
Jeannie Albrecht and Danny Y. Huang
Williams College

http://gush.cs.williams.edu

•  How do experimenters actually use GENI?
•  Goal: Develop abstractions and tools for addressing

the challenges of managing distributed applications
•  Make it easy for a range of users (including students!) to

run a variety of experiments on GENI

•  Strategy
•  Make minimal assumptions about GENI “resources” and

how they are allocated
•  Leverage existence of lower level services to locate

resources and obtain credentials
•  Interface with other user tools
•  Hide complexity and use one common user interface to

interact with different underlying systems (i.e., PlanetLab,
ProtoGENI/Emulab, ORCA)

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

•  A distributed application management infrastructure
•  Designed to simplify deployment of distributed

applications
•  Provides abstractions for configuration and

management
•  Allows users to “remotely control” computers running

distributed applications

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

•  Describe experiment using application “building blocks”
•  Create customized control flow for distributed applications
•  Application specification blocks are described using XML

Application Block

Component Block 1
Senders

Component Block 2
Receivers

Process Block 1
Prepare Files

Process Block 2
Join Network

Process Block 3
Send Files

Barrier Block 1
Phase 1 Barrier

Process Block 1
Join Network

Process Block 2
Receive Files

Barrier Block 1
Phase 1 Barrier

<gush>
 <project name="simple">
 <software name="SimpleSoftwareName" type="none">
 <package name="Package" type="web">
 <path>http://sysnet.cs.williams.edu/~jeannie/software.tar</path>
 <dest_path>software.tar</dest_path>
 </package>
 </software>
 <component name="Cluster1">
 <rspec>
 <num_hosts>20</num_hosts>
 </rspec>
 <software name="SimpleSoftwareName" />
 <resources>
 <resource type="planetlab" group="williams_gush" />
 <resource type="gpeni" group="gpeni_gush" />
 <resource type="max" group="maxpl_gush" />
 </resources>
 </component>
 <experiment name="simple">
 <execution>
 <component_block name="cb1">
 <component name="Cluster1" />
 <process_block name="p2">
 <process name="cat">
 <path>cat</path>
 <cmdline>
 <arg>software.txt</arg>
 </cmdline>
 </process>
 </process_block>
 </component_block>
 </execution>
 </experiment>
 </project>
</gush>

SOFTWARE

 DEFINE RESOURCE
POOL

DEFINE PROCESSES
(EXECUTION)

<gush>
 <project name="simple">
 . . .
 <component name="Cluster1">
 <rspec>
 <num_hosts>20</num_hosts>
 </rspec>
 <software name="SimpleSoftwareName" />
 <resources>
 <resource type="planetlab" group="williams_gush" />
 <resource type="gpeni" group="gpeni_gush" />
 <resource type="max" group="maxpl_gush" />
 </resources>
 </component>
 <component name="Cluster2">
 <rspec>
 <num_hosts>20</num_hosts>

 <orca>
 <num hosts>20</num hosts>

 <type>1</type>
 <memory>784</memory>
 <bandwidth>300</bandwidth>
 <cpu>75</cpu>
 <lease length>12000</lease length>
 <server>http://geni.renci.org/orca:8080</server>
 </orca>
 </rspec>
 <software name="SimpleSoftwareName" />
 <resources>
 <resource type=”ssh" group=”orca" />
 </resources>
 </component>
 . . .
 </project>
</gush>

•  Application level control framework
interoperability in GENI!

•  How can we find “good” resources?
•  We may want machines with specific

characteristics

•  Gush interfaces directly with lower level
services
•  Gush fully supports PlanetLab resources
•  Beta support for ORCA and ProtoGENI resources

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

<gush>
 <resource_manager type=”geni">
 <user>plc.williams.jeannie</user>
 <config_file>planetlab_sfi_config</config_file>
 <port_map slice=“plc.williams.gush" port="15413"/>
 </resource_manager>

 <resource_manager type=”geni">
 <user>plc.ksu.jeannie</user>
 <config_file>gpeni_sfi_config</config_file>
 <port_map slice=“plc.ksu.gush" port="15414"/>
 </resource_manager>

 <resource_manager type=”geni">
 <user>plc.max.jeannie</user>
 <config_file>max_sfi_config</config_file>
 <port_map slice=“plc.max.gush" port="15415"/>
 </resource_manager>
</gush>

