L oose Synchronization for Large-Scale Networked Systems

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren,/Aamih VVahdat
University of California, San Diego
{jalbrecht, ctuttle, snoeren, vahda@cs.ucsd.edu

Abstract independent forward progress while still maintaining
some higher-level correctness semantic. Perhaps the sim-

Traditionally, synchronization barriers ensure that no co EleSt synchronization primitive is the barrier [19], which

operating process advances beyond a specified point u stablishes a rendezvous point in the computation that

til all processes have reached that point. In heterogeneoug ncyrrent nodes must reach before any are allowed
Iarge—scale dlstrlbyted computlng_enwronments,W|th UN4o continue. Bulk synchronous parallel programs run-
reliable network links and machines that may become,iny on MPPs or clusters of workstations employ barriers
overloaded and unresponsive, traditional barrier semary, perform computation and communication in phases

.tICS are .too- strict to *?e effective for a range of emerg'transitioning from one consistent view of shared under-
ing applications. In this paper, we explore several relax1ying data structures to another
ations, and introducegartial barrier, a synchronization

primitive designed to enhance liveness in loosely coupledn Past work, barriers and other synchronization primi-
networked systems. Partial barriers are robust to varilives have defined strict semantics that ensure safety—
able network conditions; rather than attempting to hidel-€- that no node falls out of lock-step with the others—
the asynchrony inherent to wide-area settings, they er@t the expense of liveness. In particular, if employed
able appropriate application-level responses. We evaluaf’@vely, a parallel computation using barrier synchro-
the improved performance of partial barriers by integrat-nization moves forward at the pace of the slowest node
ing them into three publicly available distributed appli- @1d the entire computation must be aborted if any node
cations running across PlanetLab. Further, we show hogils. In closely-coupled supercomputer or cluster envi-

partial barriers simplify a re-implementation of MapRe- ronments, skillful programmers optimize their applica-
duce that targets wide-area environments. tions to reduce these synchronization overheads by lever-

ducti aging knowledge about the relative speed of individual
1 Introduction nodes. Further, dataflow can be carefully crafted based

Today’s resource-hungry applications are increasingly!Pon an understanding of transfer times and access la-
deployed across large-scale networked systems, whetgncies to prevent competing demand for the I/O bus.
significant variations in processor performance, networkinally, recovering from failure is frequently expensive;
connectivity, and node reliability are the norm. These in-thus, failure during computation is expected to be rare.

stallations lie in stark contrast to the tightly-coupledssl |n |arge-scale networked systems—where individual
ter and supercomputer environments traditionally emnode speeds are unknown and variable, communi-
ployed by compute-intensive applications. What remaingation topologies are unpredictable, and failure is
unchanged, however, is the need to synchronize Vari0U§0mmonp|ace_app|ications must be robust to a range
phases of computation across the participating nodesf operating conditions. The performance tuning com-
The realities of this new environment place additionalmon in cluster and supercomputing environments is im-
demands on synchronization mechanisms; while exXistpractical, severely limiting the performance of synchro-
ing techniques provide correct operation, performance isized concurrent applications. Further, individual node
often severely degraded. We show that new, relaxed syrailures are almost inevitable, hence applications are gen
chronization semantics can provide significant perfor-erally engineered to adapt to or recover from failure. Our
mance improvements in wide-area distributed systems. work focuses on distributed settings where online per-

Synchronizing parallel, distributed computation has longformance optimization is paramount and correctness is

been the focus of significant research effort. At a highensured through other mechanisms. We introduce adap-
level, the goal is to ensure that concurrent computatioriive mechanisms to control the degree of concurrency in

tasks—across independent threads, processors, nodesGases where parallel execution appears to be degrading
a cluster, or spread across the Internet—are able to maierformance due to self-interference.

At a high level, emerging distributed applications all im- jority of nodes to block while waiting for a handful of
plement some form of traditional synchronizing barri- slow or failed nodes to catch up. Many wide-area appli-
ers. While not necessarily executing a SIMD instructioncations already have the ability to reconfigure themselves
stream, different instances of the distributed computatio to tolerate node failure. We can harness this functionality
reach a shared point in the global computation. Relato avoid excessive waits at barriers: once slow nodes are
tive to traditional barriers, however, a node arriving atidentified, they can be removed and possibly replaced by
a barrier need not necessarily block waiting for all otherquicker nodes for the remainder of the execution.
i_ns_tances to arriv_e—doing so would likely s_acrifice_ef- One of the important questions, then, is determining
ficiency or even liveness as the system walits for eitheynep, 1 release a barrier, even if all nodes have not ar-

slow or failed nodes. Similarly, releasing a barrier doesrived at the synchronization point. That is, it is impor-
not necessarily imply that all nodes should pass throughy ¢ 1o gynamically determine the point where waiting
the barrier simultaneously—e.g., simultaneously releasg, »qgitional nodes to enter the barrier will cost the ap-
ing thousands of nodes to download a software packagfiication more than the benefit brought by any additional
effectively mounts a denial-of-service attack against thearriving nodes in the future. This determination often de-
target repository. Instead, applications manage the entryo45"on the semantics of individual applications. Even
and release semantics of their logical barriers inaén it £yl knowledge of application behavior, making the
hog application-specific manner. decision appropriately requires future knowledge. One
This paper defines, implements, and evaluates a new syigontribution of this work is a technique to dynamically
chronization primitive that meets the requirements of aidentify “knees” in the node arrival procedss., points
broad range of large-scale network services. In this conwhere the arrival process significantly slows. By com-
text, we make the following contributions: municating these points to the application we allow it to

. . . N make informed decisions regarding when to release.
e We introduce apartial barrier, a synchronization

primitive designed for heterogeneous failure-prone enA primary contribution of this work is the definition of
vironments. By relaxing traditional semantics, partial relaxed barrier semantics to support a variety of wide-
barriers enhance liveness in the face of slow, failedarea distributed computations. To motivate our proposed
and self-interfering nodes. extensions consider the following application scenarios:

e Based on the observation that the arrival rate atapplication initialization. Many distributed applica-
a barrier will often form a heavy-tailed distribu- tions require a startup phase to initialize their localestat
tion, we design a heuristic to dynamically detect theang to coordinate with remote participants before begin-
knee of the curve-the point at which arrivals slow ning their operation. Typically, developers introduce an
considerably—allowing applications to continue de- artificial delay judged to be sufficient to allow the system
spite slow nodes. We also adapt the rate of releasg, stapilize. If each node entered a barrier upon complet-
from a barrier to prevent performance degradation ining the initialization phase, developers would be freed

the face of self-interfering processes. ~ from introducing arbitrarily chosen delays into the inter-
» We adapt three publicly available, wide-area servicegctive development/debugging cycle.

to use partial barriers for synchronization, and reim-

plement a fourth. In particular, we use partial bar- " :
riers to reduce the implementation complexity of appl_|cat|0ns and Ia_rg_e-scale computations often_oper-
an Internet-scale version of MapReduce [9] runningate n phases_ consisting of one or many sequential, o-
across PlanetLab. In all four cases, partial barriers re9al gom_putatlons, followed by _penods of global com-
sultin a significant performance improvement. munication or parallel com_putatlon. These computations
naturally map to the barrier abstraction: one phase of
the computation must complete before proceeding to the
2 Distributed barriers next phase. Other applications operate on a work queue
that distributes tasks to available machines based on the
We refer to nodes asnteringa barrier when they reach rate that they complete individual tasks. Here, a barrier

a point in the computation that requires synchronizationmay serve as a natural point for distributing work.
When a barriereleaseor fires (we use the terms inter-

