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Support for distributed application management in large-scale networked environments remains in its early
stages. Although a number of solutions exist for subtasks of application deployment, monitoring, and main-
tenance in distributed environments, few tools provide a unified framework for application management.
Many of the existing tools address the management needs of a single type of application or service that
runs in a specific environment, and these tools are not adaptable enough to be used for other applications
or platforms. To this end, we present the design and implementation of Plush, a fully configurable applica-
tion management infrastructure designed to meet the general requirements of several different classes of
distributed applications. Plush allows developers to specifically define the flow of control needed by their com-
putations using application building blocks. Through an extensible resource management interface, Plush
supports execution in a variety of environments, including both live deployment platforms and emulated
clusters. Plush also uses relaxed synchronization primitives for improving fault tolerance and liveness in
failure-prone environments. To gain an understanding of how Plush manages different classes of distributed
applications, we take a closer look at specific applications and evaluate how Plush provides support for each.
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1. INTRODUCTION

Many applications deployed on the Internet today run simultaneously on hundreds
or thousands of computers spread around the world. In general, the goal of these dis-
tributed applications is to connect users to shared resources, where we define a resource
as any computing device attached to the Internet capable of hosting an application. By
combining the computing power and capabilities of distributed resources, applications
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are able to satisfy the ever-increasing demand of their users. Some of the most popular
distributed applications, such as peer-to-peer services, Web search engines, and social
networking sites use tens of thousands of computers (or more) to host their services
and meet user demand [Markoff and Hansell 2006]. Additionally, other distributed
applications, such as content distribution networks like CoDeeN [Pai et al. 2003] and
Coral [Freedman et al. 2004], rely on the geographic diversity of hundreds of comput-
ers acting as caches to provide users with lower latency retrieval times for commonly
accessed Web content. As the Internet continues to become more pervasive and spreads
into more remote parts of our planet, the user demand for these services will increase.
To satisfy this demand, the number and geographic diversity of the computers needed
by these services will also continue to grow.

While distributed applications offer many benefits with respect to increased com-
puting power and geographic diversity, they also introduce new challenges. Manag-
ing distributed applications involves deploying, configuring, executing, and debugging
software running on multiple computers simultaneously. Particularly for applications
running on resources that are spread across the wide-area, distributed application
management is a time-consuming and error-prone process. After the initial deploy-
ment of the software, the applications need mechanisms for detecting and recovering
from the inevitable failures and problems endemic to distributed environments. To
achieve availability and reliability, applications must be carefully monitored and con-
trolled to ensure continued operation and sustained performance. Operators in charge
of deploying and managing these applications face a daunting list of challenges: dis-
covering and acquiring appropriate resources for hosting the application, distributing
the necessary software, and appropriately configuring the resources (and reconfigur-
ing them if operating conditions change). It is not surprising, then, that a number
of tools have been developed to address various aspects of the process in distributed
environments, but no solution yet flexibly automates the application deployment and
management process across all environments.

Presently, most researchers who want to evaluate stand-alone applications in wide-
area distributed environments take one of two management approaches. On wide-area
live deployment platforms like PlanetLab [Bavier et al. 2004], service operators address
deployment and monitoring in an ad hoc, application-specific fashion using customized
scripts. Grid researchers, on the other hand, leverage one or more software toolkits
(such as the Globus Toolkit [Foster 2005]) for application development and manage-
ment. These toolkits often require tight integration with not only the environment, but
the application itself. Hence, applications must be rewritten to adhere to the specific
APIs in a given toolkit, making it nearly impossible to run the application in other envi-
ronments. In distributed emulation environments, the management approach largely
depends on the platform. Some emulation environments such as ModelNet [Vahdat
et al. 2002] provide toolkits and Web interfaces for manipulating applications, while
others rely on researchers to write their own management scripts.

1.1. Contributions and Goals

Although the resource-specific low-level tasks associated with application management
vary in complexity depending on the target environment and number of resources
in use, at a high-level, the goals of application management across all deployment
platforms are largely similar. Thus if we provide a way to help developers cope with the
intricacies of managing different types of resources—ranging from emulated “virtual”
hosts to real physical machines spread around the world—it should be easy for them to
seamlessly run applications in a variety of environments using the same management
interface. To this end, we hypothesize that a unified set of abstractions (discussed in
Section 2) for shielding developers from the complexities and limitations of networked
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environments, including the Internet, can be applied to a broad range of distributed
applications in a variety of execution environments. These abstractions help developers
manage and evaluate distributed applications, to ensure that the applications achieve
the desired levels of availability, scalability, and fault tolerance.

The primary goal of our work is to understand the abstractions and define the in-
terfaces for specifying and managing distributed computations run in any execution
environment. Through the design and implementation of an environment-independent
toolkit for managing distributed applications, we hope to define the way users thinks
about their applications, regardless of their target deployment platform. We took inspi-
ration from classical operating systems like UNIX [Ritchie and Thompson 1974] which
defined the standard abstractions for managing applications: files, processes, pipes, etc.
For most users, communication with these abstractions is simplified through the use
of a shell or command-line interpreter. Of course, distributed computations are both
more difficult to specify, because of heterogeneous hardware and software bases, and
more difficult to manage, because of failure conditions and variable host and network
attributes. Further, many distributed computing platforms do not provide global file
system abstractions, which complicates data management.

As an evaluation of our hypothesis, we present Plush [Plush 2004; Albrecht et al.
2006b, 2007], a generic application management infrastructure that provides a uni-
fied set of abstractions for specifying, deploying, and monitoring different types of
distributed applications in a variety of computing environments. The abstractions in
Plush provide mechanisms for interacting with resources, defining computations and
services, and achieving synchronization without making any strong assumptions about
the application or the execution environment. Plush users describe distributed com-
putations using an extensible application specification language. In contrast to other
application management systems, however, the language allows users to customize
various aspects of deployment and management based on the needs of an application
and its target infrastructure without requiring any changes to the application itself.
Users can, for example, specify a particular resource discovery service to use during
application deployment. Plush also provides extensive failure management support to
automatically detect and adapt to failures in the application and the underlying in-
frastructure. Users interact with Plush through a simple command-line interface or a
graphical user interface (GUI). Additionally, Plush exports an XML-RPC interface for
programmatically integrating applications with Plush if desired.

In order to verify that our hypothesis is correct, in this article we show how Plush
manages applications that fall into three different classes: short-lived computations,
long-lived services, and parallel grid applications. More specifically, we look at a case
study from each of these classes and describe how Plush supports each one in an effort to
provide evidence that the abstractions in Plush can in fact be applied to a broad range of
distributed applications. Further, we also show how Plush interacts with resources from
a variety of computing environments without making any strong assumptions about
the underlying infrastructure. In particular we show how Plush supports execution
using virtual resources, emulated resources, and real physical resources. Lastly, since
one of our goals is to develop a framework that other users can apply to a variety of
applications in different environments, we discuss the usability features of the Plush
user interfaces, and summarize feedback received from various Plush users at different
institutions.

The remainder of this article is organized as follows. Section 2 identifies three classes
of distributed applications and distills the five main abstractions required of any dis-
tributed application management infrastructure. Section 3 discusses how we design
and implement the abstractions outlined in Section 2 in Plush. In Section 4, we high-
light the details of the Plush resource matcher, which is responsible for providing
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support for many different types of resources. Section 5 describes the design and im-
plementation of a new synchronization primitive—a partial barrier—in Plush, while
Section 6 evaluates Plush’s ability to manage different types of applications. Lastly,
Section 7 discusses related work, and Section 8 concludes.

2. ABSTRACTIONS FOR MANAGING DISTRIBUTED APPLICATIONS

To better understand the requirements of a distributed application controller, we first
consider how different types of applications are typically run on PlanetLab. We then use
the needs of these applications to distill a list of general abstractions that a distributed
application management infrastructure must support.

2.1. Classes of Distributed Applications

We start by describing three distinct classes of distributed applications: short-lived
computations, long-lived Internet services, and parallel grid applications.

2.1.1. Short-Lived Computations. One common type of distributed application that runs
on PlanetLab is the interactive execution of short computations. The computations
range from simple to complex, but many high-level characteristics of the applications
are the same. In particular, the computations only run for a few days or less, and the
executions are closely monitored by the user (i.e., the person running the application).
To run an application, the user first obtains access to machines capable of hosting
the application. On PlanetLab, this involves creating a PlanetLab account or slice
and uploading an SSH key pair that will be used for authentication on PlanetLab
resources [Bavier et al. 2004]. When running a short-lived application, most users strive
to find powerful machines with good connectivity at the time when the application is
started. Resource discovery tools like SWORD [Albrecht et al. 2008] are commonly used
to help find desirable machines. After locating suitable machines, the user installs the
required software on the selected hosts, runs the application to completion, and collects
any output files produced for analysis. If an error or failure is detected during execution,
the application is aborted and restarted. An example of a short-lived computation could
involve the evaluation of a new peer-to-peer file-distribution protocol.

2.1.2. Long-Lived Internet Services. Another type of distributed application that is often
run on PlanetLab is a continuously running service. Unlike short-lived applications,
long-running services are not closely monitored, typically run for months or even years,
and provide a service to the general public. Hence, in addition to the tasks described
for obtaining and configuring resources for hosting short-lived computations, service
operators must perform additional tasks to maintain the services over an extended
period of time. Since operators generally do not closely monitor long running services,
failure detection and recovery must be automated. The environments in which services
run also change over time, exposing the applications to a variety of operating conditions.
Further, the machines that host the services are often taken offline for software or
hardware upgrades, and therefore the services must recover from these changes. Some
common examples of services in use today on PlanetLab include CoDeeN [Pai et al.
2003] and Coral [Freedman et al. 2004].

2.1.3. Parallel Grid Applications. Though there are many different types of grid applica-
tions, one of the most common usage scenarios for computational grids is harnessing
resources at one or more sites to execute a computationally intensive job. A typi-
cal grid application on PlanetLab involves gathering data from specific sites and
then processing this data using a compute-intensive algorithm to produce the desired
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result.1 Unlike interactive short-lived computations that often embrace the geographic
diversity of PlanetLab machines, most grid applications are compute-intensive and
view network connectivity and geographic resource distribution as “necessary evils”
to accomplishing their goals [Ripeanu et al. 2004]. Since grid applications tend to be
compute-intensive, many are designed to be highly parallelizable: Rather than running
on a single machine with one or more processors, the computation is split up and run
across several machines in parallel. Parallelization has the potential to increase the
overall performance substantially, but only if each machine involved makes progress.
The rate of completion for individual tasks is often delayed by a few slow machines
or processors. For a researcher running a parallel application, maintaining an appro-
priate and functional set of machines is crucial to achieving good throughput, even
if this means replacing slow machines in the middle of a computation. An example
grid application is EMAN [Ludtke et al. 1999], which is a software package used for
reconstructing 3-D models of particles using 2-D electron micrographs.

2.2. Required Application Management Abstractions

Though the low-level details for managing these different types of applications are
different, at a high level the requirements for each example are largely similar. Rather
than reinvent the same infrastructure for each application separately, we set out to
identify commonalities across all distributed applications and build an application con-
trol infrastructure that supports all applications and execution environments. Provid-
ing a “one-size-fits-all solution” to application management runs the risk of introducing
limitations that are not present in toolkits that are designed for specific platforms and
applications. However, these toolkits also make it difficult to transition from one plat-
form or application to another, which is especially problematic for researchers who
want to make use of multiple deployment environments. We now extract the general
requirements for a general distributed application management infrastructure. To-
gether, these requirements identify the five key abstractions needed for defining and
managing the flow of control for any distributed application.

