-coupled clusters
employ barriers to perform computation and communicatiophases, transitioning
from one consistent view of shared underlying data strestdo another. Thus dur-
ing the design of Plush it only seemed natural to support Hreidy synchronization
primitive to accomplish similar synchronization goals.

In past work, barriers and other synchronization primgithave defined strict
semantics that ensure safetyes that no node, thread, or processor falls out of lock-
step with the others—at the expense of liveness. In paaticiflemployed naively, a
parallel or distributed computation using barrier synclization moves forward at the
pace of the slowest participant and the entire computatiast tve aborted if any partic-

ipant fails. In closely-coupled supercomputer or clusterim®nments, these problems
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can be avoided relatively easily. Failure during compataiis expected to be rare,
and skillful programmers optimize the performance of tlagiplications by leveraging

knowledge about the relative speed of individual processod nodes in their target
environment. Further, dataflow can be carefully craftecedagpon an understanding of
transfer times and access latencies to prevent competimgrafor the 1/0 bus.

In wide-area computing environments—where individual ex@beeds are
unknown and variable, communication topologies are unpgta&de, and failure is
commonplace—applications must be robust to a range of tpgreonditions. It is
nearly impossible to predict the performance of individwsources, and thus the per-
formance tuning common in cluster and supercomputing enments is impractical.
Further, individual node failures are almost inevitablente applications that run in
these volatile environments are generally engineereddptad or recover from a vari-
ety of failures. Additionally, due to the unpredictableuratof these environments, it is
often difficult to determine the optimal degree of concucsea priori. As a result, one
goal in the design of Plush is to provide robust and adaptigehanisms for adjusting
the degree of concurrency of an application during its ettecuwhich is especially
helpful in cases where parallel execution appears to beadeyy performance due to
self-interference.

In addition to providing mechanisms for adaptively deteimg the optimal
concurrency level in distributed applications, Plush iphtiarriers address two other
limitations of traditional barriers. Using traditionalmantics, a resource arriving at
a barrier blocks and waits for all other resources to arr@®ie continuing computa-
tion. Using partial barriers, a resource need not necégddoick waiting for all other
resources to arrive—doing so would likely sacrifice efficienr even liveness as the ap-
plication waits for either slow or failed resources. Simiyareleasing a barrier does not
necessarily imply that all resources should pass througtb#trier simultaneously—
e.g, simultaneously releasing thousands of resources to @adrd software package
effectively mounts a denial-of-service attack againstt#inget repository. Instead, par-

tial barriers allow distributed applications to manageehty and release semantics of
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their logical barriers in an application-specific mannergdascribed in the Plush appli-
cation specification.

In summary, this chapter discusses the design and implatemiof a new
synchronization primitive in Plush that focuses on impnomperformance in distributed
applications running in wide-area computing environmelmtshis context, we make the

following contributions:

e We introduce gartial barrier, a synchronization primitive designed for hetero-
geneous failure-prone environments. By relaxing trad@losemantics, partial

barriers enhance liveness in the face of slow, failed, alidrgerfering resources.

e Based on the observation that the arrival rate at a barrieofieén form a heavy-
tailed distribution, we design a heuristic to dynamicaltett theknee of the
curve—the point at which arrivals slow considerably—allowingpagations to
continue despite slow nodes. We also adapt the rate of eefeas a barrier to

prevent performance degradation due to self-interferioggsses.

e We integrate partial barriers into the core design of Plgshthat Plush and the
applications being managed by Plush can achieve the betinefitsartial barriers
provide. In Chapter 6 we discuss how we added partial barteeseveral ex-
isting distributed applications that are managed by Pltesylting in significant

performance improvements.

5.2 Motivation

In the remainder of this chapter, we refer to nodes or ressuasenteringa
barrier when they reach a point in the computation that regsynchronization. When
a barrierreleasesor fires (we use the terms inter-changeably), the blocked nodes are
allowed to proceed on to the next phase of computation. Alnegrto strict barrier
semantics, ensuring safefye., global synchronization, requires all nodes to reach a
synchronization point before any node proceeds. In thedéeade variability in per-

formance and prominent failures, however, strict enforeeinmay force the majority of
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nodes to block while waiting for a handful of slow or faileddes to catch up. Many
wide-area applications already have the ability to recaméighemselves to tolerate node
failures. We can harness this functionality in Plush to dwicessive waits at barriers:
once slow nodes are identified, Plush can remove them froroaimgutation, and pos-
sibly replace them with quicker nodes for the remainder efekecution.

One of the important questions, then, is determining wherlease a barrier,
even if all nodes have not arrived at the synchronizatiomtpoirhat is, it is impor-
tant to dynamically determine the point where waiting fodigidnal nodes to enter
the barrier will cost the application more than the benefttulght by any additional
arriving nodes in the future. This determination often defseon the semantics of in-
dividual applications. Even with full knowledge of applicam behavior, making the
decision appropriately requires future knowledge. Duthegdesign of Plush we devel-
oped a technique to dynamically identify “knees” in the nad@val process,e., points
where the arrival process significantly slows. Plush uses&lipoints to make informed
application-specific decisions regarding when to releasadrs.

A primary contribution of this work is the definition of relaa barrier seman-
tics in Plush that provide support for a variety of wide-adestributed computations.
Although we will look at specific applications that use parbarriers in Chapter 6, to
motivate our proposed extensions consider the followingega application scenarios:

Application initialization. Many distributed applications require a startup
phase to initialize their local state and to coordinate wétmote participants before be-
ginning their operation. Consider a distributed hash taddé must initialize routing
tables at a fraction of the participants before performing okups, or an overlay
multicast tree that must have most participants join bell@ginning to transmit data.
Typically, developers introduce an artificial delay juddgedoe sufficient to allow the
system to stabilize. Alternatively, when using Plush to aggnthese applications, we
can define partial barriers that cleanly separate the ligiiidon phase from the remain-
der of the execution in our application specification. Faragle, if each node entered

a barrier and informed the Plush controller upon completirgnitialization phase, the
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Plush controller would know exactly when initializationrapletes across all partici-
pants, and developers would be freed from introducing ranily chosen delays into the
interactive development/debugging cycle.

Phased computation and communicationScientific applications and large-
scale computations often operate in phases consistingeobomany sequential, local
computations, followed by periods of global communicatanparallel computation.
For instance, an application might consist of a phase ofl locemputation on a data
source followed by a phase of global communication to dista the necessary updates
for the next phase of computation. These computations algtunap to the partial
barrier abstraction in Plush: one phase of the computatedimed in the application
specification must complete before proceeding to the neasg@hand each phase is
separated by a barrier. Other applications operate on aquaue that distributes tasks
to available machines based on the rate that they compldiédoal tasks. Here, a
barrier may serve as a natural point for distributing orlosaiting work.

Coordinated network operations. Many distributed applications measure
network characteristics. However, uncoordinated measemnés can self-interfere, lead-
ing to wasted effort and incorrect results. Such systemsfiidrom a mechanism that
limits the number of nodes that simultaneously perform psolSimilarly, imagine an
application that requires thousands of nodes to simultasigaownload a file from the
same web server. Serving thousands of simultaneous reqgatkeshce will cause the
server to thrash and become overloaded. Again we want totlmainumber of simulta-
neous downloads based on the speed and network capacity séiver. Partial barriers
are capable of providing this needed functionality in bableas. In these applications,
the Plush application specification defines two barriersetordt a “critical section” of
activity (e.g, a network measurement or file transfer). The first barrikyrases some
maximum number of nodes into the critical section at a tingwaaits until these nodes
reach the second batrrier, thereby exiting the criticalisecbefore releasing the next
round of nodes. In this context, partial barriers provide filmctionality of a counting

semaphore that limits the number of simultaneous netwoekaifons.
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To further clarify the goal of partial barriers in Plush,dtperhaps worthwhile
to consider what ware nottrying to accomplish. Partial barriers in Plush provideyonl
a loose form of group membership [28, 42, 74]. In particutertial barriers do not
provide any ordering of messages relative to barriers astnay synchrony [14, 16],
nor do partial barriers require that all participants comednsensus regarding a view
change [61]. In effect, we strive to construct an abstradiiat exposes the asynchrony
and the failures prevalent in wide-area computing envir@m$in a manner that allows
Plush to make dynamic and adaptive application-specifissibers as to how to respond.

It is also important to realize that not all applicationslwgnefit from relaxed
synchronization semantics. The correctness of certagsetaof applications cannot be
guaranteed without strict synchronization. For exampda)esapplications may require
a specific number of hosts to complete a computation, andréheasing a barrier early
without waiting for all participants to arrive will yield gorrect results. Other applica-
tions may approximate a measurement (such as network deldyyontinuing without
all nodes reduces the accuracy of the result. However, mestiybdited applications,
including several shown in Chapter 6, can afford to sacrifilmdal synchronization
without negatively impacting the results. These applaatieither support dynamically
degrading the computation, or are robust to failures and@anate mid-computation
reconfigurations. Our results indicate that for appligaithat are willing and able to
sacrifice safety, the semantics provided by partial bariirePlush have the potential to

improve performance significantly, especially in volatilele-area environments.

5.3 Design and Implementation

Partial barriers are a set of semantic extensions to théitnaa barrier syn-
chronization abstraction. Our implementation has a sinmkrface for customizing
barrier functionality in Plush. This section describessthextended semantics, details

our API, and presents the implementation details.
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Figure 5.1: (a) Traditional semantics: All hosts enter thgaibr (indicated by the white
boxes) and are simultaneously released (indicated bydiiie). (b) Early entry: The
barrier fires after 75% of the hosts arrive. (c) Throttleccaske: Hosts are released in
pairs everyAT seconds. (d) Counting semaphore: No more than two hostinanéa
neously allowed into a “critical section” (indicated by theey regions). When one host
exits the critical section, another host is allowed to enter

5.3.1 Design

We define two new barrier semantics to provide better sugpoapplications
that require synchronization in failure-prone wide-areaputing environments. The
new semantics are described below.