Phased computation and communication. Scientific

h bIv). the blocked nod I dt (E:oordinated measurement. Many distributed applica-
changeably), the blocked nodes are allowed to procee fons measure network characteristics. However, unco-

According fo strict barrier semantics, ensuring Safety'ordinated measurements can self-interfere, leading to

i.e., global synchronization, requires all nodes to reacr\/vasted effort and incorrect results. Such systems benefit

a synchronization point before any node proceeds. In th(I%"rom a mechanism that limits the number of nodes that

fa_ce of wide Va”ab'".ty in performance and prominent simultaneously perform probes. Barriers are capable of
failures, however, strict enforcement may force the ma-

A :‘ A : A »IJ A —F
B N B I B —~L} B —+ }
C — C i c— i —F+— c — e
D 3 D —+- p—l_3+— ——
. . \ AT
@) (b) (© (d)

Figure 1: (a) Traditional semantics: All hosts enter theika(indicated by the white boxes) and are simultaneously
released (indicated by dotted line). (b) Early entry: Theibafires after 75% of the hosts arrive. (c) Throttled rek=a
Hosts are released in pairs evéxy’ seconds. (d) Counting semaphore: No more than 2 processssraritaneously
allowed into a “critical section” (indicated by the grey i@gs). When one node exits the critical section, another hos
is allowed to enter.

providing this needed functionality. In this case, the ap-This section describes these extended semantics, details
plication uses two barriers to delimit a “critical section” our API, and presents the implementation details.

of code (e.g., a network measurement). The first barrieg_l Design

releases some maximum number of nodes into the criti-

cal section at a time and waits until these nodes reach thé/e define two new barrier semantics to support emerging
second barrier, thereby exiting the critical section, befo wide-area computing paradigms and discuss each below.

releasing the next round. Early entry — Traditional barriers require all nodes to
To further clarify the goal of our work, it is perhaps enter a barrier before any node may pass through, as in
worthwhile to consider what ware nottrying to accom- Figure 1(a). A partial barrier with early entry is instanti-
plish. Partial barriers provide only a loose form of group ated with a timeout, a minimum percentage of entering
membership [8, 16, 27]. In particular, partial barriers donodes, or both. Once the barrier has met either of the
not provide any ordering of messages relative to barri-specified preconditions, nodes that have already entered
ers as in virtual synchrony [2, 3], nor do partial barriersa barrier are allowed to pass through without waiting for
require that all participants come to consensus regardthe remaining slow nodes (Figure 1(b)). Alternatively, an
ing a view change [24]. In effect, we strive to construct application may instead choose to receive callbacks as
an abstraction that exposes the asynchrony and the faitodes enter and manually release the barrier, enabling
ures prevalent in wide-area computing environments in dhe evaluation of arbitrary predicates.

mannfarthat gl!ows the application to make dynamic andrp ott|ed-release — Typically, a barrier releases all
adaptive decisions as to how to respond. nodes simultaneously when a barrier's precondition is
It is also important to realize that not all applicationslwil met. A partial barrier with throttled-release specifies a
benefit from relaxed synchronization semantics. The corfate of release, such as two nodes ev&fly seconds as
rectness of certain classes of applications cannot be guaghown in Figure 1(c). A special variation of throttled-
anteed without complete synchronization. For examplefelease barriers allows applications to limit the number of
some applications may require a minimum number ofnodes that simultaneously exist in a “critical section” of
hosts to complete a computation. Other applications magode, creating an instance of a counting semaphore [10]
approximate a measurement (such as network delay) arf@hown in Figure 1(d)), which may be used, for ex-
continuing without all nodes reduces the accuracy of theample, to throttle the number of nodes that simultane-
result. However, many distributed applications, includ-ously perform network measurements or software down-
ing the ones described in Section 5, can afford to sacloads. A critical distinction between traditional courmfin
rifice global synchronization without negatively impact- semaphores and partial barriers, however, is our support
ing the results. These applications either support dynamfor failure. For instance, if a sufficient number of slow
ically degrading the computation, or are robust to failuresor soon-to-fail nodes pass a counting semaphore, they
and can tolerate mid-computation reconfigurations. Ouwill limit access to other participants, possibly forever.
results indicate that for applications that are willing andThus, as with early-entry barriers, throttled-release bar
able to sacrifice safety, our semantics have the potentialers eventually time out slow or failed nodes, allowing
to improve performance significantly. the system as a whole to make forward progress despite

individual failures.

3 Design and implementation . o
d P One issue that our proposed semantics introduce that

Partial barriers are a set of semantic extensions to thdoes not arise with strict barrier semantics is handling
traditional barrier abstraction. Our implementation hasnodes performing late entrize., arriving at an already
a simple interface for customizing barrier functionality. released barrier. We support two options to address this

class Barrier{ and | abel when they reach the appropriate point in

Barrief(string name int max int timeout their execution. (Theabel argument supports advanced
int percent int minWait); functionality such as load balancing for MapReduce as

static void setManagestring Hostnamg described in Section 5.4.) The participangst er ()

void ente(siring label siring Hostnamg method notifies the manager that the particular node has

void setEnterCallbadkool (*callbackFuny(siring label reached the synchronization point. Our implementation

string Hostname bool defaul), int timeou);

map<string label string Hostname getHostévoid): supports blocking calls tent er () (as described here)

or optionally a callback-based mechanism where the en-
tering node is free to perform other functionality until the
appropriate callback is received.

Figure 2: Barrier instantiation API. .) o
While our standard APl provides simplistic support

case: i) pass-through semantics that allow the node téPr the early release of a barrier, an application may
proceed with the next phase of the computation eveAnaintain its own state to determine when a partic-
though it arrived late; i) catch-up semantics that issue alar barrier should fire and to manage any side ef-
exception allowing the application to reintegrate the nodd€cts associated with barrier entry or release. For in-
into the mainline computation in an application-specific Stance, a barrier manager may wish to kill processes

manner, which may involve skipping ahead to the next'Mving late to a particular (already released) bar-
barrier (omitting the intervening section of code) in an'i€r- To support application-specific functionality, the

effort to catch up to the other nodes. set Ent er Cal | back() method specifies a function to
be called when any node enters a barrier. The callback
3.2 Partial barrier API takes thd abel andHost nane passed to thent er ()

. .)) method and a boolean variable that specifies whether
Figure 2 summarizes the partial barrier APl from anyhe manager would normally release the barrier upon
gppllcatlon S perspgcnve. Each participating node ini-;q entry. The callback function returns a boolean value
tializes a barrier with a constructor that takes the fol-, specify whether the barrier should actually be re-
lowing argumentsnane, mex, ti meout , percent, and o556 or not, potentially overriding the manager's de-
m n_/\au t. name is a globally unique identifier for the_ cision. A second argument teet Ent er Cal | back()
barrier.max specifies the maximum number of partici- ¢ajeq ¢ reout specifies a maximum amount of time
pants in the barrier. (While we do not requEepriori 4t may pass before successive invocations of the call-
knowledge of participant |deqt|ty, .|t_would be straight- pack. This prevents the situation where the application
forward to add.) The i meout in milliseconds sets the \\its a potentially infinite amount of time for the next
maximum time that can pass from the point where they,qe 1o arrive before deciding to release the barrier. We

first node enters a barrier before the barrier is releaseqjse this callback API to implement our adaptive release
The per cent field similarly captures a minimum per- techniques presented in Section 4.

centage out of the maximum number nodes that must . . : .