2.2.1. Application Description. A distributed application controller must allow the user to
customize the flow of control for each application. For example, the user must specify the
resources (i.e., machines) required and any necessary credentials, the software needed
to run the application (and instructions for how to install it), the processes that run
on each resource, and the environment-specific execution parameters. This application
specification is an abstraction that describes distributed computations. A specification
identifies all aspects of the execution and environment needed to successfully deploy,
manage, and maintain an application. To manage complex multiphased applications
like EMAN, the specification supports defining application-specific synchronization re-
quirements. Similarly, distributing computations among pools of resources requires a
way to specify a workflow—a collection of tasks that must be completed in a given
order—within an application specification. The application controller parses and inter-
prets the application specification and uses the information to guide the application’s
flow of control.

The complexity of distributed applications varies greatly from simple, single-process
applications to elaborate, parallel applications. Thus the challenge in building a general
application management infrastructure is to define a specification language abstraction
that provides enough expressibility for complex distributed applications, but is not too

1In reality, PlanetLab is typically not used for running parallel grid applications. Dedicated computational
grids such as NEESgrid [Pearlman et al. 2004] and Teragrid [Catlett 2002] are often used instead. We use
PlanetLab in this discussion to provide a better comparison to the previous two examples.
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complicated for single-process computations. In short, the language must be simple
enough for novice users to understand, yet also expose enough advanced functionality
to run complex scenarios.

2.2.2. Resource Discovery, Creation, and Acquisition. In addition to the application descrip-
tion, another key abstraction in distributed application management is a resource. Put
simply, a resource is any network accessible device capable of hosting an application on
behalf of a user, including physical, virtual, and emulated machines. Because resources
in distributed environments are often heterogeneous, users naturally want to obtain a
resource set that best satisfies their application’s requirements. In shared computing
environments, even if hardware is largely homogeneous, dynamic characteristics of a
host such as available bandwidth or CPU load can vary over time. The goal of resource
discovery in these environments is to find the best current set of resources for the
distributed application as specified by the user. In environments that support dynamic
virtual machine instantiation, these resources may not exist in advance. Thus, re-
source discovery involves finding the appropriate physical machines to host the virtual
machine configurations and creating the appropriate virtual machines as needed.

Resource discovery and creation systems often interact directly with resource ac-
quisition systems. After locating the desired resources during resource discovery and
creation, resource acquisition involves obtaining a lease or permission to use the re-
sources. Depending on the execution environment, resource acquisition can take a
number of forms. In best-effort computing environments (e.g., PlanetLab), for example,
no advanced reservation or lease is required so no additional steps are needed to ac-
quire access to the resources. To support advanced resource reservations such as those
used by batch schedulers, resource acquisition may involve waiting for resources to
become available and subsequently obtaining a “lease” from the scheduler. In virtual
machine environments, resource acquisition includes verifying the successful creation
of virtual machines and gathering the appropriate information (e.g., authentication
keys) required for access. If failures occur while trying to acquire resources, the appli-
cation controller recontacts the resource discovery and creation mechanism to find a
new set of available resources if necessary.

2.2.3. Application Deployment. Upon obtaining an appropriate set of resources, the ap-
plication deployment abstraction defines the steps required to prepare the resources
with the correct software and data files and run the executables to start the application.
There are really two phases that must be completed during application deployment in
the general case. The first phase prepares the resources for execution. This involves
downloading, unpacking, and installing any required software packages, checking for
software dependencies, verifying correct versions, and basically ensuring that all re-
sources have been correctly configured to run the desired application. Some environ-
ments may have a common/global file system, while others may require each resource
to separately download and install all software packages. As a result, the application
controller must support a variety of file-transfer and decompression mechanisms for
each target execution environment and should react to failures that occur during the
transfer and installation of all software. Common file-transfer mechanisms include scp,
wget, rsync, ftp, and CoBlitz [Park and Pai 2004], and common decompression tools in-
clude gunzip, bunzip2, and tar. In addition, to further simplify resource configuration,
the application controller must interface with package management tools such as yum,
apt, and rpm.

The second phase of application deployment begins the execution. After the resources
have been prepared with the required software packages, the application controller
starts the application by running the processes defined in the application specification.
One key challenge in the application deployment phase is ensuring that the requested
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number of resources are correctly running the application. This often involves react-
ing to failures that occur when trying to execute various processes on the selected
resources. In order to guarantee that a minimum number of resources are involved in
a distributed application, the application controller may need to request new resources
from the resource discovery and acquisition systems to compensate for failures that
occur during software installation and process execution. Further, many applications
require some form of synchronization abstraction to guarantee that various phases of
computation start at approximately the same time on all resources. Providing synchro-
nization guarantees without sacrificing performance in distributed computing environ-
ments is challenging, especially in failure-prone and volatile large-scale networks.

2.2.4. Application Control and Maintenance. Perhaps the most difficult requirement for
managing and controlling distributed applications is monitoring and maintaining an
application after it starts. Thus, another abstraction that the application controller
must define is support for customizable application maintenance. One important as-
pect of maintenance is application and resource monitoring, which involves probing
resources for failure due to network outages or hardware malfunctions and querying
applications for indications of failure (often requiring hooks into application-specific
code for observing the progress of an execution). Such monitoring allows for more spe-
cific error reporting and simplifies the debugging process. The challenges of application
maintenance include ensuring application liveness across all resources, providing de-
tailed error information, and achieving forward progress in the face of failures. In order
to accomplish these goals, it is desirable that the application controller have a user-
friendly interface where users can obtain information about their applications, and if
necessary, make changes to correct problems or improve performance.

In some cases, system failures may result in a situation where application require-
ments can no longer be met. A robust application management infrastructure must be
able to adapt to “less-than-perfect” conditions and continue execution. For example, if
an application is initially configured to be deployed on 50 machines but only 48 are
available and can be acquired at a certain point in time, the application controller
should contact the user, and, if possible, adapt the application appropriately to con-
tinue executing with only 48 machines. Similarly, different applications have different
policies for failure recovery. Some applications may be able to simply restart a failed
process on a single resource, while others may require the entire execution across all
resources to abort in the case of failure. Thus, the application controller should support
a variety of options for failure recovery, and allow the user to customize the recovery
behaviors separately for each application. For applications that have strict resource
requirements, the application controller may need to contact the resource discovery,
creation, and acquisition subsystems to obtain new resources for hosting the applica-
tion and recover from failures.

3. DESIGN AND IMPLEMENTATION OF PLUSH

We now describe Plush, an extensible distributed application controller that imple-
ments the key abstractions of large-scale distributed application management dis-
cussed in Section 2. This section focuses on the application specification, application
deployment, and application maintenance abstractions. Due to their complexity, we
address the remaining two abstractions, resources and synchronization, separately in
the following sections. To directly monitor and control distributed applications, Plush
itself must be distributed. Plush uses a client-server architecture with clients running
on each resource involved in the application. The Plush server, called the controller,
interprets input from the user and sends messages on behalf of the user over an over-
lay network to Plush clients. The controller, typically run from the user’s workstation,
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Fig. 1. The architecture of Plush. The user interface interacts with all boxes in the lower subsystems. Boxes
below the user interface and above the dotted line are defined within the application specification. Boxes
below the line represent the core functional units.

directs the flow of control throughout the life of the distributed application. The clients
run on resources spread across the network and perform actions based on instructions
received from the controller.

Figure 1 shows an overview of the Plush controller architecture. Although we do not
include a detailed overview of the client architecture, it is symmetric to the controller
with only minor differences in functionality. The architecture consists of three main
subsystems: the application specification, core functional units, and user interface. The
application specification describes the application. Plush parses the application spec-
ification provided by the user and stores internal data structures and objects specific
to the application being run. The core functional units then manipulate and act on the
objects defined by the application specification to run the application. The functional
units also store authentication information, monitor resources, handle event and timer
actions, and maintain the communication infrastructure that enables the controller
to query the status of the distributed application on the clients. The user interface
provides the functionality needed to interact with the other parts of the architecture,
allowing the user to maintain and manipulate the application during execution. In
this section, we describe the design and implementation details of each of the Plush
subsystems. (Note that the components within the subsystems are highlighted using
italic font throughout the text in the remainder of this section.)

3.1. Application Specification

Developing a complete, yet accessible, application specification language was one of
the principal challenges in this work. Our approach, which evolved over four years
of experimentation and use, consists of combinations of five different “building block”
abstractions for describing distributed applications. These blocks are represented by
XML that is parsed by the Plush controller when the application is run. As a preview,
Figure 2 shows a specific example application that uses these abstractions. We discuss
the details of the application later. The five block abstractions are as follows.

(1) Process blocks describe the processes executed on each resource involved in an
application. The process abstraction includes runtime parameters, path variables,
runtime environment details, file and process I/O information, and the specific
commands needed to start a process on a resource.
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Application BlockApplication Block /app/app

Component Block 1                /app/comp1 
Senders

Process Block 1             /app/comp1/proc1 
prepare_files.pl

Process Block 2              /app/comp1/proc2
join_overlay.pl

Process Block 3              /app/comp1/proc3
send_files.pl

Barrier Block 1             /app/comp1/barr1

bootstrap_barrier

Component Block 2        /app/comp2 
Receivers

Process Block 1           /app/comp2/proc1
join_overlay.pl

Process Block 2 /app/comp2/proc2
receive_files.pl

Barrier Block 1          /app/comp2/barr1

bootstrap_barrier

Fig. 2. Example file-distribution application comprised of application, component, process, and barrier
blocks in Plush. Arrows indicate control-flow dependencies. (i.e., Block x → Block y implies that Block x
must complete before Block y starts.)

(2) Barrier blocks describe the barriers that are used to synchronize the various phases
of execution within a distributed application.

(3) Workflow blocks describe the flow of data in a distributed computation, including
how the data should be processed. Workflow blocks may contain process and bar-
rier blocks. For example, a workflow block might describe a set of input files over
which a process or barrier block will iterate during execution. Workflow blocks are
implemented using an internal barrier in Plush to keep track of task completion.

(4) Component blocks describe the groups of resources required to run the applica-
tion, including expectations specific to a set of metrics for the target resources. For
example, on PlanetLab, the metrics might include maximum load requirements
and minimum free memory requirements. Components also define required soft-
ware configurations, installation instructions, and any authentication information
needed to access the resources. Component blocks may contain workflow blocks,
process blocks, and barrier blocks.

(5) Application blocks describe high-level information about a distributed application.
This includes one or many component blocks as well as attributes to help automate
failure recovery.

To better illustrate the use of these blocks in Plush, consider building the specification
for the simple file-distribution application as shown in Figure 2. This simple application
consists of two groups of resources. One group, the senders, stores the files, and the
second group, the receivers, attempts to retrieve the files from the senders. The goal of
the application is to experiment with the use of an overlay network to send files from the
senders to the receivers using some new file-distribution protocol. In this application,
there are two phases of execution. In the first phase, all senders and receivers join
the overlay before any transfers begin. Also, the senders must prepare the files for
transfer during phase one before the receivers start receiving the files in phase two.
In the second phase, the receivers begin receiving the files from the senders. Note that
in the second phase no new senders or receivers are allowed to join the network and
participate in the transfer.

The corresponding application specification for this file-distribution application con-
tains one application block, which is used to define general characteristics about the
application including the liveness properties and default failure recovery behavior. The
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application block contains two component blocks that describe the groups of resources
required to run the application. These component blocks run in parallel since there are
no arrows indicating control-flow dependencies between them. Our application con-
sists of component blocks that describe a set of senders and a set of receivers. Each
component block defines the location and installation instructions for the required
software and includes authentication information to access the resources. Specific re-
source requirements, such as processor speed or memory available, are also included
in component blocks.

