
Loose Synchronization for Large-Scale Networked Systems

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, andAmin Vahdat
University of California, San Diego

{jalbrecht, ctuttle, snoeren, vahdat}@cs.ucsd.edu

Abstract

Traditionally, synchronization barriers ensure that no co-
operating process advances beyond a specified point un-
til all processes have reached that point. In heterogeneous
large-scale distributed computing environments, with un-
reliable network links and machines that may become
overloaded and unresponsive, traditional barrier seman-
tics are too strict to be effective for a range of emerg-
ing applications. In this paper, we explore several relax-
ations, and introduce apartial barrier, a synchronization
primitive designed to enhance liveness in loosely coupled
networked systems. Partial barriers are robust to vari-
able network conditions; rather than attempting to hide
the asynchrony inherent to wide-area settings, they en-
able appropriate application-level responses. We evaluate
the improved performance of partial barriers by integrat-
ing them into three publicly available distributed appli-
cations running across PlanetLab. Further, we show how
partial barriers simplify a re-implementation of MapRe-
duce that targets wide-area environments.

1 Introduction

Today’s resource-hungry applications are increasingly
deployed across large-scale networked systems, where
significant variations in processor performance, network
connectivity, and node reliability are the norm. These in-
stallations lie in stark contrast to the tightly-coupled clus-
ter and supercomputer environments traditionally em-
ployed by compute-intensive applications. What remains
unchanged, however, is the need to synchronize various
phases of computation across the participating nodes.
The realities of this new environment place additional
demands on synchronization mechanisms; while exist-
ing techniques provide correct operation, performance is
often severely degraded. We show that new, relaxed syn-
chronization semantics can provide significant perfor-
mance improvements in wide-area distributed systems.

Synchronizing parallel, distributed computation has long
been the focus of significant research effort. At a high
level, the goal is to ensure that concurrent computation
tasks—across independent threads, processors, nodes in
a cluster, or spread across the Internet—are able to make

independent forward progress while still maintaining
some higher-level correctness semantic. Perhaps the sim-
plest synchronization primitive is the barrier [19], which
establishes a rendezvous point in the computation that
all concurrent nodes must reach before any are allowed
to continue. Bulk synchronous parallel programs run-
ning on MPPs or clusters of workstations employ barriers
to perform computation and communication in phases,
transitioning from one consistent view of shared under-
lying data structures to another.

In past work, barriers and other synchronization primi-
tives have defined strict semantics that ensure safety—
i.e., that no node falls out of lock-step with the others—
at the expense of liveness. In particular, if employed
naively, a parallel computation using barrier synchro-
nization moves forward at the pace of the slowest node
and the entire computation must be aborted if any node
fails. In closely-coupled supercomputer or cluster envi-
ronments, skillful programmers optimize their applica-
tions to reduce these synchronization overheads by lever-
aging knowledge about the relative speed of individual
nodes. Further, dataflow can be carefully crafted based
upon an understanding of transfer times and access la-
tencies to prevent competing demand for the I/O bus.
Finally, recovering from failure is frequently expensive;
thus, failure during computation is expected to be rare.

In large-scale networked systems—where individual
node speeds are unknown and variable, communi-
cation topologies are unpredictable, and failure is
commonplace—applications must be robust to a range
of operating conditions. The performance tuning com-
mon in cluster and supercomputing environments is im-
practical, severely limiting the performance of synchro-
nized concurrent applications. Further, individual node
failures are almost inevitable, hence applications are gen-
erally engineered to adapt to or recover from failure. Our
work focuses on distributed settings where online per-
formance optimization is paramount and correctness is
ensured through other mechanisms. We introduce adap-
tive mechanisms to control the degree of concurrency in
cases where parallel execution appears to be degrading
performance due to self-interference.

At a high level, emerging distributed applications all im-
plement some form of traditional synchronizing barri-
ers. While not necessarily executing a SIMD instruction
stream, different instances of the distributed computation
reach a shared point in the global computation. Rela-
tive to traditional barriers, however, a node arriving at
a barrier need not necessarily block waiting for all other
instances to arrive—doing so would likely sacrifice ef-
ficiency or even liveness as the system waits for either
slow or failed nodes. Similarly, releasing a barrier does
not necessarily imply that all nodes should pass through
the barrier simultaneously—e.g., simultaneously releas-
ing thousands of nodes to download a software package
effectively mounts a denial-of-service attack against the
target repository. Instead, applications manage the entry
and release semantics of their logical barriers in anad
hoc, application-specific manner.

This paper defines, implements, and evaluates a new syn-
chronization primitive that meets the requirements of a
broad range of large-scale network services. In this con-
text, we make the following contributions:

• We introduce apartial barrier, a synchronization
primitive designed for heterogeneous failure-prone en-
vironments. By relaxing traditional semantics, partial
barriers enhance liveness in the face of slow, failed,
and self-interfering nodes.

• Based on the observation that the arrival rate at
a barrier will often form a heavy-tailed distribu-
tion, we design a heuristic to dynamically detect the
knee of the curve—the point at which arrivals slow
considerably—allowing applications to continue de-
spite slow nodes. We also adapt the rate of release
from a barrier to prevent performance degradation in
the face of self-interfering processes.

• We adapt three publicly available, wide-area services
to use partial barriers for synchronization, and reim-
plement a fourth. In particular, we use partial bar-
riers to reduce the implementation complexity of
an Internet-scale version of MapReduce [9] running
across PlanetLab. In all four cases, partial barriers re-
sult in a significant performance improvement.

2 Distributed barriers

We refer to nodes asenteringa barrier when they reach
a point in the computation that requires synchronization.
When a barrierreleasesor fires (we use the terms inter-
changeably), the blocked nodes are allowed to proceed.
According to strict barrier semantics, ensuring safety,
i.e., global synchronization, requires all nodes to reach
a synchronization point before any node proceeds. In the
face of wide variability in performance and prominent
failures, however, strict enforcement may force the ma-

jority of nodes to block while waiting for a handful of
slow or failed nodes to catch up. Many wide-area appli-
cations already have the ability to reconfigure themselves
to tolerate node failure. We can harness this functionality
to avoid excessive waits at barriers: once slow nodes are
identified, they can be removed and possibly replaced by
quicker nodes for the remainder of the execution.

One of the important questions, then, is determining
when to release a barrier, even if all nodes have not ar-
rived at the synchronization point. That is, it is impor-
tant to dynamically determine the point where waiting
for additional nodes to enter the barrier will cost the ap-
plication more than the benefit brought by any additional
arriving nodes in the future. This determination often de-
pends on the semantics of individual applications. Even
with full knowledge of application behavior, making the
decision appropriately requires future knowledge. One
contribution of this work is a technique to dynamically
identify “knees” in the node arrival process,i.e., points
where the arrival process significantly slows. By com-
municating these points to the application we allow it to
make informed decisions regarding when to release.

A primary contribution of this work is the definition of
relaxed barrier semantics to support a variety of wide-
area distributed computations. To motivate our proposed
extensions consider the following application scenarios:

Application initialization. Many distributed applica-
tions require a startup phase to initialize their local state
and to coordinate with remote participants before begin-
ning their operation. Typically, developers introduce an
artificial delay judged to be sufficient to allow the system
to stabilize. If each node entered a barrier upon complet-
ing the initialization phase, developers would be freed
from introducing arbitrarily chosen delays into the inter-
active development/debugging cycle.