reach the barrier to activate early release. Fhewai t Barrier participants may wish to Igarn t_he_ identity of a_II
field is associated with theer cent field and specifies NOSts that passed through a barrier, similar to (but with
a minimum amount of time to wait (even if the specified rélaxed semantics from) view advancement or GBCAST
percentage of nodes have reached) before releasing tifg virtual synchrony [4]. Theget Host s() method re-
barrier with less than the maximum number of nodesUMs @ map otost nanes and| abel s through a re-
Without this field, the barrier will deterministically be Mote procedure call with the barrier manager. If many
released upon reaching the threshold percent of enterin0Sts are interested in membership information, it can
nodes even when all nodes are entering rapidly. HowOPtionally be propagated from the barrier manager to all
ever, the barrier is always releasedrifx nodes arrive, nodes by default as part of the barrier release operation.

regardless ofii n\i t . Thet i meout field overridesthe Figure 3 describes a subclass oBarrier,

per cent andni nvai t fields; the barrier will fire if the called ThrottleBarrier, with throttled-release
timeout is reached, regardless of the percentage of nodeemantics. These semantics allow for a pre-
entering the barrier. The last three parameters to the cordetermined subset of the maximum number of
structor are optional—if left unspecified the barrier will nodes to be released at a specified rate. The
operate as a traditional synchronization barrier. methods set Thrott! eRel easePercent () and

Coordination of barrier participants is controlled by a St Throttl eRel easeCount () periodically release
barrier manager whose identity is specified at startup by Percentage and number of nodes, respectively, once
the set Manager () method. Participants call the bar- the barrier fires.set Throttl eRel easeTi meout ()

rier's enter() method and pass in thehostname SPecifies the periodicity of release.

class ThrottleBarrier extends Barrigr entering the barrier and subsequently records the inter-
void setThrottleReleasePercént percen; arrival times between nodes entering the barrier.
void setThrottleReleaseCouirit coun);

. : R If a sufficient number of nodes enter the barrier or a
void setThrottleReleaseTimedirit timeou);

specified amount of time passes, the manager transmits

class SemaphoreBarrier extends Barrer FIRE messages using TCP to all nodes that have entered

void setSemaphoreCou(imit coun); the barrier. For throttled release barriers, the manager re
void setSemaphoreTimedirt timeous; leases the specified number of nodes from the barrier in
void releaséstring label string Hostnamg FIFO order. The manager also sets a timer as specified
void setReleaseCallbagkt (*callbackFuny(string label by set Throt t | eRel easeTi neout () to release addi-

} string Hostname int defaul), int timeou); tional nodes from the barrier when appropriate.

For semaphore barriers, the manager releases the num-
ber of nodes specified byet Senaphor eCount ()
and, if specified byset Semaphor eTi meout (), also

. . . sets a timer to expire for each node entering the
Figure 3 also details a variant of throttled-release bar- P g

. S hor eBar r i hich i critical section. Each call tcenter() transmits a
rers, semaphor eBarrier, Which Specilies a maxi- gey\ApHOREREACHED message to the manager.
mum number of nodes that may simultaneously ente

. . . In response, the manager starts the timer associated
a critical section. ASenaphoreBarri er extends the

throttled-rel tics further by placi barri with the calling node. If the semaphore timer associ-
rotied-release semantics Turther by placing a bamet, . iy the node expires before receiving the cor-
at the beginning and end of a critical section of activ-

ity t that onl i b f nod responding SEMAPHORIRELEASED message, the
Ity 1o ensure that only a specilic number ol nodes pas anager assumes that node has either failed or is
into the critical section simultaneously. One key dif-

i L . roceeding sufficiently slowly that an additional node
ference for this type of barrier is that it does not re—p g y y

. - should be released into the critical section. Each
quire any minimum number of nodes to enter the bar'SEMAPHORERELEASED message releases one addi-
rier before beginning to release nodes into the subs

" .) . Sional node into the critical section.
guent critical section. It simply mandates a maximum

number of nodes that may simultaneously enter thd=or all barriers, the manager must gracefully handle
critical section. Theset Semaphor eCount () method nodes arriving latei.e., after the barrier has fired. We
sets this maximum number. Nodes call the barrier's€mploy two techniques to address this case. For pass-
rel ease() method upon completing the subsequentthrough semantics, the manager transmits a LATRE
critical section, allowing the barrier to release addisibn Message to the calling node, releasing it from the barrier.
nodesset Semaphor eTi meout () allows for timingout 1N catch-up semantics, the manager issues an exception
nodes that enter the critical section but do not completénd transmits a CATCHJP message to the node. Catch-
within a maximum amount of time. In this case, they UP semantics allow applications to respond to the excep-
are assumed to have failed, enabling the release of adlon and determine how to reintegrate the node into the
ditional nodes. Theset Rel easeCal | back() enables computation in an application-specific manner.
application-specific release policies and timeout of slowThe type of barrier—pass-through or catch-up—is spec-
or failed nodes in the critical section. The callback func-jfied at barrier creation time (intentionally not shown in
tion in set Rel easeCal | back() returns the number of Figure 2 for clarity). Nodes callingnt er () may regis-
hosts to be released. ter local callbacks with the arrival of either LATEIRE
3.3 Implementation or CATCH.UP messages for application-specific re-
synchronization with the mainline computation, or per-
Partial barrier participants implement the interface de-haps to exit the local computation altogether if re-
scribed above while a separate barrier manager coordsynchronization is not possible.
nates communication across nodes._Our |mplerr_1entat|o§_4 Fault tolerance
of partial barriers consists of approximatély000 lines
of C++ code. At a high level, a node calliregt er () One concern with our centralized barrier manager is tol-
transmits a BARRIERREACHED message using TCP erating manager faults. We improve overall system ro-
to the manager with the calling host’s unique identifier, bustness with support for replicated managers. Our al-
barrier name, and label. The manager updates its logorithm is a variant of traditional primary/backup sys-
cal state for the barrier, including the set of nodes thatems: each participant maintains an ordered list of bar-
have thus far entered the barrier, and performs appropriser controllers. Any message sent from a client to the
ate callbacks as necessary. The manager starts a timerltmical barrier manager is sent to all controllers on the
support various release semantics if this is the first noddist. Because application-specific entry callbacks may be

Figure 3: ThrottleBarrier and SemaphoreBarrier API.

non-deterministic, a straightforward replicated state ma 1
chine approach where each barrier controller simultane-
ously decides when to fire is insufficient. Instead, the
primary controller forwards all BARRIERREACHED
messages to the backup controllers. These messages a
as implicit “keep alive” messages from the primary. If a
backup controller receives BARRIEREACHED mes-
sages from clients but not the primary for a sufficient pe-
riod of time, the first backup determines the primary has
failed and assumes the role of primary controller. The

Percent of hosts reaglng barrier

Host arrival

. i Threshold
secondary backup takes over should the primary fail, and | Ot
so on. Note that our approach admits the case where mul- 10 15 20 25 30

tiple controllers simultaneously act as the primary con- Elapsed time (sec)
troller for a short period of time. Clients ignore duplicate _) - .
FIRE messages for the same barrier, so progress is aklgure 4. Dynamlcally de.ter'mlnlng the knee Of_ armving
sured, and one controller eventually emerges as prin.|ar);:_)rocesses. Vertical bars indicate a knee detection.

