
Remote Control:Remote Control:
Distributed Application Configuration,Distributed Application Configuration,

Management, and Visualization with PlushManagement, and Visualization with Plush

Jeannie Albrecht, Ryan Braud, Darren Dao,
 Nikolay Topilski, Christopher Tuttle,

Alex C. Snoeren, and Amin Vahdat

Williams College & UC San Diego

Meeting Current DemandsMeeting Current Demands

• 1 billion people worldwide use the Internet

• 500 million people surf the Web each week

• Services must support increasing user demand
• Online banking, media downloads, news websites,

search engines

• Demand is only satisfied using distributed
applications running on tens of thousands of
resources worldwide
• Google uses 450,000+!

1969 Internet Map

2005 Internet Map

Distributed ApplicationsDistributed Applications
• Have many advantages, but also introduce new challenges

+ Increased computing power can improve scalability and fault tolerance
− Building and managing distributed applications is difficult

• Building applications: Develop-Deploy-Debug cycle
• Develop software
• Deploy on distributed machines
• Debug code when problems arise

• Key management challenges
• Locating and configuring distributed resources
• Detecting and recovering from failures
• Achieving availability, scalability, fault tolerance

Develop

Deploy

Debug

OverviewOverview
• Goal: Develop abstractions for addressing the

challenges of managing distributed applications
• We want to provide support for a broad range of

applications run in a variety of execution environments

• Talk overview
• Discuss a specific distributed application: ByteTorrent
• Examine a specific execution environment: PlanetLab

• Configure & manage ByteTorrent on PlanetLab: Plush

• Closing remarks

Example Application: ByteTorrentExample Application: ByteTorrent

• Suppose we build ByteTorrent, a
“new” file distribution service
• Sender (S) sends file to Receivers (R)
• Sender splits large file into “chunks”
• Two phases of execution

• Phase 1 – Join ByteTorrent network
• Phase 2 – Transfer file

• We want to evaluate performance
achieved on resources spread across
the wide-area

Chunk 2

R

S

Chunk 1

R

File

• Network of 800+ Linux computers at 400+ sites in 40+ countries
• Allows deployment of distributed applications around the world
• Can be a volatile working environment

• High contention for machines (especially near paper deadlines)
• Common problems: low disk space, clock skew, connection errors

http://www.planet-lab.org

Deploying ByteTorrentDeploying ByteTorrent

• Suppose we have written our software and are
ready to deploy on PlanetLab for the first time

• We could…
1. Connect to each of the 800 PlanetLab machines
2. Download software (no common file system)
3. Install software
4. Run application and analyze performance
5. Check for errors on each machine
6. When we find an error, we start all over…

• Or we could use Plush Develop

Deploy

Debug

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

PlushPlush
• A distributed application management infrastructure

• Designed to simplify deployment of distributed applications

• Provides abstractions for configuration and management

• Allows users to “remotely control” computers running
distributed applications worldwide

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Step 1: Describe ApplicationStep 1: Describe Application
• Describe ByteTorrent using application “building blocks”

• Create customized control flow for distributed applications

• Application specification blocks are described using XML

Application Block

Component Block 1
Senders

Component Block 2
Receivers

Process Block 1
Prepare Files

Process Block 2
Join Network

Process Block 3
Send Files

Barrier Block 1
Phase 1 Barrier

Process Block 1
Join Network

Process Block 2
Receive Files

Barrier Block 1
Phase 1 Barrier

Step 2: Acquire ResourcesStep 2: Acquire Resources

• How can we find “good” machines?
• We want machines with specific characteristics

• High bandwidth, fast processors, ample disk space

• PlanetLab services perform resource discovery

• Services find machines that satisfy our requirements

• Plush interfaces directly with these services

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Step 3: Configure ResourcesStep 3: Configure Resources

• Connect to and configure selected resources
• Create a tree for achieving scalability in communication

• Controller “remotely controls” the clients on our behalf

• Install software on clients (some are senders, some are receivers)

Client

Client

Client

Client

Client

Client

Client

ClientController

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Client

Client

Client

Client

Client

Client

Client

Client
ClientClient

Step 4: Start ApplicationStep 4: Start Application

• Controller issues commands to clients telling them to start
running our application
• ByteTorrent senders begin running sender processes
• ByteTorrent receivers begin running receiver processes

Client

Client

Client

Controller

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Client

Client

Client

ClientClient

Step 5: Monitor ApplicationStep 5: Monitor Application

• We want to make sure the processes keep running
• Plush clients monitor ByteTorrent processes for failures

• If a failure is detected, client notifies controller
• Controller decides to tell client to restart failed program or process

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Client

Client

Client

Client

Client

Client

ClientController

Process
failed!

Restart
process.

Client

Client

Client

Client

Client

Client

Client

ClientClient

Client

Client

Client

Client

Client

Client

Client

Step 6: CleanupStep 6: Cleanup

• Plush clients make sure all programs exited cleanly
• Remove logs and software from remote machines
• Disconnect clients from controller

Describe
Application

Acquire
Resources

Configure
Resources

Start
Application

Monitor
Application

Cleanup

Controller

Plush User InterfacesPlush User Interfaces
• Command-line interface used to interact with applications

• Provides single point of control for remotely controlling resources
• Nebula (GUI) allows users to describe, run, monitor, & visualize applications
• XML-RPC interface for managing applications programatically

SummarySummary
• Plush provides abstractions for managing distributed

applications
• Supports a range of applications using “building blocks” that

define customized control flow
• Supports several execution environments

• Reduces the burden of deploying and debugging
distributed applications so software developers can
focus more on developing

• Next steps: Attract more users and obtain user
feedback to enhance usability
• Plush in the classroom?

Thanks!Thanks!

For more info, visit

http://plush.cs.williams.edu

Email:

jeannie@cs.williams.edu