Phased computation and communication. Scientific
applications and large-scale computations often oper-
ate in phases consisting of one or many sequential, lo-
cal computations, followed by periods of global com-
munication or parallel computation. These computations
naturally map to the barrier abstraction: one phase of
the computation must complete before proceeding to the
next phase. Other applications operate on a work queue
that distributes tasks to available machines based on the
rate that they complete individual tasks. Here, a barrier
may serve as a natural point for distributing work.

Coordinated measurement. Many distributed applica-
tions measure network characteristics. However, unco-
ordinated measurements can self-interfere, leading to
wasted effort and incorrect results. Such systems benefit
from a mechanism that limits the number of nodes that
simultaneously perform probes. Barriers are capable of

A BCD
(a)

A BCD
(b)

A BCD � T
(c)

A BCD
(d)

Figure 1: (a) Traditional semantics: All hosts enter the barrier (indicated by the white boxes) and are simultaneously
released (indicated by dotted line). (b) Early entry: The barrier fires after 75% of the hosts arrive. (c) Throttled release:
Hosts are released in pairs every∆T seconds. (d) Counting semaphore: No more than 2 processes are simultaneously
allowed into a “critical section” (indicated by the grey regions). When one node exits the critical section, another host
is allowed to enter.

providing this needed functionality. In this case, the ap-
plication uses two barriers to delimit a “critical section”
of code (e.g., a network measurement). The first barrier
releases some maximum number of nodes into the criti-
cal section at a time and waits until these nodes reach the
second barrier, thereby exiting the critical section, before
releasing the next round.

To further clarify the goal of our work, it is perhaps
worthwhile to consider what weare nottrying to accom-
plish. Partial barriers provide only a loose form of group
membership [8, 16, 27]. In particular, partial barriers do
not provide any ordering of messages relative to barri-
ers as in virtual synchrony [2, 3], nor do partial barriers
require that all participants come to consensus regard-
ing a view change [24]. In effect, we strive to construct
an abstraction that exposes the asynchrony and the fail-
ures prevalent in wide-area computing environments in a
manner that allows the application to make dynamic and
adaptive decisions as to how to respond.

It is also important to realize that not all applications will
benefit from relaxed synchronization semantics. The cor-
rectness of certain classes of applications cannot be guar-
anteed without complete synchronization. For example,
some applications may require a minimum number of
hosts to complete a computation. Other applications may
approximate a measurement (such as network delay) and
continuing without all nodes reduces the accuracy of the
result. However, many distributed applications, includ-
ing the ones described in Section 5, can afford to sac-
rifice global synchronization without negatively impact-
ing the results. These applications either support dynam-
ically degrading the computation, or are robust to failures
and can tolerate mid-computation reconfigurations. Our
results indicate that for applications that are willing and
able to sacrifice safety, our semantics have the potential
to improve performance significantly.

3 Design and implementation

Partial barriers are a set of semantic extensions to the
traditional barrier abstraction. Our implementation has
a simple interface for customizing barrier functionality.

This section describes these extended semantics, details
our API, and presents the implementation details.

3.1 Design

We define two new barrier semantics to support emerging
wide-area computing paradigms and discuss each below.

Early entry – Traditional barriers require all nodes to
enter a barrier before any node may pass through, as in
Figure 1(a). A partial barrier with early entry is instanti-
ated with a timeout, a minimum percentage of entering
nodes, or both. Once the barrier has met either of the
specified preconditions, nodes that have already entered
a barrier are allowed to pass through without waiting for
the remaining slow nodes (Figure 1(b)). Alternatively, an
application may instead choose to receive callbacks as
nodes enter and manually release the barrier, enabling
the evaluation of arbitrary predicates.

Throttled-release – Typically, a barrier releases all
nodes simultaneously when a barrier’s precondition is
met. A partial barrier with throttled-release specifies a
rate of release, such as two nodes every∆T seconds as
shown in Figure 1(c). A special variation of throttled-
release barriers allows applications to limit the number of
nodes that simultaneously exist in a “critical section” of
code, creating an instance of a counting semaphore [10]
(shown in Figure 1(d)), which may be used, for ex-
ample, to throttle the number of nodes that simultane-
ously perform network measurements or software down-
loads. A critical distinction between traditional counting
semaphores and partial barriers, however, is our support
for failure. For instance, if a sufficient number of slow
or soon-to-fail nodes pass a counting semaphore, they
will limit access to other participants, possibly forever.
Thus, as with early-entry barriers, throttled-release bar-
riers eventually time out slow or failed nodes, allowing
the system as a whole to make forward progress despite
individual failures.

One issue that our proposed semantics introduce that
does not arise with strict barrier semantics is handling
nodes performing late entry,i.e., arriving at an already
released barrier. We support two options to address this

class Barrier{
Barrier(string name, int max, int timeout,

int percent, int minWait);
static void setManager(string Hostname);
void enter(string label, string Hostname);
void setEnterCallback(bool (*callbackFunc)(string label,

string Hostname, bool default), int timeout);
map<string label, string Hostname> getHosts(void);

}

Figure 2: Barrier instantiation API.

case: i) pass-through semantics that allow the node to
proceed with the next phase of the computation even
though it arrived late; ii) catch-up semantics that issue an
exception allowing the application to reintegrate the node
into the mainline computation in an application-specific
manner, which may involve skipping ahead to the next
barrier (omitting the intervening section of code) in an
effort to catch up to the other nodes.

3.2 Partial barrier API

Figure 2 summarizes the partial barrier API from an
application’s perspective. Each participating node ini-
tializes a barrier with a constructor that takes the fol-
lowing arguments:name, max, timeout, percent, and
minWait. name is a globally unique identifier for the
barrier.max specifies the maximum number of partici-
pants in the barrier. (While we do not requirea priori
knowledge of participant identity, it would be straight-
forward to add.) Thetimeout in milliseconds sets the
maximum time that can pass from the point where the
first node enters a barrier before the barrier is released.
The percent field similarly captures a minimum per-
centage out of the maximum number nodes that must
reach the barrier to activate early release. TheminWait

field is associated with thepercent field and specifies
a minimum amount of time to wait (even if the specified
percentage of nodes have reached) before releasing the
barrier with less than the maximum number of nodes.
Without this field, the barrier will deterministically be
released upon reaching the threshold percent of entering
nodes even when all nodes are entering rapidly. How-
ever, the barrier is always released ifmax nodes arrive,
regardless ofminWait. Thetimeout field overrides the
percent andminWait fields; the barrier will fire if the
timeout is reached, regardless of the percentage of nodes
entering the barrier. The last three parameters to the con-
structor are optional—if left unspecified the barrier will
operate as a traditional synchronization barrier.

Coordination of barrier participants is controlled by a
barrier manager whose identity is specified at startup by
the setManager() method. Participants call the bar-
rier’s enter() method and pass in theirHostname

and label when they reach the appropriate point in
their execution. (Thelabel argument supports advanced
functionality such as load balancing for MapReduce as
described in Section 5.4.) The participant’senter()
method notifies the manager that the particular node has
reached the synchronization point. Our implementation
supports blocking calls toenter() (as described here)
or optionally a callback-based mechanism where the en-
tering node is free to perform other functionality until the
appropriate callback is received.