Within each component block, a combination of process and barrier blocks describe
the computation that will occur on each resource in the component. Though our ex-
ample does not employ workflow blocks, they are also defined within the component
blocks, and are used in applications where data files must be distributed and itera-
tively processed. The process blocks in our example describe the specific commands
required to execute the application, including processes for file preparation, overlay
membership, and file transfer details. Most process blocks depend on the successful
installation of software packages defined in the component blocks. Users specify the
commands required to start a given process and actions to take upon process exit. The
exit policies create a Plush process monitor that oversees the execution of a specific
process. The barrier blocks in our example are used to separate the two phases of exe-
cution. Note that although each barrier block is uniquely defined within the component
blocks, they refer to the same barrier, meaning that the application will wait for all
receivers and senders to reach the barrier before allowing either component to start
sending or receiving files.

3.2. Core Functional Units

After parsing the block abstractions defined by the user within the application spec-
ification, Plush instantiates a set of core functional units to perform the operations
required to configure and deploy the distributed application. Figure 1 shows these
units as shaded boxes below the dotted line. The functional units manipulate the ob-
jects defined in the application specification to manage distributed applications.

Starting at the highest-level, the Plush resource discovery and acquisition unit uses
the resource definitions in the component blocks to locate and create (if necessary) re-
sources on behalf of the user. The resource discovery and acquisition unit is responsible
for obtaining a valid set, called a matching, of resources that meet the application’s
demands. The Plush resource matcher then uses the resources in the resource pool to
create a matching for the application. We discuss this process in detail in Section 4. All
resources involved in an application run a Plush host monitor that periodically pub-
lishes information about the resource. The resource discovery and acquisition unit may
use this information to help find the best matching. Upon acquiring a resource, a Plush
resource manager stores the lease, token, or any necessary user credential needed for
accessing that resource to allow Plush to perform actions on behalf of the user in the
future.

The remaining functional units in Figure 1 are responsible for application deploy-
ment and maintenance. These units connect to resources, install required software,
start the execution, and monitor the execution for failures. One important functional
unit used for these operations is the Plush barrier manager, which provides advanced
synchronization services for Plush and the application itself. Since traditional syn-
chronization techniques are too strict for volatile, wide-area network conditions, Plush
uses the relaxed synchronization semantics of partial barriers (described in detail in
Section 5) for managing applications.

The Plush file manager handles all files required by a distributed application.
This unit contains information regarding software packages, file transfer methods,
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installation instructions, and workflow data files. The file manager is responsible
for preparing the physical resources for execution using the information provided
by the application specification. Once the resources are prepared with the necessary
software, the application deployment phase completes by starting the execution. This
is accomplished by starting processes on the resources. Plush processes are defined
within process blocks in the application specification. A Plush process is a group of
(identical) UNIX processes running across a distributed set of resources.

The two lowest layers of the Plush architecture consist of a communication fabric
and the I/O and timer subsystems. The communication fabric handles passing and
receiving messages among Plush overlay participants. Participants communicate over
TCP connections. The controller sends messages to the clients instructing them to
perform certain actions. When the clients complete their tasks, they report back to
the controller for further direction. The communication fabric at the controller knows
what resources are involved in a particular application instance so that the appropriate
messages reach all necessary resources.

At the bottom of all of the other units is the Plush I/O and timer abstraction. As
messages are received in the communication fabric, message handlers fire events.
These events are sent to the I/O and timer layer and enter a queue. The event loop
pulls events off the queue and calls the appropriate event handler. Timers are a special
type of event in Plush that fire at a predefined instant.

3.3. Plush User Interfaces

Plush aims to support a variety of applications being run by users with a wide range
of expertise in building and managing distributed applications. Thus, Plush provides
three interfaces which each provide users with techniques for interacting with their
applications. In Figure 1, the user interface is shown above all other parts of Plush.
In reality, the user interacts with every box shown in the figure through the user
interface. For example, the user can force the resource discovery and acquisition unit
to find a new set of resources by issuing a command through one of the user interfaces.
We designed Plush in this way to give the user maximum control over the application.
At any stage of execution, the user can override a default Plush behavior, creating a
customizable application controller.

3.3.1. Graphical User Interface. In an effort to simplify the creation of application
specifications and help visualize the status of executions running on resources around
the world, we implemented a graphical user interface (GUI) for Plush called Nebula
[Nebula 2007]. In particular, we designed Nebula (as shown in Figure 3) to simplify
the process of specifying and managing applications running across PlanetLab. Plush
obtains data from the PlanetLab Central (PLC) database to determine what hosts a
user has access to, and Nebula uses this information to plot the sites on the map.

The main Nebula window contains four tabs that show different information about
the user’s application. We show two of these tabs in Figure 3. In the “World View” tab,
users see an image of a world map with colored dots indicating PlanetLab hosts. Differ-
ent colored dots on the map indicate sites involved in the current application, as shown
in Figure 3(a). As the application proceeds through the different phases of execution,
the sites change color, allowing the user to visualize the progress of their application.
For example, a red dot on a site indicates failure while a green dot indicates correct exe-
cution. Users retrieve more detailed usage statistics and monitoring information about
specific hosts (such as CPU load, free memory, or bandwidth usage) by double clicking
on the individual sites in the map. This opens a second window that displays real-time
graphs based on data retrieved from resource monitoring tools, as shown in the bottom
right corner of Figure 3(a). Note that, like Plush, Nebula is application-independent
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Fig. 3. Different tabs in Nebula. Additional images available at Nebula [2007].

and does not support application-specific monitoring. We are currently exploring ways
to extend Nebula to allow more customized, application-specific monitoring and visu-
alization.

The second tab in the Nebula main window is the “Application View.” The Application
View tab, shown in Figure 3(b), allows users to build Plush application specifications
using the blocks described in Section 3.1. Alternatively, users may load an existing
XML file describing an application specification by choosing the Load Application menu
option under the File menu. After creating or loading an application specification, the

ACM Transactions on Internet Technology, Vol. 11, No. 2, Article 6, Publication date: December 2011.



Distributed Application Configuration, Management, and Visualization with Plush 6:13

Table I. Sample Plush Terminal Commands

Command Description
load <filename> Read an XML application specification
connect <resource> Connect to a Plush client on a resource
disconnect Close all open client connections
info nodes Print summary information about all known resources
info control Print the controller’s state information
run Execute application (after loading specification)
shell <quoted string> Run “quoted string” as a shell command on resources

Run button located on the Application View tab starts the application. The Plush blocks
in the application specification change to green during the execution of the application
to indicate progress.

The third tab is the “Resource View” tab. This tab is blank until an application
starts running. During execution, this tab lists the specific PlanetLab hosts that are
involved in the execution. If failures occur during execution, the list of hosts is updated
dynamically, such that the Resource View tab always contains an accurate listing of
the resources that are in use. The resources are separated into components, so that the
user knows which resources are assigned to which tasks in their application.

The fourth tab in Nebula is called the “Host View” tab. This tab contains a table that
displays the hostname of all available PlanetLab resources. The purpose of the Host
View tab is to give users another alternative to visualize the status of an executing
application. In the right column, the status of the host is shown. Each host’s status
corresponds to the color of the host’s dot in the World View tab. This tab also allows
users to run shell commands simultaneously on several resources and view the output.
Right-clicking on a host in the Host View tab opens a new tab that contains an SSH
connection directly to the host.

3.3.2. Command-Line Interface. Motivated by the popularity of the UNIX shell interface,
Plush further streamlines the develop-deploy-debug cycle for distributed application
management through a simple command-line interface where users can deploy, run,
and debug their distributed applications running on hundreds of resources. The Plush
command-line combines the functionality of a distributed shell with the power of an
application controller to provide a robust execution environment for users to run their
applications. From a user’s standpoint, the Plush terminal looks just like a shell.
Plush supports several commands for monitoring the state of an execution as well
as commands for manipulating the application specification during execution. Table I
shows a subset of the available commands.

3.3.3. Programmatic Interface. Most commands that are available via the Plush
command-line interface are also exported via an XML-RPC interface to deliver similar
functionality as the command-line to those who desire programmatic access. Using
XML-RPC, Plush can be scripted and used for remote execution and automated appli-
cation management. External services for resource discovery, creation, and acquisition
can also communicate with Plush using XML-RPC. These external services have the
option of registering themselves with Plush so that the controller can send callbacks to
XML-RPC clients when various actions occur. (Some of the common callback functions
are shown in the bottom of Figure 4 in class PlushXmlRpcCallback.)

Figure 4 shows the Plush XML-RPC API.2 The functions shown in the Plush-
XmlRpcServer class are available to users who wish to access Plush programmatically

2Note that the XML-RPC API provides a control plane interface only to the controller to integrate with
third-party applications. The controller does not use XML-RPC to communicate with the clients in the data
plane. Instead, the data plane uses an internal protocol running over TCP.
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Fig. 4. Plush XML-RPC API.

in scripts or for external resource discovery and acquisition services that need to
add and remove resources from the Plush resource pool. The plushAddNode(HashMap)
and plushRemoveNode(string) calls add and remove nodes from the resource pool,
respectively. setXmlRpcClientUrl(string) registers XML-RPC clients for callbacks,
while plushTestConnection() simply tests the connection to the Plush server and
returns “Hello World.” The remaining function calls in the class mimic the behavior of
the corresponding command-line operations. In Section 4 we will examine some specific
uses of this API within the context of different resource management frameworks.

3.4. Fault Tolerance and Scalability

Two of the biggest challenges that we encountered during the design of Plush was being
robust to failures and scaling to hundreds of resources spread across the wide-area. In
this section we explore how Plush supports fault tolerance and scalability.

3.4.1. Fault Tolerance. To achieve fault tolerance, Plush must be robust to the variety
of failures that occur during application execution. When designing Plush, we aimed
to provide the functionality needed to detect and recover from most failures without
involving the user running the application. Rather than enumerate all the possible
failures that can occur, we discuss how Plush handles three common failure classes,
namely, process, resource, and controller failures.

Process failures. When a resource starts a process defined in a process block, Plush
attaches a process monitor to the process. The role of the process monitor is to catch any
signals raised by the process and to react appropriately. When a process exits either due
to successful completion or error, the process monitor sends a message to the controller
indicating that the process has exited and includes its exit status. This model supports
multithreaded processes, but not processes that fork other processes. Plush then defines
a default set of behaviors that occur in response to a variety of exit codes (although
these can be overridden within an application specification). The default behaviors
include ignoring the failure, restarting only the failed process, restarting the entire
application, or aborting the entire application. Table II summarizes the supported
process exit policies.

In addition to process failures, Plush also allows users to monitor the status of a
process that is still running through a specific type of process monitor called a liveness

ACM Transactions on Internet Technology, Vol. 11, No. 2, Article 6, Publication date: December 2011.



Distributed Application Configuration, Management, and Visualization with Plush 6:15

Table II. Process Exit Policies in Plush

Exit Policy Description

POLICY END APPLICATION End the application with success
POLICY FAIL APPLICATION End the application with failure
POLICY RESTART APPLICATION Restart the entire application
POLICY RESTART PROCESS Restart only the process
POLICY CONTINUE Continue to next step in workflow
POLICY IGNORE Log the exit, but do nothing

monitor, whose goal is to detect misbehaving and unresponsive processes that get stuck
in loops and never exit. This is especially useful in the case of long-running services
that are not closely monitored by the user.