Early entry — Traditional barriers require all nodes to enter a barrefote
any node may pass through, as in Figure 5.1(a). A partialdvamith early entry (also
called early release) is instantiated with a timeout, a mimh percentage of entering
nodes, or both. Once the barrier has met either of the spgfisconditions, nodes
that have already entered the barrier are allowed to passghmwithout waiting for the
remaining slow nodes to arrive (Figure 5.1(b)). Alternalyy an application may in-
stead choose to receive callbacks from the Plush contiamlendes enter and manually

release the barrier, enabling the evaluation of arbitragglicates.
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Throttled release — Typically, a barrier releases all nodes simultaneously
when a barrier’s precondition is met. A partial barrier witmottled release specifies
a rate of release, such as two nodes ewrty seconds as shown in Figure 5.1(c). A
special variation of throttled release barriers allowsliappons to limit the number of
nodes that simultaneously exist in a “critical section” offvaty, creating an instance of
a counting semaphore [30] (shown in Figure 5.1(d)), whicly maused, for example,
to throttle the number of nodes that simultaneously perfoetwork measurements or
software downloads. A critical distinction between tramitl counting semaphores and
partial barriers, however, is support for failures. Fotamge, if a sufficient number of
slow or soon-to-fail nodes pass a counting semaphore, thileyimit access to other
participants, possibly forever. Thus, as with early entyriers, throttled release bar-
riers eventually time out slow or failed nodes, allowing Hystem as a whole to make
forward progress despite individual failures.

One issue that our proposed semantics introduce that dbesis®with strict
barrier semantics is handling nodes performing late engy, arriving at an already
released barrier. Plush supports two options to addressdBe: i) pass-through seman-
tics that allow the node to proceed with the next phase ofdéhgputation even though it
arrived late; ii) catch-up semantics that issue an excetiowing Plush to reintegrate
the node into the mainline computation in an applicatioeesfit manner. This may
involve skipping ahead to the next barrier (subsequentliftomg the intervening com-
putation) in an effort to “catch up” to the other nodes. Atigtively, Plush may decide
to completely remove the late arriving node from the remaiiraf the computation, or

ask the resource matcher for a replacement.

5.3.2 Partial Barrier API

Figure 5.2 summarizes the Plush partial barrier API. Not& Hpplication
developers who wish to take advantage of partial barrie®lish need not code to
the APIs shown in this section (although we do support thixctionality). Rather,

the API is shown here for clarity, and to help explain our iempéntation. In most
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class PartialBarrief
PartialBarriefstring name int max int timeout int percent int minWait);
static void setManagdstring Hostnamé
void entefstring label string Hostnamé
void setEnterCallbadkool (*callbackFuny(string label string Hostname
bool defaul), int timeou;
map<string label string Hostname- getHost¢void);

Figure 5.2: Partial barrier instantiation API.
applications, partial barriers are defined within the Plapplication specification by
simply specifying a few extra attributes in a typical bartock.

When an application uses partial barriers, each Plushtdiecomes a bar-
rier participant. Each barrier participant involved in @gplication initializes a local
barrier with a constructor that takes the following argutsename, max, timeout
percent , andminWait . name is a globally unique identifier for the barriemax
specifies the maximum number of participants expected teeaat the barrier. (While
we do not require priori knowledge of participant identity, it would be straightiard
to add.) Theimeout in milliseconds sets the maximum time that can pass from the
point where the first node enters a barrier before the basrieleased. Thpercent
field similarly captures a minimum percentage of the maxilmmumber of nodes that
must reach the barrier to activate early release. mh@Vait field is associated with
thepercent field and specifies a minimum amount of time to wait (even ifspec-
ified percentage of nodes have reached) before releasifgathier with less than the
maximum number of nodes. Without this field, the barrier @éterministically be re-
leased upon reaching the threshold percent of enteringsn®den when all nodes are
entering rapidly. However, the barrier is always releasedax nodes arrive, regard-
less ofminWait . Thetimeout field overrides thegercent field; the barrier will
fire if the timeout is reached, regardless of the percenthgedes entering the barrier.
Thustimeout must be greater thaminWait —otherwiseminWait is never used.
The last three parameters to the constructor are optidnaft unspecified the barrier

operates as a traditional synchronization barrier, igrgppartial barrier properties.
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Coordination of barrier participants is controlled by arrmanager, who is
typically (and by default) defined to be the Plush controllére identity of the barrier
manager can be overridden in the application specificatiad,is set internally using
thesetManager() method. Plush clients call their local barriegster()  method
and pass in theidostname andlabel when they reach the appropriate point in their
execution. Theabel argument supports advanced functionality such as loachbala
ing, which we will discuss in detail in Chapter 6. The cliérgater() method notifies
the barrier manager that the particular node has reachesytiohironization point. Our
implementation supports blocking callseater()  (as described here) or optionally
a callback-based mechanism where the entering node isofierform other function-
ality until the appropriate release callback is receivdidnang the node to advance to
the next phase of computation.

While the standard Plush partial barrier API provides sistigl support for the
early release of a barrier, an application may maintainvis state to determine when
a particular barrier should fire and to manage any side sff@associated with barrier
entry or release. For instance, an application may want éneelb manager to kill all
processes running on a node that arrives late to a parti@ltaady released) barrier. To
support application-specific functionality, teetEnterCallback() method speci-
fies a function to be called when any node enters a barriearfler to take advantage of
this advanced functionality, applications must code toARédirectly, rather than defin-
ing partial barriers within the application specificatipifhe callback takes thiabel
andHostname passed to thenter() method and a boolean variable that specifies
whether the barrier manager would normally release thadvarpon this entry. The
callback function returns a boolean value to specify whretthe barrier should actually
be released or not, potentially overriding the managerssiten. A second argument
to setEnterCallback() calledtimeout specifies the maximum amount of time
that may pass before successive invocations of the calllpaekenting situations where
the application waits an indefinite amount of time for thetn@xde to arrive before

deciding to release.
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class ThrottleBarrier extends PartialBarrier
void setThrottleReleasePercént perceny;
void setThrottleReleaseCouimt coun;
void setThrottleReleaseTimedurt timeou;

}

class SemaphoreBarrier extends PartialBar{ier
void setSemaphoreCouirtt coun);
void setSemaphoreTimedirit timeou);
void releaséstring label string Hostnamég
void setReleaseCallbagint (*callbackFuny(string label string Hostname
int defauly, int timeou);

Figure 5.3: ThrottleBarrier and SemaphoreBarrier API.

Barrier participants may wish to learn the identity of alskethat have passed
through a barrier, similar to (but with relaxed semantiasfj view advancement or
GBCAST in virtual synchrony [15]. TheetHosts() method returns a map of
Hostnames andlabels through a remote procedure call with the barrier manager.
If many hosts are interested in membership informatiorarit@ptionally be propagated
from the barrier manager to all nodes by default as part ob#ger release operation.

Figure 5.3 describes a subclassB#rrier , called ThrottleBarrier ,
with throttled release semantics. These semantics allow afopre-determined
subset of the maximum number of nodes to be released from Hreeb
at a specified rate. The methodsetThrottleReleasePercent() and
setThrottleReleaseCount() periodically release a percentage and number of
nodes, respectively, once the barrier firesetThrottleReleaseTimeout()
specifies the periodicity of release.

In addition, Figure 5.3 details a variant of throttled rekeabarriers,
SemaphoreBarrier , which specifies a maximum number of nodes that may simulta-
neously enter a critical section. demaphoreBarrier  extends the throttled release
semantics further by placing a barrier at the beginning arttia# a critical section of
activity to ensure that only a specific number of nodes passtie critical section si-

multaneously. One key difference for this type of barriethit it does not require any
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minimum number of nodes to enter the barrier before begtorrelease nodes into
the subsequent critical section. It simply mandates a maximumber of nodes that
may simultaneously enter the critical section. Be¢€SemaphoreCount() method
sets this maximum number allowed in the critical section.d&®ocall the barrier’s
release() method upon completing the activity in the subsequentcalitsection,
allowing the barrier to release additional nodsstSemaphoreTimeout() allows
for timing out nodes that enter the critical section but do camplete within a maxi-
mum amount of time. In this case, they are assumed to haeelfahabling the release
of additional nodes. TheetReleaseCallback() enables application-specific re-
lease policies and timeout of slow or failed nodes in thacaitsection. The callback

function insetReleaseCallback() returns the number of hosts to be released.

5.3.3 Implementation

Partial barrier participants (which are also Plush cligmgplement the inter-
face described above while a separate barrier manageilgutheaPlush controller) co-
ordinates communication across nodes. While it is not reduhat the barrier manager
run on the Plush controller, this is the default behaviordpplications being managed
by Plush that do not explicitly specify another barrier ngara Our implementation of
partial barriers consists of approximately000 lines of C++ code, and is included as
part of the core Plush codebase. At a high-level, a barrigicgzant callingenter()
transmits aBBARRIERREACHEDnessage using TCP to the manager with the calling
host’s unique identifier (hostname), barrier name, andl.labee manager updates its
local state for the barrier, including the set of nodes tlaaetthus far entered the barrier,
and performs appropriate callbacks as necessary. The masiagts a timer to support
various release semantics if this is the first node entehiedbairrier and subsequently
records the inter-arrival times between nodes enteringpdneer.

If a sufficient number of nodes enter the barrier or a spec#ietbunt of
time passes, the manager transrilRE messages using TCP to all nodes that have

entered the barrier. For throttled release barriers, theager releases the speci-
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fied number of nodes from the barrier in FIFO order. The manafg® sets a timer
as specified bysetThrottleReleaseTimeout() to release additional nodes
from the barrier when appropriate. For semaphore barrities,manager releases
the number of nodes specified IsgtSemaphoreCount() and, if specified by
setSemaphoreTimeout() , also sets a timer to expire for each node entering the
critical section. Each call tenter()  transmits sSSEMAPHORREACHEDnessage
to the manager. When there is room in the critical sectioa,fanager transmits a
FIRE message to the node and starts a timer. If the semaphoreasseciated with the
node expires before receiving the correspondd§MAPHORRELEASEDmMessage,
the manager assumes that node has either failed or is pingegdwly, and an addi-
tional node is released into the critical section. ESEEMAPHORRELEASEDnessage
releases one new node into the critical section.