While our standard API provides simplistic support
for the early release of a barrier, an application may
maintain its own state to determine when a partic-
ular barrier should fire and to manage any side ef-
fects associated with barrier entry or release. For in-
stance, a barrier manager may wish to kill processes
arriving late to a particular (already released) bar-
rier. To support application-specific functionality, the
setEnterCallback() method specifies a function to
be called when any node enters a barrier. The callback
takes thelabel andHostname passed to theenter()
method and a boolean variable that specifies whether
the manager would normally release the barrier upon
this entry. The callback function returns a boolean value
to specify whether the barrier should actually be re-
leased or not, potentially overriding the manager’s de-
cision. A second argument tosetEnterCallback()
called timeout specifies a maximum amount of time
that may pass before successive invocations of the call-
back. This prevents the situation where the application
waits a potentially infinite amount of time for the next
node to arrive before deciding to release the barrier. We
use this callback API to implement our adaptive release
techniques presented in Section 4.

Barrier participants may wish to learn the identity of all
hosts that passed through a barrier, similar to (but with
relaxed semantics from) view advancement or GBCAST
in virtual synchrony [4]. ThegetHosts() method re-
turns a map ofHostnames andlabels through a re-
mote procedure call with the barrier manager. If many
hosts are interested in membership information, it can
optionally be propagated from the barrier manager to all
nodes by default as part of the barrier release operation.

Figure 3 describes a subclass ofBarrier,
called ThrottleBarrier, with throttled-release
semantics. These semantics allow for a pre-
determined subset of the maximum number of
nodes to be released at a specified rate. The
methods setThrottleReleasePercent() and
setThrottleReleaseCount() periodically release
a percentage and number of nodes, respectively, once
the barrier fires.setThrottleReleaseTimeout()
specifies the periodicity of release.

class ThrottleBarrier extends Barrier{
void setThrottleReleasePercent(int percent);
void setThrottleReleaseCount(int count);
void setThrottleReleaseTimeout(int timeout);

}
class SemaphoreBarrier extends Barrier{

void setSemaphoreCount(int count);
void setSemaphoreTimeout(int timeout);
void release(string label, string Hostname);
void setReleaseCallback(int (*callbackFunc)(string label,

string Hostname, int default), int timeout);
}

Figure 3: ThrottleBarrier and SemaphoreBarrier API.

Figure 3 also details a variant of throttled-release bar-
riers, SemaphoreBarrier, which specifies a maxi-
mum number of nodes that may simultaneously enter
a critical section. ASemaphoreBarrier extends the
throttled-release semantics further by placing a barrier
at the beginning and end of a critical section of activ-
ity to ensure that only a specific number of nodes pass
into the critical section simultaneously. One key dif-
ference for this type of barrier is that it does not re-
quire any minimum number of nodes to enter the bar-
rier before beginning to release nodes into the subse-
quent critical section. It simply mandates a maximum
number of nodes that may simultaneously enter the
critical section. ThesetSemaphoreCount() method
sets this maximum number. Nodes call the barrier’s
release() method upon completing the subsequent
critical section, allowing the barrier to release additional
nodes.setSemaphoreTimeout()allows for timing out
nodes that enter the critical section but do not complete
within a maximum amount of time. In this case, they
are assumed to have failed, enabling the release of ad-
ditional nodes. ThesetReleaseCallback() enables
application-specific release policies and timeout of slow
or failed nodes in the critical section. The callback func-
tion in setReleaseCallback() returns the number of
hosts to be released.

3.3 Implementation

Partial barrier participants implement the interface de-
scribed above while a separate barrier manager coordi-
nates communication across nodes. Our implementation
of partial barriers consists of approximately3, 000 lines
of C++ code. At a high level, a node callingenter()
transmits a BARRIERREACHED message using TCP
to the manager with the calling host’s unique identifier,
barrier name, and label. The manager updates its lo-
cal state for the barrier, including the set of nodes that
have thus far entered the barrier, and performs appropri-
ate callbacks as necessary. The manager starts a timer to
support various release semantics if this is the first node

entering the barrier and subsequently records the inter-
arrival times between nodes entering the barrier.

If a sufficient number of nodes enter the barrier or a
specified amount of time passes, the manager transmits
FIRE messages using TCP to all nodes that have entered
the barrier. For throttled release barriers, the manager re-
leases the specified number of nodes from the barrier in
FIFO order. The manager also sets a timer as specified
by setThrottleReleaseTimeout() to release addi-
tional nodes from the barrier when appropriate.

For semaphore barriers, the manager releases the num-
ber of nodes specified bysetSemaphoreCount()
and, if specified bysetSemaphoreTimeout(), also
sets a timer to expire for each node entering the
critical section. Each call toenter() transmits a
SEMAPHOREREACHED message to the manager.
In response, the manager starts the timer associated
with the calling node. If the semaphore timer associ-
ated with the node expires before receiving the cor-
responding SEMAPHORERELEASED message, the
manager assumes that node has either failed or is
proceeding sufficiently slowly that an additional node
should be released into the critical section. Each
SEMAPHORERELEASED message releases one addi-
tional node into the critical section.

For all barriers, the manager must gracefully handle
nodes arriving late,i.e., after the barrier has fired. We
employ two techniques to address this case. For pass-
through semantics, the manager transmits a LATEFIRE
message to the calling node, releasing it from the barrier.
In catch-up semantics, the manager issues an exception
and transmits a CATCHUP message to the node. Catch-
up semantics allow applications to respond to the excep-
tion and determine how to reintegrate the node into the
computation in an application-specific manner.

The type of barrier—pass-through or catch-up—is spec-
ified at barrier creation time (intentionally not shown in
Figure 2 for clarity). Nodes callingenter() may regis-
ter local callbacks with the arrival of either LATEFIRE
or CATCH UP messages for application-specific re-
synchronization with the mainline computation, or per-
haps to exit the local computation altogether if re-
synchronization is not possible.

3.4 Fault tolerance

One concern with our centralized barrier manager is tol-
erating manager faults. We improve overall system ro-
bustness with support for replicated managers. Our al-
gorithm is a variant of traditional primary/backup sys-
tems: each participant maintains an ordered list of bar-
rier controllers. Any message sent from a client to the
logical barrier manager is sent to all controllers on the
list. Because application-specific entry callbacks may be

non-deterministic, a straightforward replicated state ma-
chine approach where each barrier controller simultane-
ously decides when to fire is insufficient. Instead, the
primary controller forwards all BARRIERREACHED
messages to the backup controllers. These messages act
as implicit “keep alive” messages from the primary. If a
backup controller receives BARRIERREACHED mes-
sages from clients but not the primary for a sufficient pe-
riod of time, the first backup determines the primary has
failed and assumes the role of primary controller. The
secondary backup takes over should the primary fail, and
so on. Note that our approach admits the case where mul-
tiple controllers simultaneously act as the primary con-
troller for a short period of time. Clients ignore duplicate
FIRE messages for the same barrier, so progress is as-
sured, and one controller eventually emerges as primary.

Although using the replicated manager scheme de-
scribed above lowers the probability of losing BAR-
RIER REACHED messages, it does not provide any in-
creased reliability with respect to messages sent from the
manager(s) to the remote hosts. All messages are sent us-
ing reliable TCP connections. If a connection fails be-
tween the manager and a remote host, however, mes-
sages may be lost. For example, suppose the TCP con-
nections between the manager and some subset of the
remote hosts break just after the manager sends a FIRE
message to all participants. Similarly, if a group of nodes
fails after entering the barrier, but before receiving the
FIRE message, the failure may go undetected until af-
ter the controller transmits the FIRE messages. In these
cases, the manager will attempt to send FIRE messages
to all participants, and detect the TCP failures after the
connections time out. Such ambiguity is unavoidable in
asynchronous systems; the manager simply informs the
application of the failure(s) via a callback and lets the ap-
plication decide the appropriate recovery action. As with
any other failure, the application may choose to continue
execution and ignore the failures, attempt to find new
hosts to replace the failed ones, or to even abort the exe-
cution entirely.