PlanetLab

GpENI

MAX

<component name="VMGroup1">
 <rspec>
 <num hosts>20</num hosts>
 <orca>
 <num hosts>20</num hosts>
 <type>1</type>
 <memory>784</memory>
 <bandwidth>300</bandwidth>
 <cpu>75</cpu>
 <lease length>12000</lease length>
 <server>http://geni.renci.org/orca:8080</server>
 </orca>
 </rspec>
 <resources>
 <resource type="ssh" group="orca"/>
 </resources>
</component>

•  Unlike PlanetLab, ORCA resources do not exist in advance
•  ORCA creates VMs on demand and emphasizes resource isolation
•  ORCA resources are defined within application specification

<component name="VMGroup1">
 <rspec>
 <num hosts>20</num hosts>
 <orca>
 <num hosts>20</num hosts>
 <type>1</type>
 <memory>784</memory>
 <bandwidth>300</bandwidth>
 <cpu>75</cpu>
 <lease length>12000</lease length>
 <server>http://geni.renci.org/orca:8080</server>
 </orca>
 </rspec>
 <resources>
 <resource type="ssh" group="orca"/>
 </resources>
</component>

•  Gush contacts ORCA slice manager when experiment is started
•  ORCA calls back to Gush when resources are ready for use

<gush>
 <resource manager type="emulab">
 <user>jeannie</user>

 <port>15420</port>
 <EmulabProjectID>Gush</EmulabProjectID>
 <EmulabExperimentID>gush</EmulabExperimentID>
 <EmulabNSFile>nsfile.ns</EmulabNSFile>
 </resource manager>

</gush>

•  ProtoGENI resources are defined like PlanetLab resources
•  Experiments must be swapped in and out before execution
•  Like ORCA, ProtoGENI resources are created on demand
• Unlike ORCA, ProtoGENI currently does not provide callbacks to
Gush about resource availability

•  Connect to and configure selected resources
•  Controller “remotely controls” the clients on the

experimenter’s behalf
•  Install software on clients

Client

Client

Client

Client

Client

Client

Client

Client

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Controller

Client

Client

Client

Client

Client

Client

Client

Client
Client Client

•  Controller issues commands to clients telling
them to start running applications/experiments
•  Senders begin running sender processes
•  Receivers begin running receiver processes

Client

Client

Client

Controller

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Client

Client

Client

Client Client

•  We want to make sure the processes keep running
•  Clients monitor experiment processes for failures

•  If a failure is detected, client notifies controller
•  Controller decides to tell client to restart failed process

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Client

Client

Client

Client

Client

Client

Client Controller

Process
failed!

Restart
process.

Client

Client

Client

Client

Client

Client

Client

Client Client

Client

Client

Client

Client

Client

Client

Client

•  Gush clients make sure all programs exited cleanly
•  Remove logs and software from remote machines
•  Disconnect clients from controller

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Controller

gush> load ./tests/simple.xml
Project "simple" is selected.
Experiment "simple" is selected.
gush> run
Starting experiment run.
Running experiment simple...
gush> The configuration matcher has finished matching.
The resource allocator has finished successfully.
gpeni_gush@geni-planetlab-1.ksu.gpeni.net:15414 has joined the mesh.
The file transfer of Package to geni-planetlab-1.ksu.gpeni.net has been completed.
The software installation of Package on geni-planetlab-1.ksu.gpeni.net was successful.
williams_gush@planetlab1.williams.edu:15413 has joined the mesh.
maxpl_gush@planetlab2.dragon.maxgigapop.net:15415 has joined the mesh.
The file transfer of Package to planetlab1.williams.edu has been completed.
The software installation of Package on planetlab1.williams.edu was successful.
The file transfer of Package to planetlab2.dragon.maxgigapop.net has been completed.
The software installation of Package on planetlab2.dragon.maxgigapop.net was

successful.
gpeni_gush@geni-planetlab-1.ksu.gpeni.net:15414,31821: Hello World
williams_gush@planetlab1.williams.edu:15413,19548: Hello World
maxpl_gush@planetlab2.dragon.maxgigapop.net:15415,26459: Hello World
The experiment has ended.

•  Nebula (GUI) allows users to describe, run, monitor, & visualize
applications

•  XML-RPC interface for managing applications programmatically

•  18 undergrads at Williams College used Gush and
Nebula to run experiments on PlanetLab last fall
•  Gush was stable, Nebula needs work
•  iPod/iPhone interface?
•  2 undergrads have worked on Gush development
•  2 more will work on Nebula this summer

•  Need better support for wireless/mobile devices
•  Gush is probably not the solution for all testbeds

•  But it’s a step in the right direction (I hope)!

•  Gush has helped identify what users actually
want and need
•  Determine the right set of abstractions for experiment

management and application control

For more info:
http://gush.cs.williams.edu