For all barriers, the manager must gracefully handle nodesray late, i.e.,
after the barrier has fired. Plush employs two techniqueddoess this case. For pass-
through semantics, the manager transmitsAdE_FIRE message to the calling node,
releasing it from the barrier. In catch-up semantics, th@agar issues an exception
and transmits £ATCHUP message to the node. Catch-up semantics allow applications
to respond to the exception in an application-specific maribepending on the appli-
cation’s response to the exception, the Plush controllgr attempt to reintegrate the
node back into the computation at a later time. The type afidrarpass-through or

catch-up—is specified at barrier creation time (omittednfileigure 5.2 for clarity).

5.3.4 Fault Tolerance

Similar to our concerns over controller failures in Plushea@oncern with
our centralized barrier manager is tolerating managetdaWe improve overall sys-
tem robustness with support for replicated managers—isisive did for the Plush
controllers—with a few added features for maintaining cstesicy. Our algorithm is
a variant of traditional primary/backup systems: eachigpgnt maintains an ordered

list of barrier managers. Any message sent from a clientéddgical barrier manager
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is sent to all managers in the list. Because applicatiociBp@ntry callbacks may be
non-deterministic, a straightforward replicated statemirze approach where each bar-
rier manager simultaneously decides when to fire is insdfiici Instead, the primary
manager forwards aBARRIERREACHEDnessages to the backup managers. These
messages act as implicit “keep alive” messages from thegpyintf a backup manager
receive BARRIERREACHEDnessages from clients but not the primary for a sufficient
period of time, the first backup determines the primary hdsdand assumes the role
of primary manager. The secondary backup takes over shbealgrimary fail again,
and so on. Note that our approach admits the case where hauttgnagers simultane-
ously act as the primary manager for a short period of timeidiaants ignore duplicate
FIRE messages for the same barrier, so progress is assured,anthoager eventually
emerges as primary.

Although using the replicated manager scheme describededbwers the
probability of losingBARRIERREACHEDnessages, it does not provide any increased
reliability with respect to messages sent from the manayés(the remote hosts. All
messages are sent using reliable TCP connections. If a coomdails between the
manager and a remote host, however, messages may be losiaraple, suppose the
TCP connections between the manager and some subset ofitbterkosts break just
after the manager sendsF=RE message to all participants. Similarly, if a group of
nodes fails after entering the barrier, but before recgiireFIRE message, the failure
may go undetected until after the manager transmit&IRE messages. In these cases,
the manager will attempt to seRdRE messages to all participants, and detect the TCP
failures after the connections time out. Such ambiguityniaweidable in asynchronous
systems; the manager simply informs the application ofaflare(s) via a callback and
lets the application decide the appropriate recovery actids with any other failure
in Plush, the application may choose to continue executighignore the failures, find

new hosts to replace the failed ones, or abort the executitreky.
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5.3.5 Design Alternatives

To address potential scalability problems with our certeal bar-
rier implementation, a tree of barrier managers could bdt libat aggregates
BARRIERREACHEDnessages from children before sending a single message up th
tree [47, 114, 73]. This tree could be built randomly from #xpected set of hosts,
or it could be crafted to match the underlying communicategology, in effect form-
ing an overlay aggregation tree [104, 113]. In these cabesmtanager at the root of
the tree would send FIRE messages to its children, whichadvoulurn propagate the
message down the tree to the leaves. One difficult questitinthis approach is de-
termining when interior nodes should pass sumnBkRRIER REACHEDnessages to
their parent. Although a tree-based approach may provitterbgcalability by aggre-
gating messages up the tree, the latency required to passsageeto all participants
may increase since the number of hops required to reachréitipants is greater than
in the centralized approach.

A gossip-based algorithm could also be employed to manageisain a fully
decentralized manner [14]. In this case, each node acts asiarbmanager and swaps
barrier status with a set of remote peers. Given sufficiemtypige exchanges, some
node will eventually observe enough hosts having reachetdlrier and it will fire the
barrier locally. Subsequent pair-wise exchanges will pgate the fact that the barrier
was fired to the remainder of the participants, until eveiyud active participants are
informed. Alternatively, the node that determines thatmibashould be released could
broadcast th&IRE message to all participants. Fully decentralized solgtidee this
gossip-based approach have the benefit of being highlytf@laitant and scalable since
the work is shared equally among participants and there isimgle point of failure.
However, since information is propagated in a somevaldabocfashion, it takes more
time to propagate information to all participants, and titaltamount of network traffic
is greater. There is also an increased risk of propagatailg stformation. In our expe-
rience, we have not yet observed significant reliabilityitations with our centralized

barrier implementation to warrant exploring a fully decahtzed approach.
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We expect that all single-manager algorithms will everyualn into scal-
ability limitations based on a single node’s ability to mgeancoming and outgoing
communication with many peers. However, based on our etiaiuaf scalability (see
Section 5.5), the performance of centralized barriersgégpi@able to at least 100 nodes.
In fact, we find that our centralized barrier implementatot-performs an overlay tree
with an out-degree of ten for 100 total participants withamelg to the time it takes a

single message to propagate to all participants.

5.4 Adaptive Release

Unfortunately, the extended barrier semantics in Plushigbdoarriers intro-
duce additional parameters: the threshold for early releasl the concurrency level
in throttled release. Experience has shown it is often diffito select values that are
appropriate across heterogeneous and changing netwoditioos. Hence, we pro-
vide adaptive mechanisms in Plush to dynamically deterrappropriate values during

execution.

5.4.1 Early Release

There is a fundamental tradeoff in specifying an early dethreshold. If
the threshold is too large, the application will wait unresagily for a relatively modest
number of additional nodes to enter the barrier; if too sptladl application will lose the
opportunity to have participation from other nodes hadst juaited a bit longer. Thus,
Plush uses the barrier’s callback mechanism to determlaase points in response to
varying network conditions and node performance.

In our experience, the distribution of node arrivals at aibars often heavy-
tailed: a relatively large portion of nodes arrive at therigarquickly with a long tail of
stragglers entering late. In these situations, many tatigéibuted applications would
wish to dynamically determine the “knee” of a particulariar process and release

the barrier upon reaching it. Unfortunately, while it candbeightforward to manually
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Figure 5.4: Dynamically determining the knee of arrivinggesses. Vertical bars indi-
cate a knee detection.

determine the knee offline once all of the data for an arrivatess is available, it is
difficult to determine this point online.

The heuristic used in Plush, inspired by TCP retransmissimers and
MONET [7], maintains an exponentially weighted moving age (EWMA) of the host
arrival times @rr), and another EWMA of the deviation from this average foteaea-
surementdrrvar). As each host arrives at the barrier, Plush records theshtiine of
the host, as well as the deviation from the average. ThemPaeomputes the EWMA
for botharr andarrvar, and use the values to compute a maximum wait threshold of
arr + 4 x arrvar. This threshold indicates the maximum time Plush is williagvait
for the next host to arrive before firing the barrier. If thexnieost does not arrive at the
barrier before the maximum wait threshold passes, Plusinassthat a knee has been
reached. Figure 5.4 illustrates how these values intecaict Simulated group of 100
hosts entering a barrier with randomly generated expaoalanter-arrival times. Notice
that a knee occurs each time the host arrival time interseetsreshold line.

With the capability to detect multiple knees, it is impottém provide a way

for applications to indicate to Plush how to pick the rightkrand avoid firing earlier
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or later than desired. Aggressive applications may chood$ieet the barrier when the
first knee is detected. Conservative applications may vashait until some specified
amount of time has passed, or a minimum percentage of hostseméered the barrier
before firing. To support both aggressive and conservapypdications, Plush partial
barriers allow the application to specify a minimum pereagetof hosts, minimum wait-
ing time, or both for each barrier. If an application spesiieminimum waiting time of
five seconds, knees detected before five seconds are igrdiredarly, if a minimum
host percentage of 50% is specified, the Plush knee detectoras knees detected be-
fore 50% of the total hosts have entered the barrier. If bathes are specified, the knee
detector uses the more conservative threshold so that eqtirements (time and host
percentage) are met before firing.

One variation in the Plush approach compared to other tekgtproaches is
the values for the weights in the moving averages. In the RIEF€dmputing TCP re-
transmission timers [27], the weight in the EWMA of the places a heavier weight
(0.875) on previous delay measurements. This value works well @P Eince the aver-
age delay is expected to remain relatively constant oves.timdistributed applications
running across the wide-area, however, we expect the avenayal time of nodes to
increase, and thus we decrease the weight used in Plush(@®or previous mea-
surements ofirr. This allows thearr value to more closely follow the actual data
being recorded. When measuring the average deviation hvidlicomputed by averag-
ing |sample — arr| (wheresample represents the latest arrival time recorded), Plush
uses a weight di.75 for previous measurements, which is the same weight use@ih T

for the variation inrtt.