4 Adaptive release

Unfortunately, our extended barrier semantics introduce
additional parameters: the threshold for early release and
the concurrency level in throttled release. Experience has
shown it is often difficult to select values that are appro-
priate across heterogeneous and changing network con-
ditions. Hence, we provide adaptive mechanisms to dy-
namically determine appropriate values.

4.1 Early release

There is a fundamental tradeoff in specifying an early-
release threshold. If the threshold is too large, the ap-
plication will wait unnecessarily for a relatively modest

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
er

ce
nt

 o
f h

os
ts

 r
ea

ch
in

g
ba

rr
ie

r

Elapsed time (sec)

Host arrival
Threshold

EWMA host arrival
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
er

ce
nt

 o
f h

os
ts

 r
ea

ch
in

g
ba

rr
ie

r

Elapsed time (sec)

Host arrival
Threshold

EWMA host arrival

Figure 4: Dynamically determining the knee of arriving
processes. Vertical bars indicate a knee detection.

number of additional nodes to enter the barrier; if too
small, the application will lose the opportunity to have
participation from other nodes had it just waited a bit
longer. Thus, we use the barrier’s callback mechanism to
determine release points in response to varying network
conditions and node performance.

In our experience, the distribution of nodes’ arrivals at
a barrier is often heavy-tailed: a relatively large portion
of nodes arrive at the barrier quickly with a long tail of
stragglers entering late. In this case, many of our tar-
get applications would wish to dynamically determine
the “knee” of a particular arrival process and release the
barrier upon reaching it. Unfortunately, while it can be
straightforward to manually determine the knee off-line
once all of the data for an arrival process is available, it
is difficult to determine this point on-line.

Our heuristic, inspired by TCP retransmission timers and
MONET [1], maintains an exponentially weighted mov-
ing average (EWMA) of the host arrival times (arr), and
another EWMA of the deviation from this average for
each measurement (arrvar). As each host arrives at the
barrier, we record the arrival time of the host, as well as
the deviation from the average. Then we recompute the
EWMA for both arr andarrvar, and use the values to
compute a maximum wait threshold ofarr+4∗arrvar.
This threshold indicates the maximum time we are will-
ing to wait for the next host to arrive before firing the
barrier. If the next host does not arrive at the barrier be-
fore the maximum wait threshold passes, we assume that
a knee has been reached. Figure 4 illustrates how these
values interact for a simulated group of 100 hosts enter-
ing a barrier with randomly generated exponential inter-
arrival times. Notice that a knee occurs each time the host
arrival time intersects the threshold line.

With the capability to detect multiple knees, it is impor-
tant to provide a way for applications to pick the right
knee and avoid firing earlier or later than desired. Ag-

gressive applications may choose to fire the barrier when
the first knee is detected. Conservative applications may
wish to wait until some specified amount of time has
passed, or a minimum percentage of hosts have entered
the barrier before firing. To support both aggressive and
conservative applications, our algorithm allows the appli-
cation to specify a minimum percentage of hosts, mini-
mum waiting time, or both for each barrier. If an appli-
cation specifies a minimum waiting time of 5 seconds,
knees detected before 5 seconds are ignored. Similarly, if
a minimum host percentage of 50% is specified, the knee
detector ignores knees detected before 50% of the total
hosts have entered the barrier. If both values are speci-
fied, the knee detector uses the more conservative thresh-
old so that both requirements (time and host percentage)
are met before firing.

One variation in our approach compared to other related
approaches is the values for the weights in the moving
averages. In the RFC for computing TCP retransmission
timers [7], the weight in the EWMA of thertt places a
heavier weight (0.875) on previous delay measurements.
This value works well for TCP since the average delay is
expected to remain relatively constant over time. In our
case, however, we expect the average arrival time to in-
crease, and thus we decreased the weight to be0.70 for
previous measurements ofarr. This allows ourarr value
to more closely follow the actual data being recorded.
When measuring the average deviation, which is com-
puted by averaging|sample − arr| (wheresample rep-
resents the latest arrival time recorded), we used a weight
of 0.75 for previous measurements, which is the same
weight used in TCP for the variation inrtt.

4.2 Throttled release

We also employ an adaptive method to dynamically ad-
just the amount of concurrency in the “critical section”
of a semaphore barrier. In many applications, it is im-
practical to select a single value which performs well un-
der all conditions. Similar in spirit to SEDA’s thread-pool
controller [35], our adaptive release algorithm selects an
appropriate concurrency level based upon recent release
times. The algorithm starts with low level of concurrency
and increases the degree of concurrency until response
times worsen; it then backs off and repeats, oscillating
about the optimum value.

Mathematically, the algorithm compares the median of
the distributions of recent and overall release times. For
example, if there are15 hosts in the critical section when
the45th host is released, the algorithm computes the me-
dian release time of the last15 releases, and of all45.
If the latest median is more than 50% greater than the
overall median, no additional hosts are released, thus re-
ducing the level of concurrency to14 hosts. If the latest

median is more than 10% but less than 50% greater than
the overall median, one host is released, maintaining a
level of concurrency of15. In all other cases, two hosts
are released, increasing the concurrency level to16. The
thresholds and differences in size are selected to increase
the degree of concurrency whenever possible, but keep
the magnitude of each change small.

5 Applications

We integrated partial barriers into three wide-area, dis-
tributed applications with a range of synchronization
requirements. We reimplemented a fourth application
whose source code was unavailable. While a detailed dis-
cussion of these applications is beyond the scope of this
paper, we present a brief overview to facilitate under-
standing of our performance evaluation in Section 6.

5.1 Plush

Plush [29] is a tool for configuring and managing large-
sale distributed applications, such as PlanetLab [28] and
the Grid [13]. Users specify a description of: i) a set of
nodes to run their application on; ii) the set of software
packages, including the application itself and any neces-
sary data files, that should be installed on each node; and
iii) a directed acyclic graph of individual processes that
should be run, in order, on each node.

Plush may be used to manage long-running services or
interactive experimental evaluations of distributed appli-
cations. In the latter case, developers typically configure
a set of machines (perhaps installing the latest version
of the application binary) and then start the processes at
approximately the same time on all participating nodes.
A barrier may be naturally inserted between the tasks of
node configuration and process startup. However, in the
heterogeneous PlanetLab environment, the time to con-
figure a set of nodes with the requisite software can vary
widely or fail entirely at individual hosts. In this case,
it is often beneficial to timeout the “software configura-
tion/install” barrier and either proceed with the available
nodes or to recruit additional nodes.