Although using the replicated manager scheme denumber of additional nodes to enter the barrier; if too
scribed above lowers the probability of losing BAR- small, the application will lose the opportunity to have
RIER_.REACHED messages, it does not provide any in-participation from other nodes had it just waited a bit
creased reliability with respect to messages sent from theonger. Thus, we use the barrier’s callback mechanism to
manager(s) to the remote hosts. All messages are sent ugetermine release points in response to varying network
ing reliable TCP connections. If a connection fails be-conditions and node performance.

tween the manager and a remote host, however, mesy or experience, the distribution of nodes’ arrivals at
sages may be lost. For example, suppose the TCP conrparrier is often heavy-tailed: a relatively large portion
nections between the manager and some subset of thg nodes arrive at the barrier quickly with a long tail of
remote hosts break just after the manager sends a F'Réragglers entering late. In this case, many of our tar-
message to all participants. Similarly, if a group of nodesget applications would wish to dynamically determine
fails after entering the_barrier, but before receiving.thethe “knee” of a particular arrival process and release the
FIRE message, the failure may go undetected until afyarrier upon reaching it. Unfortunately, while it can be
ter the controller transmits the FIRE messages. In thes§traightforward to manually determine the knee off-line

cases, the manager will attempt to send FIRE messagegce all of the data for an arrival process is available, it
to all participants, and detect the TCP failures after theg gitficult to determine this point on-line.

connections time out. Such ambiguity is unavoidable in

asynchronous systems; the manager simply informs th@ur heuristic, inspired by TCP retransmission timers and

application of the failure(s) via a callback and lets the ap-MONET [1], maintains an exponentially weighted mov-

plication decide the appropriate recovery action. As withi"d @verage (EWMA,) of the host arrival times'(), and

any other failure, the application may choose to continug0ther EWMA of the deviation from this average for
execution and ignore the failures, attempt to find new€ach measurementi(rvar). As each host arrives at the

hosts to replace the failed ones, or to even abort the exd@"Mer, we record the arrival time of the host, as well as
cution entirely. the deviation from the average. Then we recompute the

] EWMA for both arr andarrvar, and use the values to
4 Adaptiverelease compute a maximum wait threshold @fr + 4 x arrvar.

Unfortunately, our extended barrier semantics introduce NS threshold indicates the maximum time we are will-

additional parameters: the threshold for early release anffid {© Wait for the next host to arrive before firing the
the concurrency level in throttled release. Experience haaTier. If the next host does not arrive at the barrier be-
shown it is often difficult to select values that are appro-0re the maximum wait threshold passes, we assume that

priate across heterogeneous and changing network cofkknee has been reached. Figure 4 illustrates how these

ditions. Hence, we provide adaptive mechanisms to dyyalues interact for a simulated group of 100 hosts enter-

namically determine appropriate values ing a barrier with randomly generated exponential inter-
arrival times. Notice that a knee occurs each time the host

41 Earlyrelease arrival time intersects the threshold line.

There is a fundamental tradeoff in specifying an early-With the capability to detect multiple knees, it is impor-
release threshold. If the threshold is too large, the aptant to provide a way for applications to pick the right
plication will wait unnecessarily for a relatively modest knee and avoid firing earlier or later than desired. Ag-

gressive applications may choose to fire the barrier whemedian is more than 10% but less than 50% greater than
the first knee is detected. Conservative applications mathe overall median, one host is released, maintaining a
wish to wait until some specified amount of time haslevel of concurrency ot 5. In all other cases, two hosts
passed, or a minimum percentage of hosts have entereate released, increasing the concurrency levébtarhe

the barrier before firing. To support both aggressive andhresholds and differences in size are selected to increase
conservative applications, our algorithm allows the appli the degree of concurrency whenever possible, but keep
cation to specify a minimum percentage of hosts, mini-the magnitude of each change small.

mum waiting time, or both for each barrier. If an appli- .

cation specifies a minimum waiting time of 5 seconds,® ApPplications

knees detected before 5 seconds are ignored. Similarly, {fye integrated partial barriers into three wide-area, dis-
aminimum host percentage of 50% is specified, the knegiy, teq applications with a range of synchronization
detector ignores knees detected before 50% of the to"%quirements. We reimplemented a fourth application

hosts have entered the barrier. If both values are specihose source code was unavailable. While a detailed dis-
fied, the knee detector uses the more conservative threseassion of these applications is beyond the scope of this

old so that both requirements (time and host percentage)aner. we present a brief overview to facilitate under-
are met before firing. standing of our performance evaluation in Section 6.

One variation in our approach compared to other relate
approaches is the values for the weights in the movin 1 Plush

averages. In the RFC for computing TCP retransmissiorp,,sp, [29] is a tool for configuring and managing large-

timers [7], the weight in the EWMA of theit places a = g5j¢ distributed applications, such as PlanetLab [28] and
heavier weight(.875) on previous delay measurements. ina Grig [13]. Users specify a description of: i) a set of

This value works well for TCP since the average delay ishoges to run their application on; ii) the set of software

expected to remain relatively constant over time. In OUmhackages, including the application itself and any neces-

case, however, we expect the average arrival time 10 ing5ry gata files, that should be installed on each node; and

crease, and thus we decreased the weight @Tiefor iy 3 directed acyclic graph of individual processes that
previous measurementsafr. This allows ourrr value ghould be run, in order, on each node.

to more closely follow the actual data being recorded.))
When measuring the average deviation, which is comP!ush may be used to manage long-running services or
puted by averagingsample — arr| (wheresample rep- interactive experimental evaluations of distributed appl

resents the latest arrival time recorded), we used a weigtf2tions. In the latter case, developers typically configure

of 0.75 for previous measurements, which is the same? set of machines (perhaps installing the latest version
weight used in TCP for the variation itt. of the application binary) and then start the processes at

approximately the same time on all participating nodes.
4.2 Throttled release A barrier may be naturally inserted between the tasks of

node configuration and process startup. However, in the
We also employ an adaptive method to dynamically ad-heterogeneous PlanetLab environment, the time to con-
just the amount of concurrency in the “critical section” figure a set of nodes with the requisite software can vary
of a semaphore barrier. In many applications, it is im-widely or fail entirely at individual hosts. In this case,
practical to select a single value which performs well un-it is often beneficial to timeout the “software configura-
der all conditions. Similar in spirit to SEDA's thread-pool tion/install” barrier and either proceed with the avai@bl
controller [35], our adaptive release algorithm selects amodes or to recruit additional nodes.
appropriate concurrency level based upon recent release
times. The algorithm starts with low level of concurrency 52 Bullet
and increases the degree of concurrency until reSPOnsg, et 21 is an overlay-based large-file distribution in-
times worsen; it then backs off and repeats, oscillating g4y cture. In Bullet, a source transmits a file to re-
about the optimum value. ceivers spread across the Internet. As part of the boot-
Mathematically, the algorithm compares the median ofstrap process, all receivers join the overlay by initially
the distributions of recent and overall release times. Focontacting the source before settling on their final po-
example, if there aré5 hosts in the critical section when sition in the overlay. The published quantitative evalua-
the45th host is released, the algorithm computes the metion of Bullet presents a number of experiments across
dian release time of the last releases, and of all5. PlanetLab. However, to make performance results exper-
If the latest median is more than 50% greater than theémentally meaningful when measuring behavior across a
overall median, no additional hosts are released, thus rdarge number of receivers, the authors hard-coded a 30-
ducing the level of concurrency ol hosts. If the latest second delay at the sender from the time that it starts

to the time that it begins data transmission. While typi-
cally sufficient for the particular targeted configuration, ‘ MapReduce Controller
the timeout would often be too long, unnecessarily ex- s /‘
tending turnaround time for experimentation and inter- by
active debugging. Depending on overall system load and
number of participants, the timeout would also some-
times be too short, meaning that some nodes would not
complete the join process at the time the sender begins
transmitting. While this latter case is not a problem for
the correct behavior of the system, it makes interpreting
experimental results difficult.