5.4.2 Throttled Release

Plush also employs an adaptive method to dynamically atiiesamount of
concurrency in the “critical section” of a semaphore barrie many applications, it is
impractical to select a single value which performs well emall conditions. Similar

in spirit to SEDA's thread-pool controller [109], our adaptrelease algorithm selects
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an appropriate concurrency level based upon recent refigase. The algorithm starts
with a low-level of concurrency and increases the degre@otarrency until response
times worsen; it then backs off and repeats, oscillatingiatie optimum value.
Mathematically, the algorithm used in Plush compares théiameof the dis-
tributions of recent and overall release times. For exampthere arel5 hosts in the
critical section when thébth host is released, the algorithm computes the median re-
lease time of the last5 releases, and of all5. If the latest median is more than 50%
greater than the overall median, no additional hosts aeasel, thus reducing the level
of concurrency tal4 hosts. If the latest median is more than 10% but less than 50%
greater than the overall median, one host is released, anaiimg a level of concurrency
of 15. In all other cases, two hosts are released, increasingth@iaency level td6.
The thresholds and differences in size are selected tcaserthe degree of concurrency

whenever possible, but keep the magnitude of each chandke sma

5.5 Partial Barriers in Plush

Partial barriers are part of the core design of Plush, englalll applications
being managed by Plush to experience the benefits of relaxexdhonization seman-
tics. Plush users have the option of specifying traditidveiriers or partial barriers
using barrier blocks in their application specificationshéf defining partial barriers,
extra parameters are defined, including the timeout, minirpercentage of nodes re-
quired, release rate, and whether the adaptive releasedeels described in Section 5.4
should be used. In order for applications to achieve the mari benefits, however, our
centralized implementation of partial barriers must bésgta enough to support many
hosts spread across the wide-area. Further, Plush itsedf pegtial barriers internally
to separate different stages in an application’s flow of m@ntThus it is important to
evaluate how effective partial barriers are in the conté&dpplication management. In

this section we evaluate the scalability and performangeadial barriers in Plush.
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Figure 5.5: Scalability of centralized Plush barrier impentation. “All hosts”
line shows the average time across five runs for barrier ne&anag receive
BARRIERREACHEDnessages from all hosts. “90th percentile” line shows tleg-av
age time across five runs for barrier manager to red@ABRIERREACHEDessages
from 90% of all hosts. Error bars indicate standard devmtio

5.5.1 Scalability

To estimate baseline barrier scalability in Plush, we mesathe time it takes
to move between two barriers for an increasing number ofd@lab hosts. In this
experiment, the Plush controller (and barrier manager)swar all hosts to reach the
first barrier. All hosts are released, and then immediatetgrehe second barrier. We
measure the time between when the barrier manager at thed@dasoller sends the first
FIRE message for the first barrier and receives theB#sRRIERREACHEDnessage
for the second barrier. No partial barrier semantics arel fisethese measurements,
since we are trying to evaluate our baseline performangrir&is.5 shows the average
completion time for varying numbers of nodes across a tdtéve runs for each data
point. Error bars in the graph show the standard deviation.

Notice that even for 100 nodes, the average time for thedyamanager to
receive the lasBARRIERREACHEDnessage for the second barrier is approximately

one second. The large standard deviation values indicataftre is much variability
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in our results. This variability is due to the presence ddggler nodes that delay the
firing for several seconds or more. The 90th percentile, enatihher hand, has little
variation and is relatively constant as the number of paditts increases. This augurs
well for the potential of partial barrier semantics to imypegerformance in the wide-
area. Overall, we were satisfied with the performance aeldiesing our centralized
implementation for 100 nodes. Unfortunately we were untebtdbtain a larger working
set of PlanetLab hosts at the time this experiment was peddr However, based on our
experience with using tree topologies for scalable compatiun in Plush (as discussed
in Chapter 3), we are confident that using a tree for barriemoanication will allow us

to scale significantly further without sacrificing perfornca.

5.5.2 Admission Control

In Chapter 3 we discussed the design of the Plush archieectansisting
of the controller that directs of the flow of the executiondahe distributed clients
that run on the resources involved in the application andweecommands. Thus,
Plush itself is a phased distributed application that haspibtential to benefit from
the use of partial barriers in wide-area environments. hiqadar, partial barriers are
especially helpful during Plush’s application deploymphése to separate the tasks of
node configuration and process startup. We found that ingtexdgeneous and volatile
PlanetLab environment, the time to configure a set of nod#stive requisite software
can vary widely or fail entirely at individual hosts. In thiase, we found it beneficial
to timeout the internal “software configuration” barriefRtush and either proceed with
the available nodes or recruit additional nodes.

Similar to our discussion of coordinated network operagimnSection 5.2, in
this section we consider the benefits of using a semaphorieia perform admission
control for parallel software installations in Plush. Astpaf application deployment,
Plush configures a set of resources with the software retjtir&xecute a particular
application. This process often involves installing themeasoftware packages located

on a central server separately on each resource. Simultslyesiownloading the same



113

100 —
80 f

60 |

Host count

40 |

25 Simultaneous Transfers ---------

100 Simultaneous Transfers
Adaptive Simultaneous Transfers -
10 Simultaneous Transfers ------

0 100 200 300 400 500
Elapsed time (sec)

20 H

Figure 5.6: Software transfer from a high-speed server emd?Lab hosts using a
SemaphoreBarrier to limit the number of simultaneous fdedfers.

software packages across hundreds of nodes can lead thitlyas the server hosting
the packages. The overall goal in using partial barriers esure sufficient parallelism
such that the server is saturated (without thrashing) wiglancing the average time to
complete the download across all participants.

For our results, we measure the time it takes Plush to ins&lsame 10-MB
file on 100 responsive and randomly chosen PlanetLab hosls varying the number
of simultaneous downloads using a semaphore barrier. &g shows the results
of this experiment. The data indicates that limiting paiegm can improve the overall
completion rate. Releasing too few hosts does not fully aoresserver resources, while
releasing too many taxes available resources, increds@tje to completion. This is
evident in the graph since 25 simultaneous downloads fisigi@e quickly than both
ten and 100 simultaneous transfers.

While statically defining the number of hosts allowed to perf simultaneous
downloads works well for our simple file transfer experimersatrying network condi-
tions means that statically picking any single value isketyi to perform well under all

conditions. Some applications may benefit from a more dyoannottled release tech-
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nique that attempts to find the optimal number of hosts thaimmaes throughput from
the server without causing saturation. The “Adaptive Stamdous Transfers” line in
Figure 5.6 shows the performance of the Plush adaptiveseleghnique as described
in Section 5.4.2. In this example, the initial concurrereyel is15, and the level varies
according to the duration of each transfer. In this expenintikee adaptive algorithm
line reaches 100% before the lines representing a fixed cearay level of ten or 100,
but the algorithm was too conservative to match the optitadicslevel of 25 given the

network conditions at the time.

5.6 Summary

To summarize, in this chapter we showed that Plush partraidoa represent
a useful relaxation of the traditional barrier synchroti@aprimitive that targets wide-
area, volatile deployment environments. In the next chrapgwill show how partial
barriers are easily integrated in existing applicationsl,\ae believe that our simple API
bodes well for their general utility. Although we focusedtbe use of partial barriers
in Plush in this chapter, we are hopeful that the semantiogigeed by partial barriers
in general can be used to bring to the wide area other sogditisti parallel algorithms
initially developed for tightly coupled environments. Iarowvork thus far, we find in
many cases it may be as easy as directly replacing existimghsynization primitives

with their relaxed partial barrier equivalents.
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Chapter 6

Application Case Studies

The preceding chapters explored the design and implen@miatt the Plush
architecture, including a detailed discussion on resonraeagement and partial barri-
ers. In this chapter, we revisit some of our initial desigrmlgas described in Chap-
ter 2 and take a closer look at how Plush supports differexssels of applications. In
particular, we look at an example short-lived computationg-lived service, and two
parallel grid applications, and discuss how Plush manaaes ype of application. Ad-
ditionally, we evaluate various aspects of the Plush desigtuding partial barriers and

failure recovery, in the context of specific applicationsming on PlanetLab.

6.1 Short-lived Computations

In Chapter 2 we describe a short-lived computation as ortésticbosely mon-
itored by the user and runs for a few days or less. In this@eoive examine how Plush
manages a specific short-lived computation—namely Bulié}-+on PlanetLab. Like
the example file-distribution application in Chapter 2, IBuhims to run on PlanetLab
machines with fast processors and low CPU load. In this@eetie show how Plush
uses SWORD to satisfy these resource constraints. We alatityjuthe benefits of

using partial barriers during application initializatiamthin the context of Bullet.
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6.1.1 Managing Bullet on PlanetLab

Bullet is an overlay-based file-distribution infrastruetu In Bullet, a source
transmits a file to multiple receivers spread across theriate Rather than waiting for
the sender to send each byte (or “chunk”) of the file to eackivecseparately, however,
Bullet leverages the parallel bandwidth available amorgivers by allowing receivers
to also exchange data. This decreases the total downloadatinoss all hosts and in-
creases the overall throughput of the application. Howetwer receivers only benefit
from this technique if they are able to obtain data from otleeeivers that they do not
already possess. Redundant data is useless and wastddevaletvork resources. To
alleviate the amount of redundant data transmitted, receshare information with one
another regarding the location of specific chunks using sopob called RanSub [55].
RanSub sends uniformly random subsets of global informahooughout the overlay
network. Using RanSub, the receivers learn where to obt&ésing chunks of the file
without waiting for the sender to send them directly. Figbirkillustrates a Bullet exe-
cution with one sender and two receivers. Notice how theesesylits the file into two
chunks and sends each chunk to a different receiver. As tidesé&ransmits the chunks
to each receiver, the receivers also begin exchanging dd@.end result is that each

receiver obtains the entire file quicker, maximizing thetlghput of the application.
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As part of the application initialization bootstrappingpess in Bullet, all re-
ceivers join the overlay by initially contacting the soutmefore settling on their final
position in the overlay network topology. The publishedmjitative evaluation of Bul-
let presents a number of experiments across PlanetLab. oywe make performance
results experimentally meaningful when measuring bemadooss a large number of
PlanetLab receivers, the authors hard-coded a 30-secdayl atethe sender from the
time that it starts to the time that it begins data transmissiThis delay allowed the
receivers to join the overlay and figure out their positiofobe starting transmission.
While typically sufficient for the particular targeted capfration, the timeout was often
too long, unnecessarily extending turnaround time for grpentation and interactive
debugging. Depending on overall system load and the nunflpartcipants, the time-
out was also sometimes too short, meaning that some partisiglid not complete the
join process before the sender began transmitting. Whiddtter case was not a prob-
lem for the correct behavior of the application, it maderipteting experimental results
difficult.

To address the limitations associated with using hard-@¢odgalization time-
outs, we use the partial barrier API in Plush to integrateidar directly into the Bullet
source code. Since Bullet is also written in C++, this in&digin is straightforward, and
only requires adding two lines of code to Bullet. Once tha jpiocess completes on
an individual host (which means that they have succesghilied the overlay and are
ready to receive data), the host simply enters a barrier. Buiket source also regis-
ters for a callback from the Plush barrier manager to be edtifif a barrier release, at
which point the source begins transmitting data. This aggceeliminates the problem
associated with arbitrarily choosing an application alitiation timeout value, since the
barrier manager knows exactly when all hosts have joinedvkday. However, with-
out partial semantics for our barriers, Bullet still suférom poor performance due to
stragglers. We observe that when choosing a substantiabeuaf time-shared Plan-
etLab hosts to perform the same amount of work, the compi¢iinoe varies widely in

general, often following a heavy-tailed distribution. Bhmost Bullet participants are
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stuck waiting for the few stragglers that fall in the “tail thfe curve” to finish joining
the overlay before starting any file transfers.