5.2 Bullet

Bullet [21] is an overlay-based large-file distribution in-
frastructure. In Bullet, a source transmits a file to re-
ceivers spread across the Internet. As part of the boot-
strap process, all receivers join the overlay by initially
contacting the source before settling on their final po-
sition in the overlay. The published quantitative evalua-
tion of Bullet presents a number of experiments across
PlanetLab. However, to make performance results exper-
imentally meaningful when measuring behavior across a
large number of receivers, the authors hard-coded a 30-
second delay at the sender from the time that it starts

to the time that it begins data transmission. While typi-
cally sufficient for the particular targeted configuration,
the timeout would often be too long, unnecessarily ex-
tending turnaround time for experimentation and inter-
active debugging. Depending on overall system load and
number of participants, the timeout would also some-
times be too short, meaning that some nodes would not
complete the join process at the time the sender begins
transmitting. While this latter case is not a problem for
the correct behavior of the system, it makes interpreting
experimental results difficult.

To address this limitation, we integrated partial barri-
ers into the Bullet implementation. This integration was
straightforward. Once the join process completes, each
node simply enters a barrier. The Bullet sender registers
for a callback with the barrier manager to be notified of
a barrier release, at which point it begins transmitting
data. By calling thegetHosts()method, the sender can
record the identities of nodes that should be considered
in interpreting the experimental results. The barrier man-
ager notes the identity of nodes entering the barrier late
and instructs them to exit rather than proceed with re-
trieving the file.

5.3 EMAN

EMAN [12] is a publicly available software package
used for reconstructing 3D models of particles using 2D
electron micrographs. The program takes a 2D micro-
graph image as input and then repeatedly runs a “refine-
ment” process on the data to create a 3D model. Each
iteration of the refinement consists of both computation-
ally inexpensive sequential computations and computa-
tionally expensive parallel computations.

Barriers separate sequential and parallel stages of com-
putation in EMAN. Using partial barrier semantics adds
the benefit of being able to detect slow nodes, allowing
the application to redistribute tasks to faster machines
during the parallel phase of computation. In addition to
slow processors, the knee detector also detects machines
with low bandwidth capacities and reallocates their work
to machines with higher bandwidth. In our test, each re-
finement phase requires approximately 240 MB of data
to be transferred to each node, and machines with low
bandwidth links have a significant impact on the overall
completion time if their work is not reallocated to differ-
ent machines. Since the sequential phases run on a single
machine, partial barriers are most applicable to the paral-
lel phases of computation. We use the publicly available
version of EMAN for our experiments. We wrote a 50-
line Perl script to run the parallel phase of computation
on 98 PlanetLab machines using Plush.

Figure 5: MapReduce execution. As each map task com-
pletes,enter(i) is called with the unique task iden-
tifier. Once allm tasks have entered the Map barrier,
it is released. When the MapReduce controller is noti-
fied that the Map barrier has fired, ther reduce tasks
are distributed and begin execution. When allr reduce
tasks have entered the Reduce barrier, MapReduce is
complete. In both barriers,callback(i) informs the
MapReduce controller of task completions.

5.4 MapReduce

MapReduce [9] is a toolkit for application-specific par-
allel processing of large volumes of data. The model
involves partitioning the input data into smallersplits
of data, and spreading them across a cluster of worker
nodes. Each worker node applies amap function to the
splits of data that they receive, producing intermediate
key/value pairs that are periodically written to specific
locations on disk. The MapReduce master node tracks
these locations, and eventually notifies another set of
worker nodes that intermediate data is ready. This sec-
ond set of workers aggregate the data and pass it to the
reducefunction. This function processes the data to pro-
duce a final output file.

Our implementation of MapReduce leverages partial bar-
riers to manage phases of the computation and to orches-
trate the flow of data among nodes across the wide area.
In our design, we havem map tasks and corresponding
input files,n total nodes hosting the computation, andr

reduce tasks. A central MapReduce controller distributes
them split input files to a set of available nodes (our cur-
rent implementation runs on PlanetLab), and spawns the

map process on each node. When the map tasks finish,
intermediate files are written back to a central repository,
and then redistributed tor hosts, who eventually execute
ther reduce tasks. There are a number of natural barriers
in this application, as shown in Figure 5, corresponding
to completion of: i) the initial distribution ofm split files
to appropriate nodes; ii) executingm map functions; iii)
the redistribution of the intermediate files to appropriate
nodes, and iv) executingr reduce functions.

As with the original MapReduce work, the load balanc-
ing aspects corresponding to barriers (ii) and (iv) (from
the previous paragraph) are of particular interest. Recall
that although there arem map tasks, the same physical
host may execute multiple map tasks. In these cases, the
goal is not necessarily to wait for alln hosts to reach
the barrier, but for allm or r logical tasks to complete.
Thus, we extended the original barrier entry semantics
described in Section 3 to support synchronizing barriers
at the level of a set of logical, uniquely named tasks or
processes, rather than a set of physical hosts. To support
this, we simply invoke theenter() method of the bar-
rier API (see Figure 2) upon completing a particular map
or reduce function. In addition to the physical hostname,
we send a label corresponding to a globally unique name
for the particular map or reduce task. Thus, rather than
waiting for n hosts, the barrier instead waits form or r

unique labels to enter the barrier before firing.

For a sufficiently large and heterogeneous distributed
system, performance at individual nodes varies widely.
Such variability often results in a heavy-tailed distri-
bution for the completion of individual tasks, meaning
that while most tasks will complete quickly, the overall
time will be dominated by the performance of the slow
nodes. The original MapReduce work noted that one of
the common problems experienced during execution is
the presence of “straggler” nodes that take an unusually
long time to complete a map or reduce task. Although
the authors mentioned an application-specific solution to
this problem, by using partial barriers in our implemen-
tation we were able to provide a more general solution
that achieved the same results. We use the arrival rate of
map/reduce tasks at their respective barriers to respawn
a subset of the tasks that were proceeding slowly.

By using the knee detector described in Section 4, we
are able to dynamically determine the transition point
between rapid arrivals and the long tail of stragglers.
However, rather than releasing the barrier at this point,
the MapReduce controller receives a callback from the
barrier manager, and instead performs load rebalancing
functionality by spawning additional copies of outstand-
ing tasks on nodes disjoint from the ones hosting the
slower tasks (potentially first distributing the necessary
input/intermediate files). As in the original implemen-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

Number of nodes

All hosts
90th percentile

Figure 6: Scalability of centralized barrier imple-
mentation. “All hosts” line shows the average time
across 5 runs for barrier manager to receive BAR-
RIER REACHED messages from all hosts. “90th per-
centile” line shows the average time across 5 runs for
barrier manager to receive BARRIERREACHED mes-
sages from 90% of all hosts.

tation of MapReduce, the barrier is not concerned with
what copies of the computation complete first; the goal
is for all m or r tasks to complete as quickly as possible.

The completion rate of tasks also provides an estimate
of the throughput available at individual nodes, influenc-
ing future task placement decisions. Nodes with high
throughput are assigned more tasks in the future. Our
performance evaluation in Section 6 quantifies the bene-
fits of this approach. Cluster-based MapReduce [9] also
found this rebalancing to be critical for improving per-
formance in more tightly controlled cluster settings, but
did not describe a precise approach for determining when
to spawn additional instances of a given computation.

6 Evaluation

The goal of this section is to quantify the utility of par-
tial barriers for a range of application scenarios. For all
experiments, we randomly chose subsets from a pool of
130 responsive PlanetLab nodes.

6.1 Scalability

To estimate baseline barrier scalability, we measure the
time it takes to move between two barriers for an increas-
ing number of hosts. In this experiment, the controller
waits for all hosts to reach the first barrier. All hosts are
released, and then immediately enter the second barrier.
We measure the time between when the barrier manager
sends the first FIRE message for the first barrier and re-
ceives the last BARRIERREACHED message for the
second barrier. No partial barrier semantics are used for
these measurements. Figure 6 shows the average com-

pletion time for varying numbers of nodes across a total
of five runs for each data point with standard deviation.