Resource failures. Detecting and reacting to process failures is straightforward
since the controller is able to communicate information to the client regarding the
appropriate recovery action. When a resource fails, however, recovering is more
difficult. A resource may fail for a number of reasons including network outages,
hardware problems, and power loss. Under all of these conditions, the goal of Plush
is to quickly detect the problem and reconfigure the application with a new set of
resources to continue execution.

There are three possible actions in response to a resource failure: restart, rematch,
and abort. By default, the controller tries all three actions in order. The first and easiest
way to recover from a resource failure is to simply reconnect and restart the application
on the failed resource. If the controller is unable to reconnect to the resource, the next
option is to rematch in an attempt to replace the failed resource with a different
resource. In this case, Plush reruns the resource matcher to find a new resource.
If the controller is unable to find a new resource to replace the failed resource and
the application description specifies a fixed number of required resources, Plush then
finally aborts the entire application.3

Controller failures. Because the controller is responsible for managing the flow of
control across all clients, recovering from a failure at the controller is difficult. Plush
uses a simple primary-backup scheme where multiple controllers increase reliability.
All messages sent from the clients and primary controller are sent to the backup
controllers as well. If a predetermined amount of time passes and the backup controllers
do not receive any messages from the primary, it is assumed to have failed. The first
backup becomes the primary, and execution continues.

This strategy has several potential drawbacks. First, it may cause extra messages to
be sent over the network, which limits the scalability of Plush. Second, this approach
may not perform well when a network partition occurs. During a network partition,
multiple controllers may become the primary controller for subsets of the clients ini-
tially involved in the application. Once the network partition is resolved, it may be
difficult to reestablish consistency among all clients and resources. One solution to
these problems is to separate the functionality of the controller from the maintenance
of the underlying communication mesh. Thus controllers can fail, disconnect, and re-
connect from the communication mesh without communicating with any nodes except
for the “root” or “center” of the mesh.

3.4.2. Scalability. In addition to fault tolerance, an application controller designed for
large-scale environments must scale to hundreds or even thousands of participants.
Our experience in the design and implementation of Plush has shown that there is

3Some batch scheduling resource managers, such as LSF [Load Sharing Facility (LSF)] and SGE [Gentzsch
2001], provide similar mechanisms for coping with resource failures. However, Plush currently does not
support interaction with these services.
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(a) PlanetLab (b) ModelNet

Fig. 5. Average recovery time after failure of 25% of the overlay participants.

a trade-off between performance and scalability in this context. The solutions that
perform the best at moderate scale typically provide less scalability than solutions
with lower performance. To balance scalability and performance, Plush provides users
with two topological alternatives for the structure of the control overlay that offer
varying levels of scalability and performance.

By default, all Plush clients connect directly to the controller forming a star topology.
This architecture scales to approximately 300 resources, limited by the number of file
descriptors allowed per process on the controller machine in addition to the bandwidth,
CPU, and latency required to communicate with all connected clients. The star topology
is easy to maintain since all clients connect directly to the controller. In the event of a
resource failure, only the failed resource is affected. Further, the time required for the
controller to exchange messages with clients is short due to the direct connections.

At larger scales, network and file descriptor limitations at the controller become a
bottleneck. To address this, we developed an extension to Plush called Plush-M that
uses a random overlay tree (built using Mace [Killian et al. 2007]) for organization and
communication [Topilski et al. 2008]. In an effort to reduce the number of hops between
the clients and controller, Plush-M constructs “bushy” trees where the depth of the tree
is small, and each node in the tree has many children. To make our tree more fault
tolerant, the functionality of the controller is separated from the root of the overlay tree,
which allows the overlay tree to be restructured quickly without changing the identity
of the controller. In addition, by separating the controller from the root of the tree, it
allows the controller to disconnect or go offline without impacting the execution of the
application. While this improves scalability, it complicates failure recovery due to the
potential overhead of tree reconfigurations. To quantify the overhead of reconfiguration,
we ran experiments to measure the average recovery time after failure of Plush-M on
ModelNet and PlanetLab. The results are shown in Figure 5.

Figure 5(a) shows the results from running our failure recovery experiment on
PlanetLab. In this experiment we failed one quarter of the participants and measured
the reconnection time. For Plush-M, the average reconnection time for overlays with
more than 12 participants took approximately 12 seconds. When less than 12 nodes
were involved, Plush-M created a tree with one level and all nodes directly linking
to the root, and the average time was about 8 seconds. Plush running over its default
star topology performed consistently as the number of nodes increased, with an
average reconnect time of about 7 seconds. In Figure 5(b), we performed the same
failure recovery experiment on ModelNet. Our results show that the reconnection
latency difference between Plush-M and Plush is less than 2 seconds in most cases
and can again be explained by the overhead associated with the tree reconfiguration
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during node reconnections. Since network links were emulated and variable wide-area
network conditions did not affect our results, the overhead of tree reconfiguration on
ModelNet is much less significant than the overhead of tree configuration on Planet-
Lab. In general, we were satisfied with these results, and conclude that the overhead
associated with tree reconfiguration is not significant, especially in underutilized
networked environments.

3.5. Implementation Details

Plush is a publicly available software package [Plush 2004]. The Plush codebase con-
sists of over 60,000 lines of C++ code. The same code is used for the Plush controller and
client processes, although there are minor differences in functionality within the code.
Plush depends on several C++ libraries, including those provided by xmlrpc-c, curl,
xml2, zlib, math, openssl, readline, curses, boost, and pthreads. The command-line in-
terface also depends on packages for lex and yacc (we use flex and bison). For optimal
performance, we recommend the use of the Native POSIX Threads Library (NPTL) in
Linux environments as well as the ares package for asynchronous DNS lookups. In
addition to the main C++ codebase, Plush uses several simple perl scripts for inter-
acting with the PlanetLab Central database and bootstrapping resources. These perl
scripts require the Frontier::Client and Crypt::SSLeay perl modules. Plush runs on
most UNIX-based platforms, including Linux, FreeBSD, and Mac OS X, and a single
Plush controller can manage clients running on different operating systems. The only
prerequisite for using Plush on a resource is the ability to SSH to the resource.

Nebula consists of approximately 25,000 lines of Java code. Nebula communicates
with Plush using the XML-RPC interface described in Section 3.3.3. XML-RPC is
implemented in Nebula using the Apache XML-RPC client and server packages. In
addition, Nebula uses the JOGL implementation of the OpenGL graphics package for
Java. Since Nebula uses OpenGL, we highly recommend enabling video card hardware
acceleration for optimal performance. Nebula runs in any computing environment that
supports Java, including Windows, Linux, FreeBSD, and Mac OS X among others. Note
that since Nebula and Plush communicate solely via XML-RPC, it is not necessary to
run Nebula on the same physical machine as the Plush controller. When starting
Nebula, users have the option of either starting a local Plush controller or specifying a
remote Plush controller process.

4. PLUSH RESOURCE MATCHER

In this section, we take a closer look at the resource abstraction in Plush. Recall that
a resource in Plush is a (virtual or physical) machine that can host an application
on behalf of the user. Section 2 describes the role of resource discovery, creation, and
acquisition in the context of application management. To summarize, the main re-
sponsibility of a resource discovery and acquisition service is to find a set of resources
(called a matching in Plush) that meet the application’s resource demands. One goal in
the design of Plush is to create an architecture flexible enough to work in a variety of
computing environments with different types of resources. Thus, rather than reinvent
the functionality of existing resource discovery and acquisition services for each target
environment, we employ instead an extensible resource discovery and acquisition unit
(as shown in Figure 1) that supports a variety of resources. This is often accomplished
by using the Plush XML-RPC interface for adding and removing resources from the
application’s resource pool. The Plush resource matcher then uses the resources in the
resource pool and the application’s requirements as defined in the application specifi-
cation to create a resource matching.

After constructing the resource pool, the algorithm used by the resource matcher is
simple. Suppose the user wants to run an application on N resources. The matcher
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Fig. 6. Plush resource directory file.

then picks the first N resources from the resource pool and attempts to deploy the
application. Depending on the target deployment environment, the resources may or
may not exist in advance, and the resources may be ordered in some way. In this section,
we examine the details pertaining to how the Plush resource matcher interacts with
different types of resources provided by external services to construct a valid matching
and run applications.

4.1. Plush Resource Pools

Before discussing how a matching is created, we first describe how resource pools are
constructed in Plush. Plush assumes that all resources are accessible via SSH and
requires that passphrase-less authentication has been established a priori by using a
combination of ssh-agent and public key distribution. Put simply, a resource pool is a
grouping of resources that are available to the user and are reachable via passphrase-
less SSH authentication.

The simplest way to define a resource pool in Plush is by creating a resource directory
file (typically called directory.xml) that lists available resources. This file is read by the
Plush controller at startup, and internally Plush creates a node object for each resource.
A node contains a username for logging into the resource, a fully qualified hostname,
the port on which the Plush client will run, and a group name. The purpose of the group
name is to give users the ability to classify resources into different categories based on
application-specific requirements.

The resource file also contains a special section for defining PlanetLab hosts. Rather
than specifically defining which PlanetLab hosts a user has access to, the directory
file instead lists which slices are available to the user. In addition to the slice names,
the user specifies their login to PlanetLab Central (PLC) as well as a mapping (called
the portmap) from slice names to port numbers. At startup, Plush uses this login
information to contact PLC directly via XML-RPC. The PLC database returns a list of
hostnames that have been assigned to each available slice. The Plush controller uses
this information to create a node object for each PlanetLab host available to the user.
A sample directory.xml file is shown in Figure 6.

In addition to the resources defined in a directory file, resources are also added and
removed by external services during an application’s execution. This is accomplished
using the Plush XML-RPC interface described in Section 3. External services that cre-
ate virtual resources dynamically based on an application’s needs, for example, contact
the Plush controller with new available resources, and Plush adds these resources to
the user’s resource pool. If these resources become unavailable, the external service
calls Plush again, and Plush subsequently removes the resources from the resource
pool. Note that this may involve stopping the application running on the resource be-
forehand. Additionally, when using the Plush command-line user interface, users have
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Fig. 7. Plush software and component definition.

the option of adding resources to their resource pool directly by using the “add resource”
command from the Plush shell.

4.2. Creating a Matching

After a resource pool has been created, the Plush resource matcher is responsible
for finding a valid matching—a subset of resources that satisfy the application’s
demands—for the application being managed by Plush. To accomplish this task, the
matcher first must parse the resource definitions for each component defined in the the
application specification. A Plush component is merely a set of resources. Each com-
ponent block defined in the application specification has a corresponding component,
or set of resources, on which the processes and barriers specified in the component
block are run. Component definitions also include required software, desired number
of resources, optional external service usage information (discussed in detail later),
and any static host specifications. Static hosts are resources that must be used to host
an application. If these resources fail or become unavailable, the entire application is
automatically aborted.

Figure 7 shows the Plush software and component definition that is part of the ap-
plication specification. The software definitions specify where to obtain the required
software, the file transfer method as indicated by the “type” attribute for the pack-
age element, and the installation method as indicated by the “type” attribute of the
software element. In this particular example, the file transfer method is “web” which
means that a Web fetching utility such as wget or curl is used to retrieve the soft-
ware package. The installation method is “tar.” This implies that the package has been
bundled using the tar utility and installing the package involves running tar with the
appropriate arguments. “dest path” specifies what file name the package is saved as
on the resources.

The component definition begins below the software specification in Figure 7. Each
component is given a unique name, which is used by the component blocks later
to identify which set of resources should be used. Next, the “rspec” element defines
“num hosts,” which is the number of resources required in the component. The “rspec”
element also optionally specifies any “static host” resources desired. The use of static
hosts is not recommended for most applications since the failure of a static host results
in the entire application being aborted. The “software” element within the component
specification refers to the “SimpleSoftware” software package that was previously de-
fined. Lastly, the “resources” element specifies which resource group (recall that each
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node object includes a group name) to use for creating the matching. In this case we
are interested in PlanetLab hosts assigned to the ucsd plush slice.