A more desirable behavior in the Bullet initialization phas to dynamically
detect knees in the heavy-tailed join process. When thégbamanager running on the
Plush controller determines that the knee of the join ptes been reached, partic-
ipants already in the barrier are released; one side efatiat the Bullet source host
begins data transmission. Further, by calling ge¢Hosts()  method in the partial
barrier API, the sender records the identities of partitipahat should be considered in
interpreting the experimental results later. Note thatliis particular application, any
late arriving participants who enter the barrier after $rarssion has started are ignored
by other participants and the barrier manager instructs tioeexit immediately.

Figure 6.2 shows the application specification for BulleRtenetLab. Notice
that the top of the file defines the software package, whichigdase is “bullet.tar.”
The component definition describes the desired resourdeshwclude 130 PlanetLab
hosts assigned to the ucbdllet slice. The component also includes a SWORD query
that requests resources with fast processors (based oMtO&S attribute “cpuspeed,”
which is measured in gigahertz) and low load (based on thibwate “fiveminload”).
After the component definition, the component block spedtifinn defines the actual
execution using the “run” process block. One interestirajuee of this particular ap-
plication specification is the redirection of terminal auttpn the PlanetLab hosts to a
specific file. This redirection is accomplished by creatiritpg_manager” within the
process block. After the process block, the XML specifies“thdlet_barrier” barrier
block that separates application initialization from tlagadtransfer phase. Since we are
using the Plush API directly within the modified Bullet soai@ode, nothing is defined
after the barrier block in the application specification.wdwer, recall that the Bullet
source host registers a callback with the Plush barrier gema\ release of the startup

barrier signals the end of application initialization, ahds begins the transfer of data.
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<?xml versiorr"1.0" encoding"utf-8"  ?>

<plust>
<project name"Bullet" >
<software name"bullet" type="tar" >
<package name'bullet.tar" type="web" >
< path>http://strengthucsdedu™albrechtbullet tar</path>
<dest>bullettar</dest>
</package-
</software>
<component nam&bullet_hosts" >
<rspec>
<num_hosts>130</num_hosts>
<sword>
<request
<group>
<name>bullet_hosts</name>
<num.machines-all</num.machines-
<fiveminload>0, 0, 2, 5, 1l</fiveminload>
<cpuspeettl, 2, 5, 5, 1</cpuspeet
</group>
</Irequest
</sword>
<Irspec>
<software name"bullet" />
<resources
<resource type'planetlab” group="ucsd_bullet" />
<Iresources
</component
<applicationblock name"Bullet" >
<execution>
<componentblock name"run_bullet" >
<component name&bullet_hosts" />
<processblock name"run" >
<process nam&appmacedon” >
<path>./appmacedox/path>
<cwd>bullet</cwd>
<log-manager type"default” useapF"true” >
<fd fd="1" type="file" path_prefix="bulletlog-" path_postfix=".txt" />
</log-manager
<Iprocess-
</processblock>
<barrierblock name"bullet_barrier" >
<predecessor namé&un" />
<barrier name"ready to stream" type="1" max="130" kneedet"true" />
</barrierblock>
</componentblock>
</execution>
</applicationblock>
</project>
</plush>

Figure 6.2: Bullet application specification.

6.1.2 Detecting Knees in Bullet

In this section we quantify the benefits of using partial ieasr with knee
detection during the application initialization phase aiillBt. Figure 6.3 plots the cu-

mulative distribution of receivers that enter the startagier on they-axis as a function
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Figure 6.3: A startup barrier that regulates participantsifg a large-scale overlay
network in Bullet. Vertical bars indicate when the Plushrigrmmanager detects a knee
and releases the batrrier.

of time progressing on the-axis. Each curve corresponds to an experiment with 50,
90, or 130 PlanetLab receivers in the initial target set. gb& is to run with as many
receivers as possible from the given initial set withouttingian undue amount of time
for a small number of stragglers to complete startup. Istergly, it is insufficient to
filter for any static set of known “slow” resources on Plaradilas performance tends to
vary on fairly small time scales and is influenced by multipletors (such as CPU load,
memory, and changing network conditions). Thus, manudlyosing an appropriate
static set may be sufficient for one particular batch of rurtsiot likely the next.
Vertical lines in Figure 6.3 indicate where the barrier ngaradetects a knee
and releases the barrier. Although we ran the experimertipteutimes, for clarity we
plot the results from a single run. While differences in tiafelay or initial host char-
acteristics affect the quantitative behavior, the gergnape of the curve is maintained
in each run. However, in all of our experiments, we are satisWwith our ability to
dynamically determine the knee of the arrival process. ™peements are typically
able to proceed with 85-90% of the initial set participatiagd wait no more than eight

seconds to begin transmission.



121

6.2 Long-lived Services

In addition to short-lived computations, Chapter 2 deszitne typical appli-
cation characteristics of long-running Internet services summarize, a long-running
service is not closely monitored by the operator and typicains for months or years.
Many long-running services aim to run on as many resourcpsssble and are exposed
to many different types of failures due to network and hosiam@lity and volatility. In
this section, we consider how Plush manages a distributesioveof SWORD running
across all available PlanetLab hosts. Further, we evathatability of the Plush con-

troller to automatically detect and recover from failune SWORD.

6.2.1 Managing SWORD on PlanetLab

SWORD, which is discussed in detail in Chapter 4, is an exaroph long-
running PlanetLab service. Specifically, SWORD is a ressuliscovery service that
helps PlanetLab users find the best set of resources awaitahbst their applications.
Recall that the original version of SWORD was fully distriéd and stored data in a
DHT. In this distributed architecture, data from the DHT ged to respond to queries
for groups of resources that have specific characterishestributed SWORD aims to
run on as many PlanetLab hosts as possible. This distrillesidjn spreads the load
of the system across many hosts allowing for increased lstiglgsince there is less
work for each individual host when the total number of hostgreater), and also allows
SWORD to accurately respond to queries using informatiomfa larger number of
PlanetLab resources. The following paragraphs descriwd?iosh manages distributed
SWORD.

The XML application specification for SWORD is shown in Figug.4. As
in Bullet, the top half of the specification defines the SWORIivgare package and
the component required for the application. Notice that S¥Quses one component
consisting of hosts assigned to the ussebrd PlanetLab slice. An interesting feature of

this component definition is the “nuimosts” tag. Since SWORD is a service that wants
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<?xml versiorr"1.0" encoding"utf-8"  ?>
<plust>
<project name"sword" >
<software name"sword_software" type="tar" >
<package name'sword.tar" type="web" >
< path>http://plushucsdeduswordtar</path>
<dest>swordtar</dest>
<Ipackage-
</software>
<component name'sword_participants" >
<rspec>
<numchosts miF"10" max="800" />
<Irspec>
<resources
<resource type'planetlab” group="ucsd_sword" />
</resources
<software name"sword_software" />
</component
<applicationblock name"sword_app_block" services"1" reconnectintervak"300" >
<executiorn>
<componentblock name"participants” >
<component name'sword_participants" />
<processblock name"sword" >
<process nan¥'sword_run" >
< path>dd/planetlafrun—sword</path>
</process
</processblock>
</componentblock>
</execution>
</applicationblock>
</project>

<Iplush>

Figure 6.4: SWORD application specification.

to run on as many nodes as possible, we specify a range oftabtepalues rather
than a single number. Hence, as long as a minimum of ten hosigvailable, Plush
continues managing SWORD. Since the max value is set to 808h Eloes not look
for more than 800 resources to host SWORD. Currently, Plaetontains less than
800 hosts, which means that Plush attempts to run SWORD available PlanetLab
resources. The lower half of the application specificatiefings the application block,
component block, and process block that describe the SWGREu&onN.

The application block specification for SWORD is similar ke tapplication
block specification of Bullet, save a few important diffecea. When defining the appli-
cation block object for SWORD, we include special “servie@t “reconnectnterval’
attributes. The service attribute tells the Plush corgrahhat SWORD is a long-running
service and requires different default behaviors for afigation and failure recovery.

For example, during application initialization, the catier does not wait for all par-
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ticipants to install the software before starting all hastaultaneously. Instead, the
controller instructs individual clients to start the applion as soon as they finish in-
stalling the software, since there is no reason to syncheotiie execution across all
hosts. Further, if a process fails when the service ateibais been specified, the con-
troller attempts to restart SWORD on that host without abgrthe entire application.
The reconnecinterval attribute specifies the period of time the coné&oWaits before
rerunning the resource discovery and acquisition unit.léi@g-running services, hosts
often fail and recover during execution. The reconrietdrval attribute value tells the
Plush controller how often to check for new hosts that haveecalive since the last run
of the resource discovery unit. The controller also unseys‘tiled host” tags in the
matching Node objects at this time. Rerunning the resouiszodery and acquisition
unit is the controller's way of “refreshing” the list of alable hosts. The controller
continues to search for new hosts until reaching the maximumhosts value, which

is 800 in our case.