Notice that even for 100 nodes, the average time
for the barrier manager to receive the last BAR-
RIER REACHED message for the second barrier is ap-
proximately 1 second. The large standard deviation val-
ues indicate that there is much variability in our results.
This is due to the presence of straggler nodes that de-
lay the firing for several seconds or more. The 90th per-
centile, on the other hand, has little variation and is rel-
atively constant as the number of participants increases.
This augurs well for the potential of partial barrier se-
mantics to improve performance in the wide area. Over-
all, we are satisfied with the performance of our central-
ized barriers for 100 nodes; we expect to use hierarchy
to scale significantly further.

6.2 Admission control

Next, we consider the benefits of a semaphore barrier to
perform admission control for parallel software installa-
tion in Plush. Plush configures a set of wide-area hosts
to execute a particular application. This process often
involves installing the same software packages located
on a central server. Simultaneously performing this in-
stall across hundreds of nodes can lead to thrashing at
the server hosting the packages. The overall goal is to
ensure sufficient parallelism such that the server is sat-
urated (without thrashing) while balancing the average
time to complete the download across all participants.

For our results, we use Plush to install the same 10-MB
file on 100 PlanetLab hosts while varying the number of
simultaneous downloads using a semaphore barrier. Fig-
ure 7 shows the results of this experiment. The data indi-
cates that limiting parallelism can improve overall com-
pletion rate. Releasing too few hosts does not fully con-
sume server resources, while releasing too many taxes
available resources, increasing the time to first comple-
tion. This is evident in the graph since 25 simultaneous
downloads finishes more quickly than both 100 and 10
simultaneous transfers.

While statically defining the number of hosts allowed to
perform simultaneous downloads works well for our file
transfer experiment, varying network conditions means
that statically picking any single value is unlikely to per-
form well under all conditions. Some applications may
benefit from a more dynamic throttled release technique
that attempts to find the optimal number of hosts that
maximizes throughput from the server without causing
saturation. The “Adaptive Simultaneous Transfers” line
in Figure 7 shows the performance of our adaptive re-
lease technique. In this example, the initial concurrency
level is 15, and the level varies according to the dura-
tion of each transfer. In this experiment the adaptive al-

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

H
os

t c
ou

nt

Elapsed time (sec)

25 Simultaneous Transfers
100 Simultaneous Transfers

Adaptive Simultaneous Transfers
10 Simultaneous Transfers

Figure 7: Software transfer from a high-speed server to
PlanetLab hosts using a SemaphoreBarrier to limit the
number of simultaneous file transfers.

gorithm line reaches 100% before the lines representing
a fixed concurrency level of 10 or 100, but the algorithm
was too conservative to match the optimal static level of
25 given the network conditions at the time.

6.3 Detecting knees

In this section we consider our ability to dynamically de-
tect knees in a heavy-tailed arrival processes. We observe
that when choosing a substantial number of time-shared
PlanetLab hosts to perform the same amount of work, the
completion time varies widely, often following an expo-
nential distribution. This variation makes it difficult to
coordinate distributed computation. To quantify our abil-
ity to more adaptively set timeouts and coordinate the
behavior of multiple wide-area nodes, we used a barrier
to synchronize senders and receivers in Bullet while run-
ning across a varying number of PlanetLab nodes. We
set the barrier to dynamically detect the knee in the ar-
rival process as described in Section 4. Upon reaching
the knee, nodes already in the barrier are released; one
side effect is that the sender begins data transmission.
Bullet ignores all late arriving nodes.

Figure 8 plots the cumulative distribution of receivers
that enter the startup barrier on they-axis as a function of
time progressing on thex-axis. Each curve corresponds
to an experiment with 50, 90, or 130 PlanetLab receivers
in the initial target set. The goal is to run with as many
receivers as possible from the given initial set without
waiting an undue amount of time for a small number of
stragglers to complete startup. Interestingly, it is insuffi-
cient to filter for any static set of known “slow” nodes
as performance tends to vary on fairly small time scales
and can be influenced by multiple factors at a particular
node (including available CPU, memory, and changing
network conditions). Thus, manually choosing an appro-

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
um

be
r

of
 H

os
ts

Elapsed time (sec)

50 Nodes
90 Nodes
130 Nodes

Figure 8: A startup barrier that regulates nodes joining a
large-scale overlay. Vertical bars indicate when the bar-
rier detects a knee and fires.

priate static set may be sufficient for one particular batch
of runs but not likely the next.

Vertical lines in Figure 8 indicate where the barrier man-
ager detects a knee and releases the barrier. Although we
ran the experiment multiple times, for clarity we plot the
results from a single run. While differences in time of
day or initial node characteristics affect the quantitative
behavior, the general shape of the curve is maintained.
However, in all of our experiments, we are satisfied with
our ability to dynamically determine the knee of the ar-
rival process. The experiments are typically able to pro-
ceed with 85-90% of the initial set participating.

6.4 EMAN

For our next evaluation, we added a partial barrier to
the parallel computation of EMAN’s refinement process.
Upon detecting a knee, we reallocate tasks to faster ma-
chines. Figure 9 shows the results of running EMAN
with and without partial barrier semantics. In this exper-
iment we ran EMAN on the98 most responsive Plan-
etLab machines. The workflow consists of several se-
rial tasks (not shown), and a98-way image classification
step, run in parallel. Each participant first downloads a
40-MB archive containing the EMAN executables and
a wrapper script. After unpacking the archive, each node
downloads a unique 200-MB data file and begins running
the classification process. At the end of the computation,
each node generates77 output files stored on the local
disk, which EMAN merges into77 “master” files once
all tasks complete.

After 801 seconds, the barrier detects a knee and reallo-
cates the remaining tasks to idle machines among those
initially allocated to the experiment; these finish shortly
afterward. The “knee” in the curve at approximately300

seconds indicates that around21 hosts have good con-
nectivity to the data repository, while the rest have longer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800

T
as

k
co

un
t

Elapsed time (sec)

No reallocation
With reallocation

Figure 9: EMAN. Knee detected at 801 seconds. Total
runtime is over 2700 seconds.

transfer times. While the knee detection algorithm de-
tects a knee at300 seconds, a minimum threshold of60%

prevents reconfiguration. The second knee is detected at
801 seconds, which starts a reconfiguration of20 tasks.
These tasks complete by900 seconds, while the original
set continue past2700 seconds, for an overall speedup of
more than3.

6.5 MapReduce

We now consider an alternative use of partial barriers:
to assist not with the synchronization of physical hosts
or processors, but with load balancing of logical tasks
spread across cooperating wide-area nodes. Further, we
wish to determine whether we can dynamically detect
knees in the arrival rate of individual tasks, spawning
additional copies of tasks that appear to be proceeding
slowly on a subset of nodes.

We conduct these experiments with our implementation
of MapReduce (see Section 5.4) withm = 480 map
tasks andr = 30 reduce tasks running acrossn = 30

PlanetLab hosts. During each of the map and reduce
rounds, the MapReduce controller evenly partitions the
tasks over the available hosts and starts the tasks asyn-
chronously. For this experiment, each map task simply
reads 2000 random words from a local file and counts
the number of instances of certain words. This count is
written to an intermediate output file based on the hash of
the words. The task is CPU-bound and requires approxi-
mately 7 seconds to complete on an unloaded PlanetLab-
class machine. The reduce tasks summarize these inter-
mediate files with the same hash values.