Map Barrier

To address this limitation, we integrated partial barri-
ers into the Bullet implementation. This integration was
straightforward. Once the join process completes, each
node simply enters a barrier. The Bullet sender registers
for a callback with the barrier manager to be notified of
a barrier release, at which point it begins transmitting
data. By calling thgjet Host s() method, the sendercan -___. SR P iiiioo. P y

record the identities of nodes that should be considered

in interpreting the experimental results. The barrier manFigure 5: MapReduce execution. As each map task com-
ager notes the identity of nodes entering the barrier latpletes,ent er (i) is called with the unique task iden-
and instructs them to exit rather than proceed with redifier. Once allm tasks have entered the Map barrier,
trieving the file. it is released. When the MapReduce controller is noti-
fied that the Map barrier has fired, tirereduce tasks
are distributed and begin execution. Whenrateduce
tasks have entered the Reduce barrier, MapReduce is
complete. In both barriers;al | back(i) informs the

. . . MapReduce controller of task completions.
EMAN [12] is a publicly available software package P . pieti

used for reconstructing 3D models of particles using 2D

electron micrographs. The program takes a 2D micro-

graph image as input and then repeatedly runs a “refines 4\ apReduce

ment” process on the data to create a 3D model. Each

iteration of the refinement consists of both computation-MapReduce [9] is a toolkit for application-specific par-

ally inexpensive sequential computations and computaallel processing of large volumes of data. The model

tionally expensive parallel computations. involves partitioning the input data into smallsplits

nof data, and spreading them across a cluster of worker

nodes. Each worker node appliesnap function to the
plits of data that they receive, producing intermediate

1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
I
|
I
I
1
I
|

5.3 EMAN

Barriers separate sequential and parallel stages of co
putation in EMAN. Using partial barrier semantics adds
the benefit of being able to detect slow nodes, allowin X o . -
the application to redistribute tasks to faster machine&€Y/value pairs that are periodically written to specific

during the parallel phase of computation. In addition to'0¢@tions on disk. The MapReduce master node tracks
slow processors, the knee detector also detects machind€Se locations, and eventually notifies another set of
with low bandwidth capacities and reallocates their workWorker nodes that intermediate data is ready. Th_|s Sec-
to machines with higher bandwidth. In our test, each re-°"d et of workers aggregate the data and pass it to the

finement phase requires approximately 240 MB of datéeducefqnction. This_ function processes the data to pro-
to be transferred to each node, and machines with lov!uce a final outputfile.

bandwidth links have a significant impact on the overallOur implementation of MapReduce leverages partial bar-
completion time if their work is not reallocated to differ- riers to manage phases of the computation and to orches-
ent machines. Since the sequential phases run on a sindieate the flow of data among nodes across the wide area.
machine, partial barriers are most applicable to the paralin our design, we have: map tasks and corresponding
lel phases of computation. We use the publicly availablanput files,n total nodes hosting the computation, and
version of EMAN for our experiments. We wrote a 50- reduce tasks. A central MapReduce controller distributes
line Perl script to run the parallel phase of computationthem split input files to a set of available nodes (our cur-
on 98 PlanetLab machines using Plush. rent implementation runs on PlanetLab), and spawns the

map process on each node. When the map tasks finish, 18

intermediate files are written back to a central repository, 16 L

and then redistributed tohosts, who eventually execute 14l

ther reduce tasks. There are a number of natural barriers ol

in this application, as shown in Figure 5, corresponding -

to completion of; i) the initial distribution ofn split files e 1

to appropriate nodes; ii) executimg map functions; iii) E 08

the redistribution of the intermediate files to appropriate 06 }

nodes, and iv) executingreduce functions. 04t ,

As with the original MapReduce work, the load balanc- o2 b T i ests

ing aspects corresponding to barriers (i) and (iv) (from ol , 90th perceptle -,
10 20 30 40 50 60 70 80 90 100

the previous paragraph) are of particular interest. Recall
that although there aren map tasks, the same physical
host may execute multiple map tasks. In these cases, trl-qgure 6: Scalability of centralized barrier imple-
goal is not necessarily to wait for all hosts to reach mpentation. “All hosts” line shows the average time
the barrier, but for alln or r logical tasks to complete. 5cr0ss 5 runs for barrier manager to receive BAR-
Thus, we extended the original barrier entry semantick|er REACHED messages from all hosts. “90th per-
described in Section 3 to support synchronizing barriergentile” line shows the average time across 5 runs for

at the level of a set of logical, uniquely named tasks orjy5rier manager to receive BARRIEREACHED mes-
processes, rather than a set of physical hosts. To suppogéges from 90% of all hosts.

this, we simply invoke thent er () method of the bar-

rier API (see Figure 2) upon completing a particular map

or reduce function. In addition to the physical hostname,

we send a label corresponding to a globally unique namdation of MapReduce, the barrier is not concerned with
for the particular map or reduce task. Thus, rather tharfvhat copies of the computation complete first; the goal
waiting for n hosts, the barrier instead waits for or r is for all m or r tasks to complete as quickly as possible.

unique labels to enter the barrier before firing. The completion rate of tasks also provides an estimate

For a sufficiently large and heterogeneous distributedf the throughput available at individual nodes, influenc-
system, performance at individual nodes varies widelying future task placement decisions. Nodes with high
Such variability often results in a heavy-tailed distri- throughput are assigned more tasks in the future. Our
bution for the completion of individual tasks, meaning Performance evaluation in Section 6 quantifies the bene-
that while most tasks will complete quickly, the overall fits of this approach. Cluster-based MapReduce [9] also
time will be dominated by the performance of the slow found this rebalancing to be critical for improving per-
nodes. The original MapReduce work noted that one oformance in more tightly controlled cluster settings, but
the common problems experienced during execution i§lid not describe a precise approach for determining when
the presence of “straggler” nodes that take an unusuall{® SPawn additional instances of a given computation.
long time to complete a map or reduce task. Althoughg Evaluation

the authors mentioned an application-specific solution to _ o _ o
this problem, by using partial barriers in our implemen-The goal of this section is to quantify the utility of par-

tation we were able to provide a more general solutiorfial bqrriers for a range of application scenarios. For all
that achieved the same results. We use the arrival rate *Periments, we randomly chose subsets from a pool of
map/reduce tasks at their respective barriers to respawh30 responsive PlanetLab nodes.

a subset of the tasks that were proceeding slowly. 6.1 Scalability

By using the knee detector described in Section 4, werq gstimate baseline barrier scalability, we measure the

are able to dynamically determine the transition point;mne it takes to move between two barriers for an increas-
between rapid arrivals and the long tail of stragglers.ng number of hosts. In this experiment, the controller

However, rather than releasing the barrier at this point,yaits for all hosts to reach the first barrier. All hosts are
the MapReduce controller receives a callback from th&gjeased, and then immediately enter the second barrier.
barrier manager, and instead performs load rebalancinge measure the time between when the barrier manager
functionality by spawning additional copies of outstand- sengs the first FIRE message for the first barrier and re-
ing tasks on nodes disjoint from the ones hosting the.gives the last BARRIERREACHED message for the
slower tasks (potentially first distributing the necessarysecond barrier. No partial barrier semantics are used for
input/intermediate files). As in the original implemen- {hase measurements. Figure 6 shows the average com-

Number of nodes

pletion time for varying numbers of nodes across a total 100 = — —
of five runs for each data point with standard deviation. | g

Notice that even for 100 nodes, the average time 80 f
for the barrier manager to receive the last BAR- ’
RIER_REACHED message for the second barrier is ap-
proximately 1 second. The large standard deviation val-
ues indicate that there is much variability in our results.
This is due to the presence of straggler nodes that de-

60 |

Host count

40

lay the firing for several seconds or more. The 90th per- 20 7 25 Simultaneous Transfers -
100 Simultaneous Transfers

centile, on the other hand, has little variation and is rel- Adaptive Simultaneous Transfers -
. s . 10 Si Transfers ------
atively constant as the number of participants increases. 0 ‘ 10 Simultaneous Trapsters ~-—,
. . . . 0 100 200 300 400 500
This augurs well for the potential of partial barrier se- Elapsed time (sec)
mantics to improve performance in the wide area. Over-

all, we are satisfied with the performance of our central-,:igure 7: Software transfer from a high-speed server to
ized barriers for 100 nodes; we expect to use hierarchy|anetl ab hosts using a SemaphoreBarrier to limit the
to scale significantly further. number of simultaneous file transfers.