6.2.2 Evaluating Fault Tolerance in SWORD

To demonstrate Plush’s ability to automatically recoventrhost failures for
long-running services, we run SWORD on PlanetLab with 10@omly chosen hosts,
as shown in Figure 6.5. The host set includes machines bBX8hdinks as well as hosts
from other continents. When Plush starts the applicatiom controller starts the Plush
client on 100 randomly chosen PlanetLab machines, and eachine begins down-
loading the SWORD software package (38-MB). It takes apiprately 1000 seconds
for all hosts to successfully download, install, and staGRD. Attimet = 1250s, we
kill the SWORD process on 20 randomly chosen hosts to simtiast failure. (Nor-
mally, Plush would automatically try to restart the SWORDgass on these hosts.
However, we disable this feature for this experiment to sateuhost failures and force
a rematching.) After killing the SWORD processes, the Phusttroller detects that the
processes and hosts have failed, and the controller bewiisdt replacements for the

failed machines. The replacement hosts join the Plush ayenhd start downloading
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Figure 6.5: SWORD running on 100 randomly chosen Planetlastsh Att = 1250
seconds, we fail 20 hosts. The Plush controller finds newshegto start the Plush
client process and begin downloading and installing the RQoftware. Service is
fully restored at approximately= 2200 seconds.

the SWORD software. As before, Plush chooses the repladsrmamdomly, and low
bandwidth/high latency links have a great impact on the timakes to fully recover
from the host failure. At = 2200s, the service is restored on 100 machines.

Using Plush to manage long-running services like SWORUDvialles opera-
tors of the burden of manually probing for failures and camfilgg/reconfiguring hosts.
Further, Plush interfaces directly with the PlanetLab @#r{PLC) API, which means
that users can automatically add hosts to their slice anelwrgheir slice using Plush.
This feature is beneficial since services typically wanttoon as many PlanetLab hosts
as possible, including any new hosts that come online afigéally starting the service.
By periodically contacting PLC and retrieving the mastst bf PlanetLab hosts, the
Plush controller maintains an up-to-date list of all Plaaétresources, and is able to
notify the service operator if new resources are availalole@ddition, Plush simplifies
the task of debugging problems by providing a single poirdasftrol for all connected
PlanetLab hosts. Thus, if a user wants to view the memorywsopson of their service
across all connected hosts, a single Plush command regrikigeinformation, making

it easier to monitor a service running on hundreds of ressuacound the world.
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6.3 Parallel Grid Applications

In this section we consider how Plush manages typical gndiegiions. Re-
call again from Chapter 2 that grid applications tend to bepatationally intensive
and easily parallelizable. Grid applications also tendgerate in phases that are easily
separated by barriers. Thus, many grid applications havpdkential to achieve higher
performance by using partial barriers to reassign unfinisagks on slow hosts to hosts
that have already completed their assigned work. We consigegrid applications in
this section, namely EMAN and MapReduce, and show how Plustagpes their execu-
tion. Additionally, we show how partial barriers signifitgnimprove the performance

achieved across the wide-area.

6.3.1 Managing EMAN on PlanetLab

To illustrate how Plush manages applications with workflows consider
running EMAN (described in Chapter 2) on PlanetLab. The aasamjonally intense
portion of EMAN’s execution is the refinement stage, whiclus repeatedly on 2-D
electron micrograph images until achieving the desiredlle¥ detail in a 3-D model
of the electron. Refinement is often run in parallel on midtimachines to improve
performance. The EMAN refinement stage is a common exampdevadrkflow in a
scientific parallel application. In this section we deserfitow Plush runs a single round
of the parallel refinement computation.

Figure 6.6 shows the application specification for EMAN. &ltdtat we did
not change the EMAN source code at all to run these expergndnstead we wrote
a simple 50-line wrapper perl script (called “eman.pl”)tthans the publicly available
EMAN software package [32]. As in the preceding examples,application speci-
fication contains two main sections of interest. The topiseatiefines the required
software and components. The software required for EMANoigtained in a tarball
called “eman.tar.” The resources for EMAN, as specified am¢bmponent definition,

are 98 PlanetLab hosts from the ugddsh slice. The lower section of the applica-



126

<?xml versiorr"1.0" encoding"utf-8"  ?>
<plust>
<project name"eman_proj" >
<software name"'EmanSoftware" type="tar" >
<package nam€'eman.tar” type="web" >
< path>http://plushucsdeduemantar</path>
<dest-emantar</dest>
<Ipackage-
</software>
<component nam&EmanGroupl" >
<rspec>
<num.hosts>98</num_hosts>
<Irspec>
<software name"'EmanSoftware" />
<resources
<resource type"planetlab” group="ucsd_plush" />
<resources
</component
<applicationblock name"eman_app_block" >
<executiorn>
<componentblock name"eman_comp_block" >
<component nam€'EmanGroupl" />
<workflow_block name"eman_workflow_block" id="eman_wf" num.tasks"98" >
<processblock name“eman_proc_block" >
<process nanm®'eman” >
<path>./emanpl</path>
<cmdline>
<substitution name'sub” id="eman_wf" type="workflow" flag="--i" />
</cmdline>
<Iprocess-
</processblock>
</workflow_block>
</componentblock>
</execution>
</applicationblock>
<Iproject>

<Iplush>

Figure 6.6: EMAN application specification. Plush uses #ipscification to configure
the resources, which are 98 PlanetLab hosts from the plesth slice. Each host runs
“eman.pl --in”, wheren identifies each unique task, as specified by the workflow block

tion specification consists of the component, process, anéflaw blocks that define
the EMAN refinement execution. One interesting charadterded this application is
the workflow block within the component block. The workflovotk indicates that 98
tasks are shared among the 98 workers requested in the “Bioa@nG component. The
workflow block also has a process block containing the “eplaprocess.

The substitution information in the process definition witthe process block
is used in conjunction with the EMAN perl script to split th@skflow among the re-
sources. Notice how the workflow block has an “id” attributattis identical to the “id”

attribute in the process substitution. In this case, “eplanses a command-line argu-
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ment to specify the unique id of the task, which is then usetketermine what fraction
of the data files should be processed by each host. The workftmk substitutes the
current task id (an integer between 1 and 98) for the comntiardargument defined
by the “--i” flag. For example, the first resource runs “./enpari 1,” the second runs
“.Jeman.pl --i 2,” and so on. This technique divides andribistes the work evenly
among the 98 PlanetLab workers.
Plush workflow blocks are unique because they actually aom@téhidden”

internal barrier. As workflow tasks are completed, the maébarrier is entered with a
label that specifies the unique id of the completed task. gxbia partial barrier knee de-
tector, the barrier manager determines when a knee is réaclhiee rate of completion
of these tasks, indicating that a subset of resources arepeoating as quickly as the
rest. When a knee is detected, the tasks assigned to theesdowrces (due to slow or
busy processors) are redistributed to faster resourcebdda already completed their
tasks. By using the knee detector to detect stragglerssmialy, the knee detector also
detects resources with low bandwidth capacities basedsirstiiow download times and
reallocates their work to machines with higher bandwidtbr &periment requires ap-
proximately 240-MB of data to be transferred to each padithg PlanetLab host, and
machines with low bandwidth links have a significant impactite overall completion

time if their work is not reallocated to faster machines.

6.3.2 Work Reallocation in EMAN

We now evaluate an alternative use of partial barriers irsti?luo not only
assist with the synchronization of tasks across physicatshdut also to assist with
work reallocation and load balancing for hosts spread adfeswide-area. Further, we
determine whether we can dynamically detect knees in theliion rate of individual
hosts, and subsequently reallocate unfinished work to Hostsave already completed
their assigned tasks.

To quantify the effectiveness of partial barriers in EMANe \measure the

time it takes to complete all 98 tasks with and without pagemantics. Without par-
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tial semantics, the 98 tasks are allocated to 98 Planetlsalurees, and we measure the
time it takes for all 98 resources to complete their singd& t&Vith partial semantics, we
allow the Plush controller (and barrier manager) to detéatese in the task completion
curve, and then Plush reallocates unfinished tasks to f&steurces. In this experiment
we run EMAN on98 responsive PlanetLab machines. The workflow consists9sf a
way image classification run in parallel across all resairdd/e measure the time it
takes for each participant to download a 40-MB softwareigectontaining the EMAN
executables and a wrapper script, unpack the archive, dadrd unique 200-MB im-
age file, and run the image classification process. At the étfteaccomputation, each
resource generat&g output files stored on the local disk, which are later mergeal i
77 “master” files once all tasks complete across all resources.

Figure 6.7 shows the results of running EMAN on PlanetLal aitd without
partial barrier semantics. The Plush knee detector det@ot&nees in this experiment
att = 300s andt = 801s. The first knee at = 300s indicates that aroun#ll hosts
have good connectivity to the data repository, while thé m@se longer transfer times.
However this first knee is ignored by the Plush controller tdugeminimum threshold of
60% at the partial barrier, which prevents task reconfigurasiothis point. The second
knee is detected dt = 801s after 78 hosts have completed their work. Since more
than60% of the hosts have entered the barrier at the second kneelusie ¢ntroller
redistributes th€0 unfinished tasks. These tasks completé(yseconds, as shown by
the dotted line in Figure 6.7. The experiment on the origgetlof hosts continues past
t = 2700s, as indicated by the solid line in the graph, resulting in aerall speedup

factor of more than three using partial semantics.

6.3.3 Managing MapReduce on PlanetLab

MapReduce [29] is a toolkit for application-specific paghlprocessing of
large volumes of data. The model involves partitioning tigut data into smallesplits
of data, and spreading them across a cluster of worker n&@es worker node applies

amapfunction to the splits of data that they receive, producimgrmediate key/value
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Figure 6.7: EMAN. Knee detected at 801 seconds. Total rinfiwithout knee detec-
tion) is over 2700 seconds.

pairs that are periodically written to specific locationsdisk. The MapReduce master
node tracks these disk locations, and eventually notifiethen set of worker nodes that
intermediate data is ready for processing. This second setriers aggregate the data
and pass it to theeducefunction. This function processes the data to produce a final
output file.

Our implementation of MapReduce leverages partial barrier manage
phases of the computation and to orchestrate the flow of adateg nodes across the
wide-area. Note that we do not code to the partial barrier difctly as in Bullet, but
instead define workflow barriers with partial semantics in Blush application speci-
fication. In our design of MapReduce, we hasemap tasks and corresponding input
files, n total nodes hosting the computation, anteduce tasks. The Plush controller
distributes then split input files to a set of available nodes, and spawns thepracess
on each node. When the map tasks finish, intermediate filegrédten back to a central
repository, and then redistributedstdhosts, who eventually execute theeduce tasks.
There are a number of natural barriers in this applicationesponding to the comple-

tion of: i) the initial distribution ofm split files to appropriate nodes; ii) executing
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Figure 6.8: MapReduce execution. As each map task compfetgsr” is called. Once

all m tasks enter the Map batrrier, the barrier is released, cqutisér reduce tasks to be
distributed and begin execution. Whenaleduce tasks have entered the Reduce bar-
rier, MapReduce is complete. In both barriers, “callbackdbirms the Plush controller

of task completion rates for possible task rebalancing.

map functions; iii) the redistribution of the intermedidiles to appropriate nodes, and
iv) executingr reduce functions.