Thus, each map and reduce task performs an approxi-
mately equal amount of work as in the original MapRe-
duce work [9], though it would be useful to generalize
to variable-length computation. When complete, a map
or reduce task enters the associated barrier with a unique
identifier for the completed work. The barrier manager

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

T
as

k
co

un
t

Elapsed time (sec)

No reallocation
With reallocation

Figure 10: MapReduce:m = 480, r = 30, n = 30 with
uniform prepartitioning of the data. Knee detection oc-
curs at 68 seconds and callbacks enable rebalancing.

monitors the arrival rate and dynamically determines the
knee, which is the where the completion rate begins to
slow. We empirically determined that this slowing results
from a handful of nodes that proceed substantially slower
than the rest of the system. (Note that this phenomenon
is not restricted to our wide-area environment; Dean and
Ghemawat observed the same behavior for their runs
on tightly coupled and more homogeneous clusters [9].)
Thus, upon detecting the knee a callback to the MapRe-
duce controller indicates that additional copies of the
slow tasks should be respawned, ideally on nodes with
the smallest number of outstanding tasks. Typically, by
the time the knee is detected there are a number of hosts
that have completed their initial allocation of work.

Figure 10 shows the performance of one MapReduce run
both with and without task respawn upon detecting the
knee. Figure 10 plots the cumulative number of com-
pleted tasks on they-axis as a function of time progress-
ing on thex-axis. We see that the load balancing enabled
by barrier synchronization on abstract tasks is critical
to overall system performance. With task respawn us-
ing knee detection, the barrier manager detects the knee
approximately 68 seconds into the experiment after ap-
proximately 53% of the tasks have completed. At this
point, the MapReduce controller (via a callback from
the Barrier class) repartitions the remaining 47% of the
tasks across available wide-area nodes. This is where
the curves significantly diverge in the graph. Without
dynamic rebalancing the completion rate transitions to
a long-tail lasting more than 2500 seconds (though the
graph only shows the first 500 seconds), while the com-
pletion rate largely maintains its initial slope when rebal-
ancing is enabled. Overall, our barrier-based rebalancing
results in a factor of sixteen speedup in completion time
compared to proceeding with the initial mapping. Multi-
ple additional runs showed similar results.

Note that this load balancing approach differs from the
alternate approach of trying to predict the set of nodes
likely to deliver the highest level of performancea priori.
Unfortunately, predicting the performance of tasks with
complex resource requirements on a shared computing
infrastructure with dynamically varying CPU, network,
and I/O characteristics is challenging in the best case and
potentially intractable. We advocate a simpler approach
that does not attempt to predict performance character-
isticsa priori. Rather, we simply choose nodes likely to
perform well and empirically observe the utility of our
decisions. Of course, this approach may only be appro-
priate for a particular class of distributed applications and
comes at the cost of performing more work in absolute
terms because certain computations are repeated. For the
case depicted in Figure 10, approximately 30% of the
work is repeated if we assume that the work on both the
fast and slow nodes are run to completion (a pessimistic
assumption as it is typically easy to kill tasks running on
slow nodes once the fast instances complete).

7 Design alternatives

To address potential scalability problems with our cen-
tralized approach, a tree of controllers could be built that
aggregates BARRIERREACHED messages from chil-
dren before sending a single message up the tree [18,
26, 37]. This tree could be built randomly from the ex-
pected set of hosts, or it could be crafted to match the
underlying communication topology, in effect forming
an overlay aggregation tree [34, 36]. In these cases, the
master would send FIRE messages to its children, which
would in turn propagate the message down the tree. One
potentially difficult question with this approach is deter-
mining when interior nodes should pass summary BAR-
RIER REACH messages to their parent. Although a tree-
based approach may provide better scalability since mes-
sages can be aggregated up the tree, the latency required
to pass a message to all participants is likely to increase
since the number of hops required to reach all partici-
pants is greater than in the centralized approach.

A gossip-based algorithm could also be employed to
manage barriers in a fully decentralized manner [2]. In
this case, each node acts as a barrier manager and swaps
barrier status with a set of remote peers. Given sufficient
pair-wise exchanges, some node will eventually observe
enough hosts having reached the barrier and it will fire
the barrier locally. Subsequent pair-wise exchanges will
propagate the fact that the barrier was fired to the remain-
der of the nodes in the system, until eventually all active
participants have been informed. Alternatively, the node
that determines that a barrier should be released could
also broadcast the FIRE message to all participants. Fully
decentralized solutions like this have the benefit of being
highly fault tolerant and scalable since the work is shared

equally among participants and there is no single point
of failure. However, since information is propagated in
a somewhat ad hoc fashion, it takes more time to propa-
gate information to all participants, and the total amount
of network traffic is greater. There is an increased risk of
propagating stale information as well. In our experience,
we have not yet observed significant reliability limita-
tions with our centralized barrier implementation to war-
rant exploring a fully decentralized approach.

We expect that all single-controller algorithms will even-
tually run into scalability limitations based on a single
node’s ability to manage incoming and outgoing com-
munication with many peers. However, based on our per-
formance evaluation (see Section 6), the performance of
centralized barriers is acceptable to at least 100 nodes. In
fact, we find that our centralized barrier implementation
out-performs an overlay tree with an out-degree of 10 for
100 total participants with regards to the time it takes a
single message to propagate to all participants.

8 Related Work

Our work builds upon a number of synchronization con-
cepts in distributed and parallel computing. For tradi-
tional parallel programming on tightly coupled mul-
tiprocessors, barriers [19] form natural synchroniza-
tion points. Given the importance of fast primitives
for coordinating bulk synchronous SIMD applications,
most MPPs have hardware support for barriers [23, 31].
While the synchronization primitives and requirements
for large-scale networked systems discussed vary from
these traditional barriers, they clearly form one basis
for our work. Barriers also form a natural consistency
point for software distributed shared memory systems [6,
20], often signifying the point where data will be syn-
chronized with remote hosts. Another popular program-
ming model for loosely synchronized parallel machines
is message passing. Popular message passing libraries
such as PVM [15] and MPI [25] contain implementations
of barriers as a fundamental synchronization service.

Our approach is similar to Gupta’s work on Fuzzy Bar-
riers [17] in support of SIMD programming on tightly
coupled parallel processors. Relative to our approach,
Gupta’s approach specified an entry point for a barrier,
followed by a subsequent set of instructions that could
be executed before the barrier is released. Thus, a pro-
cessor is free to be anywhere within a given region of the
overall instruction stream before being forced to block.
In this way, processors completing a phase of computa-
tion early could proceed to other computation that does
not require strict synchronization before finally blocking.
This notion of fuzzy barriers were required in SIMD pro-
grams because there could only be a single outstanding
barrier at any time. We can capture identical semantics

using two barriers that communicate state with one an-
other. The first barrier releases all entering nodes and
signals state to a second barrier. The second barrier only
begins to release nodes once a sufficient number (perhaps
all) of nodes have entered the first barrier.