After creating the resource pool and parsing the component definition in the applica-
tion specification, the resource matcher has all of the information it needs to create a
matching. The matcher starts with the global resource pool and filters out all resources
that are not in the group specified in the component definition. In our example, this
includes all hosts not assigned to the ucsd plush slice. Using the remaining resources
in the resource pool, the matcher randomly picks the appropriate number of node ob-
jects (as determined by “num hosts”) and inserts them into the matching. The Plush
controller then begins to configure these chosen resources. If a failure occurs during
configuration or execution, the controller requeries the matcher. The matcher sets the
“failed” flag in the node that caused the failure,4 removes it from the matching, and
inserts another randomly chosen resource from the resource pool. This process is re-
peated for each failure throughout the duration of the application’s execution. Note
that resources that are marked as failed are never chosen to be part of a matching.

In some environments, the resource matcher’s random choosing policy does not al-
ways allow users to achieve their desired results. To help address this problem, Plush
allows users to specify a set of “preferred hosts” for running their application. Inter-
nally, each Plush node has a numerical preference value assigned to it. In the absence
of preferred hosts, all preference values are set to zero. If a resource fails, the prefer-
ence value for the failed resource is reduced by some number. If a resource succeeds,
the preference value is increased. When the matcher filters through the resource pool,
it automatically chooses resources with the highest preference value first. Using this
simple technique, users are able to loosely pick resources that they know are more
reliable, and thus are typically able to achieve better results.

4.3. PlanetLab Resource Selection

In this section, we take a closer look at how Plush interacts with a specific resource
discovery service, SWORD, to select an optimal set of PlanetLab resources from the
resource pool. SWORD [Albrecht et al. 2008] is a publicly available service that is de-
signed to perform resource discovery for PlanetLab. Finding a usable set of resources
to host a PlanetLab application during times of high resource contention can be very
challenging. SWORD is designed to address this challenge in an application-specific
manner without requiring the user to select preferred hosts for running their appli-
cations. SWORD takes a query describing resource demands for a specific application
as input and returns a set of resources that satisfy these demands. Queries define
groups of resources that have specific per-node (e.g., load or free memory on all hosts),
inter-node (e.g., all-pairs latency or bandwidth within a group), and inter-group (e.g.,
all-pairs latency or bandwidth across groups) properties. Additionally, the queries al-
low users to specify ranges of acceptable values for each attribute rather than a single
value. Associated with this range is a penalty value, which allows users to rank the im-
portance of various attributes. SWORD returns a list of resources organized by group
that have the lowest overall penalty.

Although setting preferred hosts helps find suitable resources on PlanetLab, it is not
as effective as using SWORD to find the best set of resources available for hosting an
application. Hence, we decided to integrate SWORD and Plush, allowing application
developers to benefit from the application management features of Plush and the
advanced resource discovery features of SWORD. In order to facilitate the integration,

4In addition to setting the failed flag in the node object, the controller also notes the time at which the flag
was set. In the case of long-running applications, failed flags are periodically unset after a sufficient amount
of time passes.
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we extended both the Plush and SWORD XML-RPC interfaces so that the two systems
could communicate easily. Additionally, we modified the Plush application specification
parser to recognize when an external service (such as SWORD) should be used. A full
component definition that includes a SWORD query is shown in Figure 14 in Section 6.

The XML that appears between the “sword” tags in Figure 14 is a complete and
unmodified SWORD query. When the Plush controller parses the application specifica-
tion and discovers the “sword” portion of the XML, it immediately sends the query to
the SWORD server via XML-RPC. SWORD responds with a list of PlanetLab machines
that satisfy the constraints specified in the query. The Plush resource matcher uses this
information to increase the preference values for the corresponding node objects. Addi-
tionally, Plush uses the SWORD penalty values to set the preference values according
to how well the resources meet the application’s demands. Hence, resources with low
SWORD penalty values are given high Plush preference values, and resources with
high SWORD penalty values are given lower Plush preference values. After setting the
preference values, the matcher than proceeds as usual, choosing resources with higher
preference values before resources with lower preference values. Plush users also have
the option of rerunning the SWORD query periodically to maintain a fresh list of good
resources.

4.4. Virtual Machine Support

In addition to using SWORD for resource selection on PlanetLab, Plush also supports
using virtual machine management systems for creating and obtaining resources. In
particular, Plush provides an interface for using both Shirako [Irwin et al. 2006] and
Usher [McNett et al. 2007]. Shirako is a utility computing framework. Through pro-
grammatic interfaces, Shirako allows users to create dynamic on-demand clusters of
resources, including storage, network paths, physical servers, and virtual machines.
Shirako is based on a resource leasing abstraction, enabling users to negotiate access
to resources. Usher is a virtual-machine scheduling system for cluster environments. It
allows users to create their own virtual machines or clusters. Usher uses data collected
by virtual machine monitors to make informed decisions about when and where the
virtual machine should run.

Through its XML-RPC interface, Plush interacts with both the Shirako and Usher
servers in a similar manner to SWORD. Unlike SWORD, however, in Shirako and
Usher the resources do not exist in advance. The resources must be created and added
to the resource pool before the Plush resource matcher can create a matching. To
support this dynamic resource creation and management, we again augment the Plush
application specification with a description of the desired virtual machines and then
send this description to the corresponding service for resource creation. As the Plush
controller parses the application specification, it stores the resource description, and
when the “plushCreateResources” command is issued (either via the command-line
or programmatically through XML-RPC), Plush contacts the appropriate Shirako or
Usher server and submits the resource request. Once the resources are ready for use,
Plush is informed via an XML-RPC callback that also contains contact information
about the new resources. This callback updates the Plush resource pool and the user
is free to start applications on the new resources.

Similar to the way we included the SWORD query in the application specification in
the preceding section, if a Plush user wants to obtain Shirako or Usher resources for
hosting an application, the application specification must again be augmented with a
description of the desired resources. The syntax is similar to that of the SWORD query,
except that in the case of Shirako and Usher, the attributes define the resources that
will be created. Figure 8 shows an example of a Plush component definition that is aug-
mented with a Shirako resource request. Shirako currently creates Xen [Barham et al.
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Fig. 8. Plush component definition containing Shirako resources.

2003] virtual machines (as indicated by the “type” flag with value “1” in the resource
description) with the CPU speed, memory, disk space, and maximum bandwidth spec-
ified in the resource request. If one or more of these attributes is not explicitly defined,
Shirako uses default values for creating virtual machines. Also, Shirako arbitrates
access to resources using leases. Notice that the resource description contains a lease
parameter which tells Shirako how long the user intends to use the resources. Lastly,
the resource description specifies which Shirako server to contact with the resource
request.

Since Shirako is a lease-based resource management environment, it is possible that
the resources will not be available immediately when Plush contacts the Shirako server
on behalf of the user. Thus, rather than having Plush block on the XML-RPC call until
the resources are available, Plush instead registers a callback with the Shirako server.
When the resources become available, the Shirako server contacts the Plush controller
with information regarding the newly created resources. This information includes the
hostname, group name, username, and Plush client port number. When all requested
resources are available, Plush sends a message to the user indicating that the resources
are ready for use. After the requested lease length expires, Shirako contacts the Plush
controller and asks that the resources be removed from the resource pool.

4.5. ModelNet Emulated Resources

Aside from PlanetLab resources and virtual machines, Plush also supports running
applications on resources in emulated environments. In this section we discuss how
Plush supports adding emulated resources from ModelNet [Vahdat et al. 2002] to the
resource pool. Further, we describe how the Plush XML-RPC programmatic interface
is used to perform job execution in a batch scheduler.

Mission is a simple batch scheduler that uses Plush to manage the execution
of ModelNet jobs in our research cluster. A single ModelNet experiment typically
consumes almost all of the computing resources available on the physical machines
involved. Thus, when running an experiment, it is essential to restrict access to the
machines so that only one experiment is running at a time. Further, there are a
limited number of FreeBSD core machines running the ModelNet kernel available,
and access to these hosts must also be arbitrated. Mission, a simple batch scheduler,
was developed locally to help accomplish this goal. ModelNet users submit their jobs
to the Mission queue, and as the machines become available, Mission pulls jobs off
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Fig. 9. Plush directory file for a ModelNet topology. sys80 is the FreeBSD core machine. sys81 is a Linux
edge host that is running four emulated virtual hosts.

the queue and runs them on behalf of the user. This ensures that no two jobs are run
simultaneously, and it also allows the resources to be shared more efficiently.

A Mission job submission has two components: a Plush application specification and
a directory file. For ModelNet, the directory file contains information about both the
physical and virtual (emulated) resources on which the ModelNet experiment will run.
Typically the directory file is generated directly from a ModelNet configuration file.
Unlike Plush directory files for other environments, the ModelNet directory file entries
contain extra parameters that specify the mapping from physical hosts to virtual IP
addresses. Figure 9 shows an example directory file for a ModelNet topology. In this
figure, some of the resources include two extra parameters, “vip” and “vn”, which define
the virtual IP address and virtual number (similar to a hostname) for the emulated
resources. Also, notice that different group names are used to distinguish emulated
hosts from physical hosts. The Plush controller parses this file at startup and populates
the resource pool with both the emulated and physical resources. The matcher then
uses the group information to ensure that the correct resources are used in each stage
of the execution.

In addition to the directory file that is used to populate the Plush resource pool, users
also submit an application specification describing the application they wish to run on
the emulated topology to the Mission server. This application specification contains
two component blocks. The first component block describes the processes that run on
the physical machines during the deployment phase (where the emulated ModelNet
topology is instantiated). The corresponding component that is associated with this
component block specifies that the resources used during this phase belong to the “phys”
group. The second component block defines the processes associated with the target
application. The component for this component block specifies that resources belong to
the “emul” group. When the controller starts the Plush clients on the emulated hosts,
it specifies extra command-line arguments that are defined in the directory file by the
“vip” and “vn” attributes. These arguments set the appropriate ModelNet environment
variables, ensuring that all commands run on that client on behalf of the user inherit
those settings.

5. PARTIAL BARRIERS

This section discusses the wide-area distributed synchronization abstraction in Plush.
Traditionally, synchronization barriers [Jordan 1978] have been used to ensure that no
cooperating process advances beyond a specified point until all processes have reached
that point. In heterogeneous large-scale distributed computing environments with
unreliable network links and machines that may become overloaded and unresponsive,
traditional barrier semantics are too strict to be effective for a broad range of dis-
tributed applications. In response to this limitation, we explore several relaxations and
introduce a partial barrier, which is a synchronization primitive designed to enhance
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Fig. 10. (a) Traditional semantics: All hosts enter the barrier (indicated by the white boxes) and are simul-
taneously released (indicated by dotted line). (b) Early release: The barrier fires after 75% of the hosts arrive.
(c) Throttled release: Hosts are released in pairs every �T seconds. (d) Counting semaphore: No more than
two hosts are simultaneously allowed into a “critical section” (indicated by grey bars). When one host exits
the critical section, another host enters.

liveness in failure-prone computing environments [Albrecht et al. 2006a]. Partial
barriers are robust to variable network conditions; rather than attempting to hide the
asynchrony inherent to wide-area settings, they enable appropriate application-level
responses. In this section, we describe how partial barriers have been integrated into
Plush, and in Section 6 we evaluate the improved performance achieved using partial
barriers.