As with the original MapReduce work, the load balancing atgpeorrespond-
ing to barriers (ii) and (iv) (from the previous paragrapi® af particular interest. These
barriers are shown in Figure 6.8. Recall that although thezen map tasks, the same
physical host may execute multiple map tasks. Hence theigioal necessarily to wait
for all n hosts to reach the barrier, but for all or » logical tasks to complete. Thus,
we extended the Plush barrier entry semantics describedatiof 5.3 to support syn-
chronizing barriers at the level of a set of logical, uniqueamed tasks or processes,

rather than a set of physical hosts. To support this extansie use a workflow barrier
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in Plush that internally calls thenter() method of the Plush barrier API (see Figure
5.2) upon completing a particular map or reduce functionaddition to the physical
hostname, we send a label corresponding to a globally umquee for the particular
map or reduce task. Thus, rather than waiting/fdrosts to arrive, the barrier instead
waits form or r unique labels to enter the barrier before firing.

Our experiences running EMAN on PlanetLab without parteahantics re-
vealed that while most nodes complete their assigned task&ly the overall com-
pletion time is often dominated by the performance of a smathber of slow nodes.
The original MapReduce work also noted that one of the compnoblems experienced
during execution is the presence of straggler nodes thataakunusually long time to
complete a map or reduce task. Although the authors memtianepplication-specific
solution to this problem, by using partial barriers in ouplementation, we are able to
provide a more general solution that achieves the samédsesubparticular, we use the
arrival rate of map/reduce tasks at their respective bart@respawn a subset of the
tasks that were proceeding slowly.

By using the partial barrier knee detector described ini®ed&.4, the Plush
controller dynamically determines the transition pointveen rapid arrivals and the
long tail of stragglers. However, rather than releasingséugier at this point, the Plush
controller instead performs load rebalancing functidgdly spawning additional copies
of outstanding tasks on nodes disjoint from the ones hoshiaglower tasks (poten-
tially first distributing the necessary input/intermedifites). This technique is similar
to the previous EMAN example, except that we are now conisigenultiple tasks per
resource, rather than only one task per resource, allowinfyfer granularity reconfig-
uration. Note that as in the original implementation of MagRce, the barrier is not
concerned with what copies of the computation complete fhstgoal is for allm or r
tasks to complete as quickly as possible. Thus is it pos&ibla single task to actually

be completed twice due to reconfiguration.
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6.3.4 Task Reallocation in MapReduce

To evaluate the benefits achieved from rebalancing taskssdrosts after
detecting a knee, we use Plush to manage our MapReduce iempiation withm =
480 map tasks and = 30 reduce tasks running acrogs= 30 PlanetLab hosts. As in
EMAN, we use workflow blocks with hidden internal barrierdiendle the functionality
shown by the map and reduce barriers in Figure 6.8. Durinlg ebihie map and reduce
rounds, the Plush controller evenly partitions the tasks 8@ PlanetLab resources and
starts the tasks asynchronously. For this experiment, aghtask simply reads 2000
random words from a local file and counts the number of ingsw€certain words. This
count is written to an intermediate output file based on ttehlod the words. The task
is CPU-bound and requires approximately seven secondswplete on an unloaded
PlanetLab-class machine. The reduce tasks summarizeititeseediate files with the
same hash values. The application specification for Map&edushown in Figure 6.9.

In our MapReduce implementation, each map and reduce tagkms an
approximately equal amount of work as in the original Mapitedwork, though it
would be useful to generalize to variable-length compartatiwhen complete, a map
or reduce task enters the associated barrier with a uniqmdifigr for the completed
task. The barrier manager running on the Plush controllenitois the arrival rate
and dynamically determines the knee, which is the wheredhgpéetion rate begins to
slow. We empirically determined that this slowing resuttai a handful of nodes that
proceed substantially slower than the rest of the systenote(lthat this phenomenon
is not restricted to our wide-area environment; Dean anch@eat observed the same
behavior for their runs on tightly coupled and more homogeselusters [29].) Thus,
upon detecting the knee the Plush controller respawnsiadditcopies of the slow
tasks, ideally on nodes with the smallest number of outatgnichsks. Experience has
shown that in most cases, by the time the knee is detecteel éinera number of hosts
that have completed their initial allocation of work.

Figure 6.10 shows the performance of one MapReduce run htittand with-

out task respawn upon detecting the knee. Figure 6.10 pletsumulative number of
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<?xml versiorr"1.0" encoding"UTF-8" ?>
<plust>
<project name"map-reduce" >
<software name'map-reduce"  type="tar" >
<package name'map-reduce.tar” type="web" >
<path>http.//plushucsdedumap-reducetar</path>
<dest>map-reducetar</dest>
</package-
</software>
<component nam€'Component” >
<software nanw"map-reduce” />
<rspec>
<num_hosts>30</num_hosts>
<Irspec>
<resources
<resource type"planetlab" group="ucsd_plush" />
<Iresources
</component
<applicationblock name"map-reduce" >
<executiorn>
<componentblock name"map-reduce" >
<component nam€Component” />
<workflow_block name"map" id="map_wf" numtasks"480" num.workers="30" >
<processblock name"map-process-block" >
<process nan¥'Map" >
<patt>./mappl</path>
<cmdline>
<arg>——R</arg>
<arg>30</arg>
<substitution name'map” id="map_wf" type="workflow" flag="--i" />
</cmdline>
<Iprocess-
</processblock>
</workflow_block>
<workflow_block name"reduce" id="reduce_ wf" num.tasks"30" num.workers="30" >
<processblock name"reduce-process-block” >
<process nan¥'Reduce" >
<path>./reducepl</path>
<cmdline>
<arg>——M</arg>
<arg>480</arg>
<substitution name'reduce"  id="reduce_wf"  type="workflow" flag="--i" />
</cmdline>
</process
</processblock>
</workflow_block>
</componentblock>
</execution>
</applicationblock>
<Iproject>

</Iplush>

Figure 6.9: MapReduce application specification. Each d¥laab host will run
“map.pl” and “reduce.pl,” as specified by the workflow blocks

completed tasks on thgaxis as a function of time progressing on thaxis. We see
that the load balancing enabled by barrier synchronizatioabstract tasks is critical to
overall system performance. With task respawn using kneectien, the barrier man-

ager detects the knee at approximatel 68s after approximately 53% of the tasks
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Figure 6.10: MapReducen = 480, r = 30, n = 30 with uniform prepartitioning of the
data. Knee detection occurs at 68 seconds and callbackkeeshblancing.

have completed. After detecting the knee, the Plush cdetrapartitions the remain-
ing 47% of the tasks across available wide-area nodes. Dis i3 where the curves
significantly diverge in the graph. Without dynamic rebalag the completion rate
transitions to a long-tail lasting more than 2500 seconusu@h the graph only shows
the first 500 seconds), while the completion rate largelyntaans its initial slope when
rebalancing is enabled. Overall, our barrier-based rebalg results in a factor of six-
teen speedup in completion time compared to proceeding tivehnitial mapping of
tasks to hosts. Multiple additional runs showed similaulss

Note that this load balancing approach differs from thera#tee approach of
trying to predict the set of nodes likely to deliver the highlevel of performanca pri-
ori. Unfortunately, predicting the performance of tasks witmplex resource require-
ments on a shared computing infrastructure with dynanyicalying CPU, network,
and I/O characteristics is challenging in the best case atehpally intractable. We ad-
vocate a simpler approach that does not attempt to prediftirpgance characteristics
in advance. Rather, we simply choose nodes likely to perfeethand empirically ob-

serve the utility of our decisions. Of course, this approaety only be appropriate for
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a particular class of distributed applications and comdbkeatost of performing more
work in absolute terms because certain computations aeateg. For the case depicted
in Figure 6.10, approximately 30% of the work is repeatedefagsume that the work
on both the fast and slow nodes are run to completion (a peggirmssumption as it is

typically easy to kill tasks running on slow nodes once tlst iflastances complete).

6.4 Summary

In this chapter we discussed Plush’s ability to manageraiffetypes of appli-
cations that were run on PlanetLab, including short-livethputations, long-lived ser-
vices, and parallel grid applications. In particular, wartgd by describing how Plush
managed Bullet, and showed that partial barriers with aatanknee detection allowed
us to remove the arbitrary timeout value previously usedafgplication initialization.
Next, we evaluated how Plush automatically recovered fraiares in SWORD, and
showed that Plush successfully detected the failures dfogplacement hosts, and fully
restored the service in less than 20 minutes. To better atadet how parallel grid ap-
plications are managed by Plush and benefit from the use tédidzarriers, we provided
two example applications: EMAN and MapReduce. In both cakeause of partial bar-
riers to detect slow participants and redistribute workittesl in a significant speedup
with respect to total task completion time. Based on our egpees with using Plush
to manage all of these applications, we believe that Plustelssuited for a range of

distributed applications.
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Chapter 7

Conclusions and Future Work

In conclusion, Plush is an extensible application contndtaistructure de-
signed to meet the demands of a variety of distributed agjpdios. Plush provides
abstractions for resource discovery, creation, acqorsitoftware installation, process
execution, and failure management in distributed enviremis1 When an error is de-
tected, Plush has the ability to perform several applicasipecific actions, including
restarting the computation, finding a new set of resourcesftempting to adapt the
application to continue execution and maintain liveness.addition, Plush provides
relaxed synchronization primitives in the form of partiarbers that help applications
achieve good throughput even in unpredictable wide-areditions where traditional
synchronization primitives are too strict to be effectiidhe mechanisms provided by
Plush help researchers cope with the limitations inheetdarge-scale networked sys-
tems, allowing them to focus on the design and performanctlesnf application rather
than managing the deployment during the application dgveént life cycle.