Our approach to synchronizing large-scale networked
systems is related to the virtual synchrony [2, 3] and
extended virtual synchrony [27] communication mod-
els. These communication systems closely tie together
node inter-communication with group membership ser-
vices. They ensure that a message multicast to a group is
either delivered to all participants or to none. Further-
more, they preserve causal message ordering [22] be-
tween both individual messages and changes in group
membership. This communication model is clearly bene-
ficial to a significant class of distributed systems, includ-
ing service replication. However, we have a more mod-
est goal: to provide a convenient synchronization point
to coordinate the behavior of more loosely coupled sys-
tems. It is important to stress that in our target scenar-
ios this synchronization is delivered mostly as a mat-
ter of convenience rather than as a prerequisite for cor-
rectness. Any inconsistency resulting from our model is
typically detected and corrected at the application, simi-
lar to soft-state optimizations in network protocol stacks
that improve common-case performance but are not re-
quired for correctness. Other consistent group member-
ship/view advancement protocols include Harp [24] and
Cristian’s group membership protocol [8].

Another effort related to ours is Golding’s weakly consis-
tent group membership protocol [16]. This protocol em-
ploys gossip messages to propagate group membership
in a distributed system. Assuming the rate of change in
membership is low enough, the system will quickly tran-
sition from one stable view to another. One key benefit
of this approach is that it is entirely decentralized and
hence does not require a central coordinator to manage
the protocol. As discussed in Section 7, we plan to ex-
plore the use of a distributed barrier that employs gossip
to manage barrier entry and release. However, our system
evaluation indicates that our current architecture delivers
sufficient levels of both performance and reliability for
our target settings.

Our loose synchronization model is related in spirit to
a variety of efforts into relaxed consistency models for
updates in distributed systems, including Epsilon Se-
rializability [30], the CAP principle [14], Bayou [32],
TACT [38], and Delta Consistency [33].

Finally, we note that we are not the first to use the ar-
rival rate at a barrier to perform scheduling and load bal-
ancing. In Implicit Coscheduling [11], the arrival rate
at a barrier (and the associated communication) is one

consideration in making local scheduling decisions to
approximate globally synchronized behavior in a multi-
programmed parallel computing environment. Further,
the way in which we use barriers to reallocate work is
similar to methods used by work stealing schedulers like
CILK [5]. The fundamental difference here is that idle
processors in CILK make local decisions to seek out ad-
ditional pieces of work, whereas all decisions to reallo-
cate work in our barrier-based scheme are made centrally
at the barrier manager.

9 Summary

Partial barriers represent a useful relaxation of the tradi-
tional barrier synchronization primitive. The ease with
which we were able to integrate them into three dif-
ferent existing distributed applications augurs well for
their general utility. Perhaps more significant, however,
was the straightforward implementation of wide-area
MapReduce as enabled by our expanded barrier seman-
tics. We are hopeful that partial barriers can be used to
bring to the wide area other sophisticated parallel algo-
rithms initially developed for tightly coupled environ-
ments. In our work thus far, we find in many cases it may
be as easy as directly replacing existing synchronization
primitives with their relaxed partial barrier equivalents.

Dynamic knee detection in the completion time of tasks
in heterogeneous environments is also likely to find
wider application. Being able to detect multiple knees
has added benefits since many applications exhibit multi-
modal distributions. Detecting multiple knees gives ap-
plications more control over reconfigurations and in-
creases overall robustness, ensuring forward progress
even in somewhat volatile execution environments.
References
[1] D. G. Andersen, H. Balakrishnan, and F. Kaashoek. Improving

Web Availability for Clients with MONET. InNSDI, 2005.
[2] K. Birman. Replication and Fault-Tolerance in the ISIS System.

In SOSP, 1985.
[3] K. Birman and T. Joseph. Exploiting Virtual Synchrony inDis-

tributed Systems. InSOSP, 1987.
[4] K. P. Birman. The Process Group Approach to Reliable Dis-

tributed Computing.CACM, 36(12), 1993.
[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded run-
time system. InPPOPP, 1995.

[6] M. Z. Brian Bershad and W. Sawdon. The Midway Distributed
Shared Memory System. InCompCon, 1993.

[7] Computing TCP’s Retransmission Timers (RFC).http://
www.faqs.org/rfcs/rfc2988.html.

[8] F. Cristian. Reaching Agreement on Processor-Group Member-
ship in Synchronous Distributed Systems.DC, 4(4), 1991.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters . InOSDI, 2004.

[10] E. Dijkstra. The Structure of the “THE”-Multiprogramming Sys-
tem. CACM, 11(5), 1968.

[11] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. InSIGMETRICS,
1996.

[12] EMAN. http://ncmi.bcm.tmc.edu/EMAN/.

[13] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology
of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. GGF, 2002.

[14] A. Fox and E. Brewer. Harvest, Yield, and Scalable Tolerant Sys-
tems. InHotOS, 1999.

[15] G. A. Geist and V. S. Sunderam. Network-based concurrent com-
puting on the PVM system.C– P&E, 4(4):293–312, 1992.

[16] R. Golding. A Weak-Consistency Architecture for Distributed
Information Services.CS, 5(4):379–405, Fall 1992.

[17] R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed Syn-
chronization of Processors. InASPLOS, 1989.

[18] R. Gupta and C. R. Hill. A scalable implementation of bar-
rier synchronization using an adaptive combining tree.IJPP,
18(3):161–180, 1990.

[19] H. F. Jordan. A Special Purpose Architecture for FiniteElement
Analysis. InICPP, 1978.

[20] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations
and Operating Systems. InUSENIX, pages 115–131, 1994.

[21] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. InSOSP,
2003.

[22] L. Lamport. Time, Clocks, and the Ordering of Events in aDis-
tributed System.CACM, 21(7), 1978.

[23] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feyn-
man, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul,
M. A. S. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W. Yang, and
R. Zak. The network architecture of the Connection Machine
CM-5. JPDC, 33(2):145–158, 1996.

[24] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and
M. Williams. Replication in the Harp file system. InSOSP, 1991.

[25] Message Passing Interface Forum. MPI: A message-passing in-
terface standard. Technical Report UT-CS-94-230, 1994.

[26] S. Moh, C. Yu, B. Lee, H. Y. Youn, D. Han, and D. Lee. Four-ary
tree-based barrier synchronization for 2d meshes without non-
member involvement.TC, 50(8):811–823, 2001.

[27] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
and C. A. Lingley-Papadopoulos. Totem: A Fault-Tolerant Mul-
ticast Group Communication System.CACM, 39(4), 1996.

[28] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology into the Internet. In Hot-
Nets, 2002.

[29] Plush.http://plush.ucsd.edu.
[30] C. Pu and A. Leff. Epsilon-Serializability. TechnicalReport

CUCS-054-90, Columbia University, 1991.
[31] S. L. Scott. Synchronization and Communication in the T3E Mul-

tiprocessor. InASPLOS, 1996.
[32] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.

Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
SOSP, 1995.

[33] F. Torres-Rojas, M. Ahamad, and M. Raynal. Timed Consistency
for Shared Distributed Objects. InPODC, 1999.

[34] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A Ro-
bust and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining.TCS, 21(2), 2003.

[35] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. InSOSP,
2001.

[36] P. Yalagandula and M. Dahlin. A Scalable Distributed Informa-
tion Management System. InSIGCOMM, 2004.

[37] J.-S. Yang and C.-T. King. Designing tree-based barrier synchro-
nization on 2d mesh networks.TPDS, 9(6):526–534, 1998.

[38] H. Yu and A. Vahdat. Design and Evaluation of a Continuous
Consistency Model for Replicated Services. InOSDI, 2000.