6.2 Admission control

Next, we consider the benefits of a semaphore barrier t§orithm line reaches 100% before the lines representing
perform admission control for parallel software installa- & fixed concurrency level of 10 or 100, but the algorithm

tion in Plush. Plush configures a set of wide-area host¥/as oo conservative to match the optimal static level of
to execute a particular application. This process ofter?® diven the network conditions at the time.

involves installing the same software packages Iocate% .

on a central server. Simultaneously performing this in-0-3 ~ Detecting knees

stall across hundreds of nodes can lead to thrashing gf, g section we consider our ability to dynamically de-
the server hosting the packages. The overall goal is 19, knees in a heavy-tailed arrival processes. We observe
ensure sufficient parallelism such that the server is satg, i \vhen choosing a substantial number of time-shared

urated (without thrashing) while balancing the averagép|anet| ap hosts to perform the same amount of work, the
time to complete the download across all participants. completion time varies widely, often following an expo-

For our results, we use Plush to install the same 10-MBhential distribution. This variation makes it difficult to
file on 100 PlanetLab hosts while varying the number ofcoordinate distributed computation. To quantify our abil-
simultaneous downloads using a semaphore barrier. Figty to more adaptively set timeouts and coordinate the
ure 7 shows the results of this experiment. The data indibehavior of multiple wide-area nodes, we used a barrier
cates that limiting parallelism can improve overall com-to synchronize senders and receivers in Bullet while run-
pletion rate. Releasing too few hosts does not fully con-ning across a varying number of PlanetLab nodes. We
sume server resources, while releasing too many taxeset the barrier to dynamically detect the knee in the ar-
available resources, increasing the time to first complerival process as described in Section 4. Upon reaching
tion. This is evident in the graph since 25 simultaneoughe knee, nodes already in the barrier are released; one
downloads finishes more quickly than both 100 and 1Gside effect is that the sender begins data transmission.
simultaneous transfers. Bullet ignores all late arriving nodes.

While statically defining the number of hosts allowed to Figure 8 plots the cumulative distribution of receivers
perform simultaneous downloads works well for our file that enter the startup barrier on th@xis as a function of
transfer experiment, varying network conditions meangime progressing on the-axis. Each curve corresponds
that statically picking any single value is unlikely to per- to an experiment with 50, 90, or 130 PlanetLab receivers
form well under all conditions. Some applications may in the initial target set. The goal is to run with as many
benefit from a more dynamic throttled release techniqueeceivers as possible from the given initial set without
that attempts to find the optimal number of hosts thatwaiting an undue amount of time for a small number of
maximizes throughput from the server without causingstragglers to complete startup. Interestingly, it is ifisuf
saturation. The “Adaptive Simultaneous Transfers” linecient to filter for any static set of known “slow” nodes
in Figure 7 shows the performance of our adaptive re-as performance tends to vary on fairly small time scales
lease technique. In this example, the initial concurrencyand can be influenced by multiple factors at a particular
level is 15, and the level varies according to the dura-node (including available CPU, memory, and changing
tion of each transfer. In this experiment the adaptive al-network conditions). Thus, manually choosing an appro-

120 e 90 -
80
70 -

100

1]
%]
:% 80 E 60 -
k] 8 5ot
g oo 3
£ 1y S 40
S i
Z 40t 30
20 r
200, —— 50 Nodes
/ { - 90 Nodes 10 - No reallocation
o &))) ------ 130 Nodes 0)))) With reallocation -
0 5 10 15 20 25 30 0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time (sec) Elapsed time (sec)

Figure 8: A startup barrier that regulates nodes joining aFigure 9: EMAN. Knee detected at 801 seconds. Total
large-scale overlay. Vertical bars indicate when the barfuntime is over 2700 seconds.

rier detects a knee and fires. _)))
transfer times. While the knee detection algorithm de-

priate static set may be sufficient for one particular batchtects a knee @00 seconds, a minimum thresholdif%
of runs but not likely the next. prevents reconfiguration. The second knee is detected at
Vertical lines in Figure 8 indicate where the barrier man-8Y1 seconds, which starts a reconfiguratior2oftasks.

ager detects a knee and releases the barrier. Although wdese t"f‘SkS complete 990 seconds, while the original
ran the experiment multiple times, for clarity we plot the S€t continue pasx700 seconds, for an overall speedup of

results from a single run. While differences in time of more thars.

day or initial node characteristics affect the quantigativ g5 M apReduce

behavior, the general shape of the curve is maintained.

However, in all of our experiments, we are satisfied withWWe now consider an alternative use of partial barriers:
our ability to dynamically determine the knee of the ar-to assist not with the synchronization of physical hosts
rival process. The experiments are typically able to pro-Or processors, but with load balancing of logical tasks

ceed with 85-90% of the initial set participating. spread across cooperating wide-area nodes. Further, we
wish to determine whether we can dynamically detect
64 EMAN knees in the arrival rate of individual tasks, spawning

For our next evaluation, we added a partial barrier toadditional copies of tasks that appear to be proceeding

the parallel computation of EMAN'’s refinement process.SIOWly on & subset of nodes.

Upon detecting a knee, we reallocate tasks to faster maA/e conduct these experiments with our implementation
chines. Figure 9 shows the results of running EMAN of MapReduce (see Section 5.4) with = 480 map

with and without partial barrier semantics. In this exper-tasks and- = 30 reduce tasks running acrogas= 30
iment we ran EMAN on thé8 most responsive Plan- PlanetLab hosts. During each of the map and reduce
etLab machines. The workflow consists of several serounds, the MapReduce controller evenly partitions the
rial tasks (not shown), anda8-way image classification tasks over the available hosts and starts the tasks asyn-
step, run in parallel. Each participant first downloads achronously. For this experiment, each map task simply
40-MB archive containing the EMAN executables andreads 2000 random words from a local file and counts
a wrapper script. After unpacking the archive, each nodehe number of instances of certain words. This count is
downloads a unique 200-MB data file and begins runningwritten to an intermediate output file based on the hash of
the classification process. At the end of the computationthe words. The task is CPU-bound and requires approxi-
each node generat&§ output files stored on the local mately 7 seconds to complete on an unloaded PlanetLab-
disk, which EMAN merges intd7 “master” files once class machine. The reduce tasks summarize these inter-
all tasks complete. mediate files with the same hash values.

After 801 seconds, the barrier detects a knee and realloThus, each map and reduce task performs an approxi-
cates the remaining tasks to idle machines among thosmately equal amount of work as in the original MapRe-
initially allocated to the experiment; these finish shortly duce work [9], though it would be useful to generalize
afterward. The “knee” in the curve at approximatgly) to variable-length computation. When complete, a map
seconds indicates that aroufd hosts have good con- or reduce task enters the associated barrier with a unique
nectivity to the data repository, while the rest have longeridentifier for the completed work. The barrier manager

Note that this load balancing approach differs from the

450 1 alternate approach of trying to predict the set of nodes
400 ¢ likely to deliver the highest level of performanagriori.