To evaluate the effectiveness of the abstractions provigeglush, we used
Plush to manage several different distributed applicattienamely, Bullet, SWORD,
EMAN, and MapReduce—run across the wide-area. In additienshowed that the
performance of these applications improved due to Plushiisré recovery mechanisms
and relaxed synchronization semantics. Further, we shdwedPlush manages re-

sources from a variety of deployment environments by usimgramon interface to
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interact with external resource management servicesyditg SWORD, Mission, Shi-
rako, and Usher. By integrating Plush with these externaises, Plush supports exe-
cution on PlanetLab hosts, Xen virtual machines, and Moeeéulated resources.

Plush is in daily use by researchers worldwide, and useb&sdhas been
largely positive. Most users find Plush to be an “extremebfuistool™ that provides
a user-friendly interface to a powerful and adaptable appbn control infrastructure.
Other users claim that Plush is “flexible enough to work aenosny administrative
domains (something that typical scripts do not do).” Furthalike many related tools,
Plush does not require applications to adhere to a specificrA&king it easy to run
distributed applications in a variety of environments. @sers tell us that Plush is
“fairly easy to getinstalled and setup on a new machine. Troetsire of the application
specification largely makes sense and is easy to modify aayotad

Although Plush has been in development for over three yeaaks some fea-
tures still need improvement. One important area for endr@ents is error reporting.
Debugging applications is inherently difficult in distriled environments. Plush tries to
make it easier for researchers to locate and diagnose gowdraccomplishing this is a
difficult task. For example, one user says that “when thingsvgpong with the exper-
iment, it's often difficult to figure out what happened. Thdédg output occasionally
does not include enough information to find the source of tbblpm.” We are currently
investigating ways to allow application-specific erroragmg in Plush, and ultimately

simplify the task of debugging distributed applicationvatatile environments.

7.1 Lessons Learned

One of the main goals of our work with the design and implemigon of
Plush was to address the requirements described in Chaptec@mplishing this goal
was nhot an easy task, and this section describes a few of éfiernppes we faced and the

lessons learned during the development of Plush.

1The user feedback presented in this section was obtainedghremail and conversations with various Plush
users at UCSD, Duke University, and EPFL.
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7.1.1 Application Specification Design

One of the first challenges that we addressed in the desiglusi Was cre-
ating an application specification capable of succinctlgcdbing application require-
ments. In order for application developers to accept anélssh, we needed to design a
specification that was easy to understand but also expesssough to support complex
scenarios. Additionally, users needed the ability to dedimeh phase of an application’s
life cycle within the specification. Based on early user eigmees, we discovered that
it is important to establish a balance between functiopalitd usability in the design
of the application specification. If the specification is tmmplicated, the complexity
discourages and intimidates novice users, who often gstréned and give up. How-
ever, without support for advanced features, experiensedsiare unable to express all
of their requirements.

When designing the XML syntax for the application specifaatof Plush,
we decided to require only a small set of easily defined aittedy while also optionally
supporting a variety of specialized features. We belieat tihis establishes a balance
between functionality and ease of use. We separated theugacbmponents of a dis-
tributed application and described them using an extemsibhema that allows users
to make the application specifications as complicated oicl@sdesired. In the sim-
plest case, the user only needs to define the required sefiiwamy), the number of
resources desired, and the command to run on the resoureesst\supported creating
the specifications graphically with the GUI so users werefoited to understand the

intricate details of the XML syntax to define even complické@plications.

7.1.2 Satisfying Different Application Demands

Another problem that we overcame in the design of Plush wdsdibg a
generic infrastructure that satisfied the demands of atyasfalistributed applications,
and yet was just as powerful as tools designed specificallg 8ngle application. We
needed to control all aspects of the distributed applioalife cycle without sacrific-

ing important features available in specialized tools. Wkkl]y realized that the best
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way to do this was to use the existing tools directly, rathanttrying to reinvent them.
Hence, Plush is a customizable framework that provides lbili#yato incorporate ex-
ternal tools and services. Users can modify their appboadiescription to plug in the
specialized tools that they need to manage their applitaittio the resources on which
their applications will run. It is this “pluggable” aspect Blush that allows users to
run their applications in a variety of environments andraté with different resource
management frameworks.

One challenge in designing an infrastructure that suppbesbility to plug
in arbitrary existing tools was implementing the glue codeassary to integrate each
tool into Plush. This task is somewhat simplified in grid @mments due to the APIs
that are inherited from the Globus Toolkit [34]. Since masil$ written for grid envi-
ronments adhere to the same standards, writing supporefertools is easier. Unfor-
tunately, there are no official standards or common APIs &ebtbpers to use in most
other distributed environments. Hence, the integratiosawh tool must be addressed

separately.

7.1.3 Achieving Scalability

A third challenge that we faced was scalability. We needetesagn an appli-
cation management infrastructure that scaled to hundieziseo thousands of heteroge-
neous machines. Currently, PlanetLab consists of over 7Zithimes at approximately
345 different locations around the world. Other computingi®nments contain thou-
sands of machines distributed worldwide. In order to supgistributed applications
in these environments, Plush must scale to potentiallyghods of machines while
maintaining acceptable levels of performance. The indedign of Plush used a star
topology, so that every host running the application cotetedirectly to the controller.
The limiting factor in the star design was the number of stang#ous connections that
the controller could support. To address this limitatioe, added support for the tree
topology in addition to the star. Using trees allowed Plustdale much further without

sacrificing performance to a great extent, as discussedapt€n3.
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Other factors aside from the communication topology in Platso con-
tributed to its scalability. In particular, we explored ttnadeoffs between threads and
events in several different architectural designs, andcerepced varying degrees of
success with respect to scalability and performance. ,Rirstused a fixed-size pool
of threads and looped through client connections. The prolith this approach was
that the progress of the entire application was limited bgvadlow hosts. Although we
could scale to several hundred machines, the performanseimacceptable. To avoid
the potential bottleneck created by slow hosts, we incre#ise number of threads in
use so that each client connection used two separate thréadgperformance of this
technique was much improved over the fixed-size thread pgoalvever this approach
suffered from a variety of new problems, and ultimately dowubt scale beyond approx-
imately 200 connections before some machines ran out addisrd=inally, we moved to
the current event-driven design that uses a single threddraevent loop for execution.
We are pleased with the performance of this approach thuarfdrthe number of client
connections can scale to approximately 800 per machinehafimore than sufficient

for even large tree topologies.

7.2 Future Work

Moving forward, one important problem that we have recestrted to ad-
dress in Plush is debugging and monitoring running apptinat We plan to extend
Plush to allow users to specify application-specific mstand error detection tech-
niques, so that potential problems are easily identifiedreeh failure occurs, further
increasing application reliability. Related to monitayiis visualizing distributed appli-
cations. On wide-area platforms, understanding exactlgtvelach host is doing at a
given point in time is no easy task. Real-time distributedliggtion visualization is an
interesting problem that we have only begun to investigatend the development of
Nebula. We still have many ideas that we plan to incorpordateNebula that will further

enhance the user’s ability to visualize applications. Weete that visualization is also a
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key component to lowering the entry barrier for distribusgdtems research. The func-
tionality provided by Nebula should make it easier for neviesearchers—including
undergraduates—to focus on the design and analysis ofdpeiications rather than
spending the majority of their time managing their testinginment. A key benefit
of shared distributed computing platforms like PlanetLsibeisource accessibility and
availability, and we hope to take advantage of this benefitidigg Plush in undergrad-
uate classroom settings in the future.

Aside from monitoring and visualization, we hope to furtirearease the ex-
tensibility of Plush by providing support for emerging emgon environments. While
most of the work in this thesis focused on PlanetLab, Plust slipports (as discussed
in Chapter 4) virtual machine resources. We believe it isartgnt to extend Plush’s
current abstractions even further and provide advancepostfor virtualization. One
way to achieve this goal is to provide a tighter integratiathwirtual machine man-
agement systems, including Shirako and Usher. When deuwlitigvirtual machine
management systems, Plush can be used in one of two ways.e lappmoach, Plush
manages all aspects of the application’s execution, anegtHoeirce management system
simply provides Plush with the resources needed to hostgpkcation. In the second
approach, the resource management system runs the ajpplioatng the remote ex-
ecution functionality provided by Plush. Thus, the reseumtanagement framework
creates the virtual machine resources, and then uses tsie RML-RPC programmatic
interface to run the user’s applications. Note that the et is the same in both
cases—put simply, Plush runs an application on virtual nmechesources. However
from a design standpoint, there are significant differemeksing to the delegation of
control. Moving forward, we would like to explore the tradfiscassociated with both
approaches, and ensure that Plush continues to supporiegle scenarios,

Virtual machine environments also introduce new scalgbdhallenges for
Plush. Virtualization allows tens to hundreds of virtualamiaes to run on a single
physical computer, resulting in an increased number of mashon which to run dis-

tributed applications. Hence, a single cluster composé&f0fphysical computers each
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running 100 virtual machines yields 5,000 total machinesali8g Plush to manage
applications on 5,000 machines is a significant researcleciga that we have not yet
explored.

In addition to advanced support for virtualization, we aswision Plush be-
ing a core component for experiment management and supptiiei GENI (Global
Environment for Network Innovations) project [39]. GENlsgpported by the National
Science Foundation, and many view it as a blueprint for thteiféunternet. The goal
of GENI is to increase the quality and quantity of experinaknésearch in computer
networks and distributed systems. For GENI to achieve ithmsiist be accessible to the
broadest set of researchers. One of the biggest benefiteuadsplatforms like Planet-
Lab and GENI is that they enable researchers at small sctatbldimited resources to
perform large-scale research in distributed systems. Memmany of these researchers
are inexperienced with the complexities of deploying andhitaoing applications in
volatile environments, and struggle to make progress. Wieveethat Plush provides
the functionality needed to help platforms like GENI andreti.ab be more accessible
by simplifying distributed application management, angstive hope that Plush will be

instrumental in making the GENI vision a success.
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