5.1. Partial Barriers Semantics

Partial barriers are a set of semantic extensions to the traditional barrier synchro-
nization abstraction. Specifically, we define two new barrier release rules that provide
better support for applications that require synchronization in failure-prone wide-area
computing environments. The new semantics are described as follows.

Early release. Traditional barriers require all nodes to enter a barrier before any node
may pass through, as in Figure 10(a). A partial barrier with early release is instantiated
with a timeout, a minimum percentage of entering nodes, or both. Once the barrier has
met either of the specified preconditions, nodes that have already entered the barrier
are allowed to pass through without waiting for the remaining slow nodes to arrive
(Figure 10(b)). Alternatively, an application may instead choose to receive callbacks
from the Plush controller as nodes enter and manually release the barrier, enabling
the evaluation of arbitrary predicates.

Throttled release. Typically, a barrier releases all nodes simultaneously when a bar-
rier’s precondition is met. A partial barrier with throttled release specifies a rate of
release, such as two nodes every �T seconds as shown in Figure 10(c). A special varia-
tion of throttled release barriers allows applications to limit the number of nodes that
simultaneously exist in a “critical section” of activity, creating an instance of a counting
semaphore [Dijkstra 1968] (shown in Figure 10(d)), which may be used, for example,
to throttle the number of nodes that simultaneously perform network measurements
or software downloads. A critical distinction between traditional counting semaphores
and partial barriers, however, is support for failures. For instance, if a sufficient num-
ber of slow or soon-to-fail nodes pass a counting semaphore, they will limit access to
other participants, possibly forever. Thus, as with early release barriers, throttled re-
lease barriers eventually time out slow or failed nodes, allowing the system as a whole
to make forward progress despite individual failures.

One issue that our proposed semantics introduce that does not arise with strict bar-
rier semantics is handling nodes performing late entry, for example, arriving at an al-
ready released barrier. Plush supports two options to address this case: (i) pass-through
semantics that allow the node to proceed with the next phase of the computation even
though it arrived late; (ii) catch-up semantics that issue an exception allowing Plush
to reintegrate the node into the mainline computation in an application-specific man-
ner. This may involve skipping ahead to the next barrier (subsequently omitting the
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Fig. 11. Dynamically determining the knee of arriving processes. Vertical bars indicate a knee detection.

intervening computation) in an effort to “catch up” to the other nodes. Alternatively,
Plush may decide to completely remove the late arriving node from the remainder of
the computation or ask the resource matcher for a replacement.

5.2. Adaptive Release

The extended barrier semantics in Plush partial barriers introduce additional param-
eters: the threshold for early release and the concurrency level in throttled release.
Experience has shown it is often difficult to select values that are appropriate for
changing network conditions. Hence, we provide adaptive mechanisms in Plush to
dynamically determine appropriate values during execution.

5.2.1. Early Release. There is a fundamental trade-off in specifying an early release
threshold. If the threshold is too large, the application will wait unnecessarily for a
relatively modest number of additional nodes to enter the barrier; if it is too small, the
application will lose the opportunity to have participation from other nodes had it just
waited a bit longer. Thus, Plush dynamically determines release points in response to
varying network conditions and node performance.

In our experience, the distribution of node arrivals at a barrier is often heavy-tailed:
a relatively large portion of nodes arrive at the barrier quickly with a long tail of strag-
glers entering late. In these situations, many target distributed applications would
wish to dynamically determine the “knee” of a particular arrival process and release
the barrier upon reaching it. Unfortunately, while it can be straightforward to manu-
ally determine the knee offline once all of the data for an arrival process is available,
it is difficult to determine this point online.5

The heuristic used in Plush, which is inspired by TCP retransmission timers and
MONET [Andersen et al. 2005], maintains an exponentially weighted moving average
(EWMA) of the host arrival times (arr), and another EWMA of the deviation from
this average for each measurement (arrvar). As each host arrives at the barrier, Plush
records the arrival time of the host, as well as the deviation from the average. Then
Plush recomputes the EWMA for both arr and arrvar, and uses the values to compute
a maximum wait threshold of arr + 4 ∗ arrvar. This threshold indicates the maximum
time Plush is willing to wait for the next host to arrive before firing the barrier. If the
next host does not arrive at the barrier before the maximum wait threshold passes,
Plush assumes that a knee has been reached. Figure 11 illustrates how these values
interact for a simulated group of 100 hosts entering a barrier with randomly generated

5Additional findings on algorithms for offline and online knee detection can be found in Satopää et al. [2011].
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exponential inter-arrival times. Notice that a knee occurs each time the host arrival
time intersects the threshold line.

With the capability to detect multiple knees, it is important to provide a way for
applications to indicate to Plush how to pick the right knee and avoid firing earlier
or later than desired. Aggressive applications may choose to fire the barrier when
the first knee is detected. Conservative applications may wish to wait until some
specified amount of time has passed, or a minimum percentage of hosts have entered
the barrier before firing. To support both aggressive and conservative applications,
Plush partial barriers allow the application to specify a minimum percentage of hosts,
minimum waiting time, or both for each barrier. If an application specifies a minimum
waiting time of five seconds, knees detected before five seconds are ignored. Similarly,
if a minimum host percentage of 50% is specified, the Plush knee detector ignores
knees detected before 50% of the total hosts have entered the barrier. If both values
are specified, the knee detector uses the more conservative threshold so that both
requirements are met before firing.

5.2.2. Throttled Release. Adaptive methods are also used in Plush to dynamically adjust
the amount of concurrency in the “critical section” of a semaphore barrier. In many
applications, it is impractical to select a single value which performs well under all
conditions. Our adaptive release algorithm selects an appropriate concurrency level
based upon recent release times. The algorithm starts with a low-level of concurrency
and increases the degree of concurrency until response times worsen; it then backs off
and repeats, oscillating about the optimum value.

Mathematically, the algorithm used in Plush compares the median of the distribu-
tions of recent and overall release times. For example, if there are 15 hosts in the
critical section when the 45th host is released, the algorithm computes the median
release time of the last 15 releases, and of all 45. If the latest median is more than
50% greater than the overall median, no additional hosts are released, thus reducing
the level of concurrency to 14 hosts. If the latest median is more than 10% but less
than 50% greater than the overall median, one host is released, maintaining a level of
concurrency of 15. In all other cases, two hosts are released, increasing the concurrency
level to 16. This technique increases the degree of concurrency whenever possible, but
keeps the magnitude of each change small.

5.3. Partial Barriers in Plush

Partial barriers are part of the core design of Plush, enabling all applications managed
by Plush to experience the benefits of relaxed synchronization semantics. Plush users
have the option of specifying traditional barriers or partial barriers using barrier blocks
in their application specifications. When defining partial barriers, extra parameters
are defined, including the timeout, minimum percentage of nodes required, release
rate, and whether the adaptive release techniques described in Section 5.2 should be
used. Plush itself uses partial barriers internally to separate different stages in an
application’s flow of control. In this section we evaluate the performance of partial
barriers in Plush.

As part of application deployment, Plush configures a set of resources with the soft-
ware required to execute a particular application. This process often involves installing
the same software packages located on a central server separately on each resource.
Simultaneously downloading the same software packages across hundreds of nodes
can lead to thrashing at the server hosting the packages. The overall goal in using
partial barriers is to ensure sufficient parallelism such that the server is saturated
(without thrashing) while balancing the average time to complete the download across
all participants.
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Fig. 12. Software transfer using a partial barrier to limit the number of simultaneous file transfers.

For our results, we measure the time it takes Plush to install the same 10MB file
on 100 responsive and randomly chosen PlanetLab hosts while varying the number
of simultaneous downloads using a semaphore barrier. Figure 12 shows the results of
this experiment. The data indicates that limiting parallelism can improve the overall
completion rate. Releasing too few hosts does not fully consume server resources, while
releasing too many taxes available resources, increasing the time to completion. This is
evident in the graph since 25 simultaneous downloads finishes more quickly than both
10 and 100 simultaneous transfers. The “Adaptive Simultaneous Transfers” line in
Figure 12 shows the performance of the Plush adaptive release technique as described
in Section 5.2.2. In this example, the initial concurrency level is 15, and the level varies
according to the duration of each transfer. In this experiment the adaptive algorithm
line reaches 100% before the lines representing a fixed concurrency level of 10 or 100,
but the algorithm was too conservative to match the optimal static level of 25.

6. APPLICATION CASE STUDIES

The preceding sections explored the design and implementation of the Plush architec-
ture. In this section, we revisit our initial design goals and take a closer look at how
Plush supports different classes of applications.

6.1. Short-Lived Computation: Managing Bullet on PlanetLab

In Section 2 we describe a short-lived computation as one that is closely monitored by
the user and runs for a few days or less. In this section, we examine how Plush manages
a specific short-lived computation, namely, Bullet [Kostić et al. 2003], on PlanetLab. To
maximize performance, Bullet aims to run on PlanetLab machines with fast processors
and low CPU load. In this section we show how Plush uses SWORD to satisfy these
resource constraints. We also quantify the benefits of using partial barriers during
application initialization within the context of Bullet.

Bullet is an overlay-based file-distribution infrastructure. In Bullet, a source trans-
mits a file to multiple receivers spread across the Internet. Rather than waiting for
the sender to send each byte (or “chunk”) of the file to each receiver separately, how-
ever, Bullet leverages the parallel bandwidth available among receivers by allowing
receivers to also exchange data. This decreases the total download time across all hosts
and increases the overall throughput of the application. Figure 13 illustrates a Bullet
execution with one sender and two receivers.

As part of the application initialization bootstrapping process in Bullet, all receivers
join the overlay by initially contacting the source before settling on their final posi-
tion in the overlay network topology. The published quantitative evaluation of Bullet
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Fig. 13. Bullet execution with one sender (S) sending to two receivers (R).

presents a number of experiments across PlanetLab. However, to make performance
results experimentally meaningful when measuring behavior across a large number
of PlanetLab receivers, the authors hard-coded a 30-second delay at the sender from
the time that it starts to the time that it begins data transmission. This delay allowed
the receivers to join the overlay and figure out their position before starting transmis-
sion. While typically sufficient for the particular targeted configuration, the timeout
was often too long, unnecessarily extending turnaround time for experimentation and
interactive debugging. A more desirable behavior in the Bullet initialization phase is
to dynamically detect knees in the heavy-tailed join process. When the Plush controller
determines that the knee of the join process has been reached, participants already
in the barrier are released; one side effect is that the Bullet source host begins data
transmission.

Figure 14 shows the application specification for Bullet on PlanetLab. Notice that the
top of the file defines the software package, which in this case is “bullet.tar.” The com-
ponent definition describes the desired resources, which include 130 PlanetLab hosts
assigned to the ucsd bullet slice. The component also includes a SWORD query that
requests resources with fast processors (based on the SWORD attribute “cpuspeed,”
which is measured in gigahertz) and low load (based on the attribute “fiveminload”).
After the component definition, the component block specification defines the actual
execution using the “run” process block. One interesting feature of this particular ap-
plication specification is the redirection of terminal output on the PlanetLab hosts to
a specific file using a “log manager.” After the process block, the XML specifies the
“bullet barrier” barrier block that separates application initialization from the data
transfer phase. Since we modified the Bullet source code to interface directly with the
Plush partial barrier API, nothing is defined after the barrier block in the application
specification. However, a release of the startup barrier at the Bullet source host signals
the end of application initialization, and thus begins the transfer of data.