350 ¢ Unfortunately, predicting the performance of tasks with
g 300 / complex resource requirements on a shared computing

8 250 infrastructure with dynamically varying CPU, network,
E 200 | and /O characteristics is challenging in the best case and
150 | potentially intractable. We advocate a simpler approach
100 I that does not attempt to predict performance character-

0 | No reallocation isticsa priori. Rather, we simply choose nodes likely to

0 ____ \Withreallocation - perform well and empirically observe the utility of our
0 50 100 150 200 250 300 350 400 450 500 decisions. Of course, this approach may only be appro-

Elapsed time (sec) priate for a particular class of distributed applicationd a

.) comes at the cost of performing more work in absolute
F'Q“fe 10: Map_R,edElce“ = 480,7 = 30,n = 30 V_"th terms because certain computations are repeated. For the
uniform prepartitioning of the data. Knee detectlo_n OC-case depicted in Figure 10, approximately 30% of the
curs at 68 seconds and callbacks enable rebalancing. work is repeated if we assume that the work on both the

fast and slow nodes are run to completion (a pessimistic
monitors the arrival rate and dynamically determines theassumption as it is typically easy to kill tasks running on
knee, which is the where the completion rate begins teslow nodes once the fast instances complete).
slow. We empirically determined that this slowing results ; :
from a handful of nodes that proceed substantially slower Design alternatives
than the rest of the system. (Note that this phenomenofio address potential scalability problems with our cen-
is not restricted to our wide-area environment; Dean andralized approach, a tree of controllers could be built that
Ghemawat observed the same behavior for their runsggregates BARRIERREACHED messages from chil-
on tightly coupled and more homogeneous clusters [9].Hren before sending a single message up the tree [18,
Thus, upon detecting the knee a callback to the MapRe26, 37]. This tree could be built randomly from the ex-
duce controller indicates that additional copies of thepected set of hosts, or it could be crafted to match the
slow tasks should be respawned, ideally on nodes witlunderlying communication topology, in effect forming
the smallest number of outstanding tasks. Typically, byan overlay aggregation tree [34, 36]. In these cases, the
the time the knee is detected there are a number of hostaaster would send FIRE messages to its children, which
that have completed their initial allocation of work. would in turn propagate the message down the tree. One

Figure 10 shows the performance of one MapReduce ryRotentially difficult question with this approach is deter-

both with and without task respawn upon detecting the™NiNg when interior nodes should pass summary BAR-
knee. Figure 10 plots the cumulative number of com-RIER-REACH messages to their parent. Although a tree-

pleted tasks on thg-axis as a function of time progress- based approach may provide better scalability since mes-
ing on thez-axis. We see that the load balancing enablecf29€S can be aggregated up the tree, the latency required
by barrier synchronization on abstract tasks is criticalt(_) pass a message to all participants is likely to increase

to overall system performance. With task respawn usSiNce the number of hops required to reach all partici-
ing knee detection, the barrier manager detects the knd@?NtS is greater than in the centralized approach.
approximately 68 seconds into the experiment after apA gossip-based algorithm could also be employed to
proximately 53% of the tasks have completed. At thismanage barriers in a fully decentralized manner [2]. In
point, the MapReduce controller (via a callback from this case, each node acts as a barrier manager and swaps
the Barrier class) repartitions the remaining 47% of thebarrier status with a set of remote peers. Given sufficient
tasks across available wide-area nodes. This is wherpair-wise exchanges, some node will eventually observe
the curves significantly diverge in the graph. Without enough hosts having reached the barrier and it will fire
dynamic rebalancing the completion rate transitions tathe barrier locally. Subsequent pair-wise exchanges will
a long-tail lasting more than 2500 seconds (though thepropagate the fact that the barrier was fired to the remain-
graph only shows the first 500 seconds), while the comder of the nodes in the system, until eventually all active
pletion rate largely maintains its initial slope when rebal participants have been informed. Alternatively, the node
ancing is enabled. Overall, our barrier-based rebalancinthat determines that a barrier should be released could
results in a factor of sixteen speedup in completion timealso broadcast the FIRE message to all participants. Fully
compared to proceeding with the initial mapping. Multi- decentralized solutions like this have the benefit of being
ple additional runs showed similar results. highly fault tolerant and scalable since the work is shared

equally among participants and there is no single poinusing two barriers that communicate state with one an-
of failure. However, since information is propagated in other. The first barrier releases all entering nodes and
a somewhat ad hoc fashion, it takes more time to propasignals state to a second barrier. The second barrier only
gate information to all participants, and the total amountbegins to release nodes once a sufficient number (perhaps
of network traffic is greater. There is an increased risk ofall) of nodes have entered the first barrier.

propagating stale information as well. In our experience o, annroach to synchronizing large-scale networked
we ha\{e not yet ob;erved S|gn|f|cant rellab|!|ty limita- systems is related to the virtual synchrony [2,3] and
tions with our centralized barngr implementation to war- extended virtual synchrony [27] communication mod-
rant exploring a fully decentralized approach. els. These communication systems closely tie together
We expect that all single-controller algorithms will even- node inter-communication with group membership ser-
tually run into scalability limitations based on a single vices. They ensure that a message multicast to a group is
node’s ability to manage incoming and outgoing com-either delivered to all participants or to none. Further-
munication with many peers. However, based on our permore, they preserve causal message ordering [22] be-
formance evaluation (see Section 6), the performance dfveen both individual messages and changes in group
centralized barriers is acceptable to at least 100 nodes. Imembership. This communication model is clearly bene-
fact, we find that our centralized barrier implementationficial to a significant class of distributed systems, includ-
out-performs an overlay tree with an out-degree of 10 foring service replication. However, we have a more mod-
100 total participants with regards to the time it takes aest goal: to provide a convenient synchronization point

single message to propagate to all participants. to coordinate the behavior of more loosely coupled sys-
tems. It is important to stress that in our target scenar-
8 Related Work ios this synchronization is delivered mostly as a mat-

. o ter of convenience rather than as a prerequisite for cor-
Our work builds upon a number of synchronization con-pecyness. Any inconsistency resulting from our model is
cepts in distributed and parallel computing. For tradl'typically detected and corrected at the application, simi-
t!onal parallel programming on tightly coupled mgl- lar to soft-state optimizations in network protocol stacks
tiprocessors, barriers [19] form natural synchroniza-ya¢ improve common-case performance but are not re-
tion points. Given the importance of fast primitives g ,ireq for correctness. Other consistent group member-

for coordinating bulk synchronous SIMD applications, gpinxiew advancement protocols include Harp [24] and
most MPPs have hardware support for barriers [23, 31]Cristian's group membership protocol [8].

While the synchronization primitives and requirements

for large-scale networked systems discussed vary fronfnother effortrelated to ours is Golding’s weakly consis-
these traditional barriers, they clearly form one basigl€nt group membership protocol [16]. This protocol em-

for our work. Barriers also form a natural consistencyPl0yS gossip messages to propagate group membership
point for software distributed shared memory systems [6I @ distributed system. Assuming the rate of change in
20], often signifying the point where data will be syn- mgmbershlp is low enou_gh, the system will quickly tranT
chronized with remote hosts. Another popular program:Sition from one stable view to another. One key benefit
ming model for loosely synchronized parallel machines®f this approach is tr_]at it is entirely de_centrallzed and
is message passing. Popular message passing librariB§nce does not require a central coordinator to manage
such as PVM [15] and MPI [25] contain implementations the protocol. As discussed in Section 7, we plan to ex-

of barriers as a fundamental synchronization service. Plore the use of a distributed barrier that employs gossip
to manage barrier entry and release. However, our system

Our approach is similar to Gupta’s work on Fuzzy Bar- a1 ation indicates that our current architecture degive

riers [17] in support of SIMD programming on fightly ¢ fficient levels of both performance and reliability for
coupled parallel processors. Relative to our approacrburtarget settings.