6.1.1. Detecting Knees in Bullet. In this section we quantify the benefits of using partial
barriers with knee detection during the application initialization phase of Bullet.
Figure 15 plots the cumulative distribution of receivers that enter the startup barrier
on the y-axis as a function of time progressing on the x-axis. Each curve corresponds
to an experiment with 50, 90, or 130 PlanetLab receivers in the initial target set. The
goal is to run with as many receivers as possible from the given initial set without
waiting an undue amount of time for a small number of stragglers to complete startup.
Interestingly, it is insufficient to filter for any static set of known “slow” resources on
PlanetLab as performance tends to vary on fairly small time scales and is influenced
by multiple factors (such as CPU load, memory, and changing network conditions).
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Fig. 14. Bullet application specification.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30

N
um

be
r 

of
 H

os
ts

Elapsed time (sec)

50 Nodes
90 Nodes
130 Nodes

Fig. 15. A barrier regulating participants joining an overlay network in Bullet. Vertical bars indicate
detected knees.
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Fig. 16. SWORD application specification.

Thus, manually choosing an appropriate static set may be sufficient for one particular
batch of runs but not likely for the next. Vertical lines in Figure 15 indicate where the
barrier manager detects a knee and releases the barrier. Notice that in all cases, the
experiments proceed with 85–90% of the initial set participating, and wait no more
than eight seconds to begin transmission.

6.2. Long-Lived Service: SWORD on PlanetLab

In Section 2 we described a long-running service as an application that is not closely
monitored by the operator and typically runs for months or years. Many long-running
services aim to run on as many resources as possible and are exposed to different types
of failures due to network and host variability and volatility. We now consider how
Plush manages a distributed version of SWORD running across all available PlanetLab
hosts. Further, we evaluate the ability of the Plush controller to automatically detect
and recover from failures in SWORD.

SWORD is an example of a long-running PlanetLab service for resource discovery.
SWORD stores data in a distributed hash table (DHT) and uses data from the DHT
to respond to queries for groups of resources with specific characteristics. Distributed
SWORD aims to run on as many PlanetLab hosts as possible, thus spreading the load
of the system across many hosts allowing for increased scalability and also allowing
SWORD to accurately respond to queries using information from a larger number of
PlanetLab resources.

The XML application specification for SWORD is shown in Figure 16. As in Bullet,
the top half of the specification defines the SWORD software package and the compo-
nent required for the application. Notice that SWORD uses one component consisting
of hosts assigned to the ucsd sword PlanetLab slice. An interesting feature of this com-
ponent definition is the “num hosts” tag. Since SWORD is a service that wants to run
on as many nodes as possible, we specify a range of acceptable values rather than a
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Fig. 17. Plush recovering from SWORD failures on PlanetLab. Service restored at t = 2200 seconds.

single number. Hence, as long as a minimum of 10 hosts are available, Plush continues
managing SWORD. Since the max value is set to 800, Plush does not look for more than
800 resources to host SWORD. The lower half of the application specification defines
the application block, component block, and process block that describe the SWORD
execution.

The application block specification for SWORD is similar to the application block
specification of Bullet except for a few important differences. When defining the appli-
cation block object for SWORD, we include special “service” and “reconnect interval”
attributes. The service attribute tells the Plush controller that SWORD is a long-
running service and requires different default behaviors for initialization and failure
recovery. For example, during application initialization, the controller does not wait
for all participants to install the software before starting all hosts simultaneously.
Instead, the controller instructs individual clients to start the application as soon as
they finish installing the software. Further, if a process fails when the service attribute
has been specified, the controller attempts to restart SWORD on that host without
aborting the entire application. The reconnect interval attribute specifies the period of
time the controller waits before rerunning the resource discovery and acquisition unit.
For long-running services, hosts often fail and recover during execution. Rerunning the
resource discovery and acquisition unit is the controller’s way of “refreshing” the list
of available hosts. The controller continues to search for new hosts until reaching the
maximum num hosts value, which is 800 in our case.

6.2.1. Evaluating Fault Tolerance in SWORD. To demonstrate Plush’s ability to auto-
matically recover from host failures for long-running services, we run SWORD on
PlanetLab with 100 randomly chosen hosts, as shown in Figure 17. The host set
includes machines behind DSL links as well as hosts from other continents. When
Plush starts the application, the controller starts the Plush client on 100 randomly
chosen PlanetLab machines, and each machine begins downloading the SWORD
software package (38MB). It takes approximately 1000 seconds for all hosts to
successfully download, install, and start SWORD. At time t = 1250s, we kill the
SWORD process on 20 randomly chosen hosts to simulate host failure. (Normally,
Plush would automatically try to restart the SWORD process on these hosts. However,
we disable this feature for this experiment to simulate host failures and force a
rematching.) After killing the SWORD processes, the Plush controller detects that the
processes and hosts have failed, and the controller begins to find replacements for the
failed machines. The replacement hosts join the Plush overlay and start downloading
the SWORD software. As before, Plush chooses the replacements randomly, and low
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bandwidth/high latency links have a great impact on the time it takes to fully recover
from the host failure. At t = 2200s, the service is restored on 100 machines.

Using Plush to manage long-running services like SWORD relieves operators of the
burden of manually probing for failures and configuring/reconfiguring hosts. Further,
Plush interfaces directly with the PlanetLab Central (PLC) API, which means that
users can automatically add hosts to their slice and renew their slice using Plush. This
feature is beneficial since services typically want to run on as many PlanetLab hosts as
possible, including any new hosts that come online after initially starting the service.
By periodically contacting PLC and retrieving the master list of PlanetLab hosts, the
Plush controller maintains an up-to-date list of all PlanetLab resources and is able to
notify the service operator if new resources are available. In addition, Plush simplifies
the task of debugging problems by providing a single point of control for all connected
PlanetLab hosts. Thus, if a user wants to view the memory consumption of their service
across all connected hosts, a single Plush command retrieves this information, making
it easier to monitor a service running on hundreds of resources around the world.

6.3. Parallel Grid Application: EMAN on PlanetLab

In this section we consider how Plush manages a typical grid application. Recall again
from Section 2 that grid applications tend to be computationally intensive and easily
parallelizable. Grid applications also tend to operate in phases that are easily separated
by barriers. Thus, many grid applications have the potential to achieve higher perfor-
mance by using partial barriers to reassign unfinished tasks on slow hosts to hosts
that have already completed their assigned work. We consider one widely used grid
application in this section, namely EMAN, and show how Plush manages the execu-
tion. Additionally, we show how partial barriers significantly improve the performance
achieved across the wide-area.

To illustrate how Plush manages applications with workflows, we consider running
EMAN [Ludtke et al. 1999] on PlanetLab. The computationally intense portion of
EMAN’s execution is the refinement stage, which is run repeatedly on 2-D electron
micrograph images until achieving the desired level of detail in a 3-D model of the
electron. Refinement is often run in parallel on multiple machines to improve perfor-
mance. The EMAN refinement stage is a common example of a workflow in a scientific
parallel application. In this section we describe how Plush runs a single round of the
parallel refinement computation.

Figure 18 shows the application specification for EMAN. Note that we did not change
the EMAN source code at all to run these experiments. Instead we wrote a simple
50-line wrapper perl script (called eman.pl) that runs the publicly available EMAN
software package. As in the preceding examples, the application specification contains
two main sections of interest. The top section defines the required software and compo-
nents. The software required for EMAN is contained in a tarball called “eman.tar.” The
resources for EMAN, as specified in the component definition, are 98 PlanetLab hosts
from the ucsd plush slice. The lower section of the application specification consists of
the component, process, and workflow blocks that define the EMAN refinement exe-
cution. One interesting characteristic of this application is the workflow block within
the component block. The workflow block indicates that 98 tasks are shared among the
98 workers requested in the “EmanGroup1” component. The workflow block also has a
process block containing the “eman.pl” process.

The substitution information in the process definition within the process block is used
in conjunction with the EMAN perl script to split the workflow among the resources.
Notice how the workflow block has an id attribute that is identical to the “id” attribute
in the process substitution. In this case, “eman.pl” uses a command-line argument to
specify the unique id of the task, which is then used to determine what fraction of
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Fig. 18. EMAN application specification. Plush uses this specification to configure the resources, which are
98 PlanetLab hosts from the ucsd plush slice. Each host runs “eman.pl --i n”, where n identifies each unique
task, as specified by the workflow block.

the data files should be processed by each host. The workflow block substitutes the
current task id (an integer between 1 and 98) for the command-line argument defined
by the “--i” flag. For example, the first resource runs “./eman.pl --i 1,” the second runs
“./eman.pl --i 2,” and so on. This technique divides and distributes the work evenly
among the 98 PlanetLab workers.

Plush workflow blocks are unique because they actually contain a “hidden” internal
partial barrier. As workflow tasks are completed, the internal barrier is entered with
a label that specifies the unique id of the completed task. Using the partial barrier
knee detector, the barrier manager determines when a knee is reached in the rate of
completion of these tasks, indicating that a subset of resources are not operating as
quickly as the rest. When a knee is detected, the tasks assigned to the slow resources
(due to slow or busy processors) are redistributed to faster resources that have al-
ready completed their tasks. By using the knee detector to detect stragglers in this
way, the knee detector also detects resources with low bandwidth capacities based on
their slow download times and reallocates their work to machines with higher band-
width. Our experiment requires approximately 240MB of data to be transferred to each
participating PlanetLab host, and machines with low bandwidth links have a signif-
icant impact on the overall completion time if their work is not reallocated to faster
machines.

6.3.1. Work Reallocation in EMAN. We now evaluate an alternative use of partial barriers
in Plush: to not only assist with the synchronization of tasks across physical hosts, but
also to assist with work reallocation and load balancing for hosts spread across the
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Fig. 19. EMAN. Knee detected at 801 seconds. Total runtime (without knee detection) is over 2700 seconds.

wide-area. Further, we determine whether we can dynamically detect knees in the
completion rate of individual hosts and subsequently reallocate unfinished work to
hosts that have already completed their assigned tasks.

To quantify the effectiveness of partial barriers in EMAN, we measure the time it
takes to complete all 98 tasks with and without partial semantics. Without partial
semantics, the 98 tasks are allocated to 98 PlanetLab resources, and we measure the
time it takes for all 98 resources to complete their single task. With partial semantics,
we allow the Plush controller (and barrier manager) to detect a knee in the task
completion curve, and then Plush reallocates unfinished tasks to faster resources. In
this experiment we run EMAN on 98 responsive PlanetLab machines. The workflow
consists of a 98-way image classification run in parallel across all resources. We
measure the time it takes for each participant to download a 40MB software archive
containing the EMAN executables and a wrapper script, unpack the archive, download
a unique 200MB image file, and run the image classification process. At the end
of the computation, each resource generates 77 output files stored on the local
disk, which are later merged into 77 master files once all tasks complete across all
resources.

Figure 19 shows the results of running EMAN on PlanetLab with and without partial
barrier semantics. The Plush knee detector detects two knees in this experiment at
t = 300s and t = 801s. The first knee at t = 300s indicates that around 21 hosts have
good connectivity to the data repository, while the rest have longer transfer times.
However this first knee is ignored by the Plush controller due to a minimum threshold
of 60% at the partial barrier, which prevents task reconfiguration at this point. The
second knee is detected at t = 801s after 78 hosts have completed their work. Since
more than 60% of the hosts have entered the barrier at the second knee, the Plush
controller redistributes the 20 unfinished tasks. These tasks complete by 900 seconds,
as shown by the dotted line in Figure 19. The experiment on the original set of hosts
continues past t = 2700s as indicated by the solid line in the graph, resulting in an
overall speedup factor of more than three using partial semantics.

7. RELATED WORK

The functionality required by an application controller as discussed in this article is
related to work in a variety of areas, ranging from remote execution tools to application
management systems. In this section we examine several projects in these areas. In
addition, we also discuss related work that addresses workflow management, resource
discovery, creation, acquisition, and synchronization since these are key components
in distributed application management.

ACM Transactions on Internet Technology, Vol. 11, No. 2, Article 6, Publication date: December 2011.



Distributed Application Configuration, Management, and Visualization with Plush 6:35

7.1. Remote Execution Tools

With respect to remote job execution, there are several tools available that provide
a subset of the features that Plush supports, including cfengine [Burgess 1995],
gexec [Chun], and vxargs [Mao]. The difference between Plush and these tools is that
Plush provides more than just remote job execution. Plush also supports mechanisms
for failure recovery and automatic reconfiguration due to changing conditions. In gen-
eral, the pluggable aspect of Plush allows for the use of existing tools for actions like
resource discovery and allocation, which provides more advanced functionality than
most remote job execution tools.

From the user’s point-of-view, the Plush command-line is similar to distributed shell
systems such as GridShell [Walker et al. 2004] and GCEShell [Nacar et al. 2004]. These
tools provide a user-friendly language abstraction layer that support script processing.
Both tools are designed to work in Grid environments. Plush provides a similar func-
tionality as GridShell and GCEShell, but unlike these tools, Plush works in a variety
of environments.

7.2. Application Management Systems

In addition to remote job execution tools and distributed shells, projects like the
PlanetLab Application Manager (appmanager) [Huebsch] and SmartFrog [Goldsack
et al. 2003] focus specifically on managing distributed applications. appmanager is a
tool for maintaining long running services and does not provide support for short-lived
executions. SmartFrog [Goldsack et al. 2003] is a framework for describing, deploying,
and controlling distributed applications. It consists of a collection of daemons that
manage distributed applications and a description language to describe the applica-
tions. Unlike Plush, SmartFrog is a not a turnkey solution, but rather a framework
for building configurable systems. Applications must adhere to a specific API to take
advantage of SmartFrog’s features.

The Grid community has several application management projects with goals sim-
ilar to Plush, including Condor [Bricker et al. 1991] and GrADS/vGrADS [Berman
et al. 2005]. Condor is a workload management system for compute-intensive jobs
that is designed to deploy and manage distributed executions. Where Plush is de-
signed to deploy and manage naturally distributed tasks with resources spread across
several sites, Condor is optimized for leveraging underutilized cycles in desktop ma-
chines within an organization where each job is parallelizable and compute-bound.
GrADS/vGrADS provides a set of programming tools and an execution environment
for easing program development in computational grids. GrADS focuses specifically
on applications where resource requirements change during execution. The task de-
ployment process in GrADS is similar to Plush. Once the application starts execution,
GrADS maintains resource requirements for compute-intensive scientific applications
through a stop/migrate/restart cycle. Plush, on the other hand, supports a far broader
range of recovery actions.

Lastly, the Globus Toolkit [Foster 2005] is a framework for building grid systems and
applications and is perhaps the most widely used software package for grid develop-
ment. Although Globus does not directly manage applications, it does provide several
components that perform tasks related to application management. With respect to an
application specification, the Globus Resource Specification Language (RSL) provides
an abstract language for describing resources, though it does not provide a mechanism
for describing entire applications. In the context of resource management, the Globus
Resource Allocation Manager (GRAM) processes requests for resources, allocates
resources, and manages active jobs in grid environments. Like SmartFrog, Globus is a
framework that provides many application configuration options, but each application
must be built specifically using Globus APIs to achieve the desired functionality.
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7.3. Workflow Management

Within the realm of workflow management, there are tools that provide more advanced
functionality than Plush. For example, GridFlow [Coa et al. 2003], Kepler [Ludäscher
et al. 2005], and the other tools described in Yu and Buyya [2005] are designed for
advanced workflow management in Grid environments. The main difference between
these tools and Plush is that they focus solely on workflow management schemes. Thus
they are not well suited for managing applications that do not contain workflows, such
as long-running services.

Workflow management systems like BOINC [Anderson 2004] are similar to Plush
in that they aim to simplify tasks associated with the configuration, deployment, data
distribution, and monitoring of public-resource distributed computing projects such as
SETI@home. Unlike Plush, BOINC focuses on a much narrower type of application,
that is, BOINC is designed for embarrassingly parallel computations that wish to
make use of compute cycles donated from PCs worldwide. Plush supports a richer
set of application control semantics where users can interact in real-time with their
resources. Plush also supports multiple phases of execution and synchronization that
is not easily achieved using platforms like BOINC.

7.4. Resource Discovery, Creation, and Acquisition

With respect to resource discovery, there are several tools designed for Grid environ-
ments that allow users to find appropriate resources for hosting their applications.
Many of these tools are part of larger application management systems that were
previously described. In the Globus Toolkit, for example, resource discovery is accom-
plished using the Monitoring and Discovery Service [Zhang and Schopf 2004; Globus
Toolkit Monitoring and Discovery System: MDS4]. The vGrADS project also has a
tool for performing resource discovery and acquisition called vgFAB [Kee et al. 2005].
In Condor, applications and resource providers use a resource specification language
called ClassAds [Litzkow et al. 1988], and Condor’s matchmaker matches resource
advertisements with requests using mechanisms called GangMatching [Raman et al.
2003] and SetMatching [Liu et al. 2002]. In addition, many grid environments rely
on batch schedulers such as Sun Grid Engine (SGE) [Gentzsch 2001], Portable Batch
System (PBS) [Portable Batch Scheduler], Maui [Maui], and Load Sharing Facility
(LSF) [Load Sharing Facility (LSF)] for resource scheduling.

On PlanetLab, there has also been a number of efforts that address various aspects
of resource discovery. Since PlanetLab is a best-effort environment, no additional steps
are required to acquire resources. However due to the high amounts of resource con-
tention, services such as SWORD [Albrecht et al. 2008; Oppenheimer et al. 2005] and
CoMon [Park and Pai 2006] were developed to help users find resources that best meet
the needs of their application given the current operating conditions. CoMon is a Plan-
etLab service that measures resource usage across all PlanetLab nodes and provides
basic support for simple queries via a Web interface.

The increasing popularity of virtual machine technologies has led to the develop-
ment of several projects that explore using virtual machines to host network appli-
cations. In addition to Shirako [Irwin et al. 2006] and Usher [McNett et al. 2007],
which are described in Section 4, other similar projects related to virtual machine
creation and management include Sandpiper [Wood et al. 2007], In-VIGO [Adabala
et al. 2005], VMPlants [Krsul et al. 2004], The Collective [Chandra et al. 2005], Virtual
Workspaces [Keahey et al. 2004], and Virtuoso [Shoykhet et al. 2004].

7.5. Synchronization

Synchronization has been studied for many years in the context of parallel comput-
ing and is an important aspect of distributed application management. For traditional
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parallel programming on tightly coupled multiprocessors, barriers are commonly used
to separate phases of computation within an execution and form natural synchroniza-
tion points [Jordan 1978]. Given the importance of fast primitives for coordinating
bulk synchronous SIMD applications, most massively parallel processors (MPPs) have
hardware support for barriers [Leiserson et al. 1996; Scott 1996]. Barriers also form a
natural consistency point for software distributed shared memory systems, often sig-
nifying the point where data will be synchronized with remote hosts [Keleher et al.
1994; Bershad et al. 1993]. In addition to shared memory, another popular program-
ming model for loosely synchronized parallel machines is message-passing. Popular
message passing libraries such as PVM [Geist and Sunderam 1992] and MPI [Message
Passing Interface Forum 1994] contain implementations of barriers as a fundamental
synchronization service.

The loose synchronization model used by Plush for running applications in failure-
prone environments is related in spirit to a variety of efforts in relaxed consistency
models for updates in distributed systems, including Epsilon Serializability [Pu and
Leff 1991], the CAP principle [Fox and Brewer 1999], Bayou [Terry et al. 1995],
TACT [Yu and Vahdat 2000], and Delta Consistency [Torres-Rojas et al. 1999]. All
of these projects recognize the need for relaxed semantics to cope with wide-area
inconsistencies and volatility.

8. CONCLUSIONS AND FUTURE WORK

In conclusion, Plush is an extensible application control infrastructure designed to
meet the demands of a variety of distributed applications. Plush provides abstractions
for resource discovery, creation, acquisition, software installation, process execution,
and failure management in distributed environments. When an error is detected, Plush
has the ability to perform several application-specific actions, including restarting the
computation, finding a new set of resources, or attempting to adapt the application to
continue execution and maintain liveness. In addition, Plush provides relaxed synchro-
nization primitives in the form of partial barriers that help applications achieve good
throughput even in unpredictable wide-area conditions where traditional synchroniza-
tion primitives are too strict to be effective. The mechanisms provided by Plush help
researchers cope with the limitations inherent to large-scale networked systems, al-
lowing them to focus on the design and performance of their application rather than
managing the deployment during the application development life cycle.

To evaluate the effectiveness of the abstractions provided by Plush, we used Plush
to manage several different distributed applications, namely, Bullet, SWORD, and
EMAN, run across the wide-area. In addition, we showed that the performance of
these applications improved due to Plush’s failure recovery mechanisms and relaxed
synchronization semantics. Further, we showed how Plush manages resources from a
variety of deployment environments by using a common interface to interact with exter-
nal resource management services, including SWORD, Mission, Shirako, and Usher. By
integrating Plush with these external services, Plush supports execution on PlanetLab
hosts, Xen virtual machines, and ModelNet emulated resources.

Plush is in daily use by researchers worldwide, and user feedback has been largely
positive. We have also incorporated the use of Plush in the classroom in upper-level
undergraduate courses to help lower the barrier of entry to experimentation with dis-
tributed systems [Albrecht 2009]. Most users find Plush to be an extremely useful tool6

that provides a user-friendly interface to a powerful and adaptable application control
infrastructure. Other users claim that Plush is flexible enough to work across many

6The user feedback presented in this section was obtained through email and conversations with various
Plush users at UCSD, Duke University, Williams College, and EPFL.
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administrative domains (something that typical scripts do not do). Further, unlike
many related tools, Plush does not require applications to adhere to a specific API, mak-
ing it easy to run distributed applications in a variety of environments. Our users tell
us that Plush is fairly easy to get installed and setup on a new machine. The structure
of the application specification largely makes sense and is easy to modify and adapt.

Although Plush has been in development since 2004, some features still need im-
provement. One important area for enhancements is error reporting. Debugging appli-
cations is inherently difficult in distributed environments. Plush tries to make it easier
for researchers to locate and diagnose errors, but accomplishing this is a difficult task.
For example, one user says that “when things go wrong with the experiment, it’s often
difficult to figure out what happened. The debug output occasionally does not include
enough information to find the source of the problem.” We are currently investigating
ways to allow application-specific error reporting in Plush and ultimately simplify the
task of debugging distributed applications in volatile environments.

8.1. From Plush to Gush

In 2008, Plush was incorporated into the GENI (Global Environment for Network
Innovations) initiative [GENI 2008]. Rather than trying to keep Plush up to date with
GENI APIs and non-GENI APIs, a new version of Plush was created for GENI called
Gush. The architectural design of Gush is largely the same as Plush, but most of
the mechanisms for interacting with resource discovery and acquisition services have
been replaced with GENI-specific services. The resources supported in Gush include
PlanetLab hosts [PlanetLab GENI 2008], ProtoGENI virtual machines [ProtoGENI
2008], and ORCA virtual machines [ORCA-BEN 2008]. The syntax of the configuration
files have changed as well and additional functionality has been added to support
the elaborate resource specifications used in GENI [Albrecht and Huang 2010]. More
information about Gush is available on the Gush Web site [Gush 2008].
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