Gupta’s approach specified an entry point for a barrier, o)) o
followed by a subsequent set of instructions that could®Ur l00se synchronization model is related in spirit to
be executed before the barrier is released. Thus, a pré Variety of efforts into relaxed consistency models for
cessor is free to be anywhere within a given region of the/Pdates in distributed systems, including Epsilon Se-
overall instruction stream before being forced to block. Malizability [30], the CAP principle [14], Bayou [32],

In this way, processors completing a phase of computalACT [38], and Delta Consistency [33].

tion early could proceed to other computation that doeg=inally, we note that we are not the first to use the ar-
not require strict synchronization before finally blocking rival rate at a barrier to perform scheduling and load bal-
This notion of fuzzy barriers were required in SIMD pro- ancing. In Implicit Coscheduling [11], the arrival rate
grams because there could only be a single outstandingt a barrier (and the associated communication) is one
barrier at any time. We can capture identical semantics

consideration in making local scheduling decisions to[13]
approximate globally synchronized behavior in a multi-
programmed parallel computing environment. Further,[l4]
the way in which we use barriers to reallocate work is
similar to methods used by work stealing schedulers likg15]
CILK [5]. The fundamental difference here is that idle
processors in CILK make local decisions to seek out adlt®
ditional pieces of work, whereas all decisions to reallo-[17]
cate work in our barrier-based scheme are made centrally
at the barrier manager. (18]
9 Summary

[19]
Partial barriers represent a useful relaxation of the tradi
tional barrier synchronization primitive. The ease with [20]
which we were able to integrate them into three dif-
ferent existing distributed applications augurs well for [21]
their general utility. Perhaps more significant, however,
was the straightforward implementation of Wide-aream]
MapReduce as enabled by our expanded barrier seman-
tics. We are hopeful that partial barriers can be used tq23]
bring to the wide area other sophisticated parallel algo-
rithms initially developed for tightly coupled environ-
ments. In our work thus far, we find in many cases it may
be as easy as directly replacing existing synchronizatiorf4]

primitives with their relaxed partial barrier equivalents 25]

Dynamic knee detection in the completion time of tasks

in heterogeneous environments is also likely to find[2¢!
wider application. Being able to detect multiple knees
has added benefits since many applications exhibit multif7]
modal distributions. Detecting multiple knees gives ap-
plications more control over reconfigurations and in-
creases overall robustness, ensuring forward progre%el
even in somewhat volatile execution environments.

References [29]

[1] D. G. Andersen, H. Balakrishnan, and F. Kaashoek. Imipigpv (30]
Web Availability for Clients with MONET. InNNSDI, 2005.

[2] K. Birman. Replication and Fault-Tolerance in the ISIg&m. (31]
In SOSP1985.

[3] K. Birman and T. Joseph. Exploiting Virtual Synchronyxis- (32]
tributed Systems. I8OSR1987.

[4] K. P. Birman. The Process Group Approach to Reliable Dis-
tributed ComputingCACM, 36(12), 1993.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisetson [33]
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreadech¥ [34]

time system. IlPPOPR, 1995.
M. Z. Brian Bershad and W. Sawdon. The Midway Distributed
Shared Memory System. @ompCon1993.

(6]

[7] Computing TCP’s Retransmission Timers (RFChttp:// [35]
ww. faqgs. org/rfcs/rfc2988. htm .
[8] F. Cristian. Reaching Agreement on Processor-Group bégm
ship in Synchronous Distributed SystenixC, 4(4), 1991. [36]
[9] J.Deanand S. Ghemawat. MapReduce: Simplified Data Bsece
ing on Large Clusters . I®SDI, 2004. [37]
[10] E. Dijkstra. The Structure of the “THE"-Multiprograning Sys- [38]

tem. CACM, 11(5), 1968.

A. C. Dusseau, R. H. Arpaci, and D. E. Culler. EffectivesD
tributed Scheduling of Parallel Workloads. 8IGMETRICS
1996.

[12] EMAN. http://ncm . bcm tnc. edu/ EVAN .

[11]

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The iBlogy

of the Grid: An Open Grid Services Architecture for Distribd
Systems Integration. GGF, 2002.

A. Fox and E. Brewer. Harvest, Yield, and Scalable TafeiSys-
tems. InHotOS 1999.

G. A. Geistand V. S. Sunderam. Network-based conctioem-
puting on the PVM systenC— P&E, 4(4):293-312, 1992.

R. Golding. A Weak-Consistency Architecture for Dibtrted
Information ServicesCS 5(4):379-405, Fall 1992.

R. Gupta. The Fuzzy Barrier: A Mechanism for High Spegd-S
chronization of Processors. ASPLO$1989.

R. Gupta and C. R. Hill. A scalable implementation of -bar
rier synchronization using an adaptive combining trdéPP,
18(3):161-180, 1990.

H. F. Jordan. A Special Purpose Architecture for Fiitement
Analysis. InICPP, 1978.

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoad-
Marks: Distributed Shared Memory on Standard Workstations
and Operating Systems. WSENIX pages 115-131, 1994.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mestSQsR
2003.

L. Lamport. Time, Clocks, and the Ordering of Events iDia-
tributed SystemCACM, 21(7), 1978.

C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. RnFey
man, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul,
M. A. S. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W. Yang, and
R. Zak. The network architecture of the Connection Machine
CM-5. JPDC, 33(2):145-158, 1996.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Sharal
M. Williams. Replication in the Harp file system. 80SP1991.
Message Passing Interface Forum. MPI: A message+gagsi
terface standard. Technical Report UT-CS-94-230, 1994.

S. Moh, C. Yu, B. Lee, H. Y. Youn, D. Han, and D. Lee. Fouy-a
tree-based barrier synchronization for 2d meshes withoat n
member involvementT C, 50(8):811-823, 2001.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Bhih,
and C. A. Lingley-Papadopoulos. Totem: A Fault-Tolerant-Mu
ticast Group Communication Systel@ACM, 39(4), 1996.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. Aeplint
for Introducing Disruptive Technology into the Interneh Hot-
Nets 2002.

Plush.ht t p: // pl ush. ucsd. edu.

C. Pu and A. Leff. Epsilon-Serializability. TechnicBRleport
CUCS-054-90, Columbia University, 1991.

S. L. Scott. Synchronization and Communication in tB&Mul-
tiprocessor. IASPLOS$1996.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J
Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
SOSR 1995.

F. Torres-Rojas, M. Ahamad, and M. Raynal. Timed Cdesisy
for Shared Distributed Objects. RODC, 1999.

R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A Ro
bust and Scalable Technology for Distributed System Maoinitp
Management, and Data Mining.CS 21(2), 2003.

M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Archite
ture for Well-Conditioned, Scalable Internet ServicesSDSP
2001.

P. Yalagandula and M. Dahlin. A Scalable Distributetbfma-
tion Management System. BIGCOMM 2004.

J.-S. Yang and C.-T. King. Designing tree-based basyachro-
nization on 2d mesh network¥PDS 9(6):526-534, 1998.

H. Yu and A. Vahdat. Design and Evaluation of a Contirgiou
Consistency Model for Replicated Servicesd8DI, 2000.

