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Abstract. Debugging distributed systems is challenging. Although incremental
debugging during development finds some bugs, developers are rarely able to
fully test their systems under realistic operating conditions prior to deployment.
While deploying a system exposes it to realistic conditions, debugging requires
the developer to: (i) detect a bug, (ii) gather the system state necessary for diag-
nosis, and (iii) sift through the gathered state to determine a root cause. In this pa-
per, we present MaceODB, a tool to assist programmers with debugging deployed
distributed systems. Programmers define a set of runtime properties for their sys-
tem, which MaceODB checks for violations during execution. Once MaceODB
detects a violation, it provides the programmer with the information to determine
its root cause. We have been able to diagnose several non-trivial bugs in existing
mature distributed systems using MaceODB; we discuss two of these bugs in this
paper. Benchmarks indicate that the approach has low overhead and is suitable
for in situ debugging of deployed systems.

1 Introduction

Debugging a distributed system is challenging because its operation depends not only
on its internal functions and state, but also on the functions and state of the set of nodes
it runs on and the network linking them. At any point in time, correctness depends on a
combination of past and present system, node, and network states. Replicating the vast
array of possible states and exposing a distributed system to them prior to deployment is
not feasible. As a result, many bugs only manifest during deployment, when the “perfect
storm” of state transitions trigger them.

Despite recent advancements, most developers still debug distributed systems in an
ad hoc fashion by inserting custom print statements to generate output logs, which they
parse for errors after an execution ends. Ad hoc approaches require developers to know
what to print and what to expect a priori, which limits their usefulness for finding un-
expected bugs. Existing advanced debugging techniques, while useful, have drawbacks
when used for debugging deployed systems. Model checkers force the programmer to
define a specification of the system, and then systematically explore a system’s state
space for violations of the specification. However, the exploration does not capture
the vast and complex set of node and network states that impact a deployed system.
Replay-based tools, which enable offline analysis of systems, do not detect bugs at
runtime, while log-based analysis tools, which systematically process output logs for
errors, impose the high overhead of generating and storing log data.

An ideal tool for debugging deployed distributed systems has the following charac-
teristics.
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• Easy to Use. The tool should hide low-level implementation details from the devel-
oper so it is easy to understand, as well as automate common tasks to minimize its
impact on the standard development process.

• Powerful. The tool should be powerful and flexible enough to assist programmers
in finding a wide variety of bugs in different distributed systems.

• Low Overhead. Since many bugs do not manifest until deployment, the tool must
operate on deployed systems. Low overhead is essential for using on a deployed
system without degrading its performance.

We designed and built MaceODB, an online debugging tool for the Mace [1]
language, to satisfy these characteristics. Using MaceODB, we were able to find non-
trivial bugs in existing mature distributed systems using only a small amount of addi-
tional information provided by the developer. Our performance evaluation shows that
MaceODB has little impact on the performance of the systems under test.

The rest of this paper is organized as follows. Sections 2 and 3 detail the design and
implementation of MaceODB. Section 4 reports on our experiences using MaceODB
and Section 5 reports on its performance. Finally, we review related work in Section 6
and conclude in Section 7.

2 Design of MaceODB

Mace [1] is a C++ language extension and source-to-source compiler that translates
a concise, but expressive, distributed system specification into a C++ implementation.
Mace overcomes the limitations of low-level languages by providing a unified frame-
work for networking and event handling, and the limitations of high-level languages
by allowing programmers to write program components in a controlled and structured
manner. Imposing structure and restrictions on application development allows Mace
to support high-level debugging techniques, including efficient model checking and
causal-path analysis [2]. The limitation of the Mace model checker is its inability to
debug live systems: MaceODB addresses this limitation.

MaceODB is an extension to the Mace compiler that adds new instructions for
translating developer-defined system properties into code that checks for property vio-
lations at runtime. To use MaceODB, the programmer adds liveness and safety prop-
erties to their Mace application (see Figure 1). After specifying a set of properties, the
Mace compiler generates the application’s C++ implementation from its specification.
The compiler invokes MaceODB to parse the developer-defined properties and adds
additional code that checks for property violations at runtime. During execution, the
property-checking logic automatically reports violations back to the programmer.

2.1 Properties

MaceODB extends Mace by allowing programmers to define properties for their dis-
tributed systems. These properties are predicates that must hold true for some subset
of the participating nodes in the system. (Note that predicates are always “const” func-
tions, and thus cannot have side-effects on the state of the nodes.) MaceODB currently
supports two types of properties: safety properties and liveness properties.
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Fig. 1. Overview of MaceODB

Safety properties. Safety properties are predicates that should always be true. These
properties assert that the program will never enter an unacceptable state [3]. Formally,
they can be expressed as statements of the form always p, where p is predicate that
must be evaluated to true at all times. For example, suppose we build a peer-to-peer
file transfer system that constructs an overlay tree. An important safety property of
this system is that there should never be any loops in the underlying topology. When
defining safety properties, programmers must know exactly what violations to look for
and define unacceptable states in advance.

Liveness properties. Liveness properties are predicates that should eventually be
true [3]. For example, in a peer-to-peer file transfer system, all participants should even-
tually enter the joined state to be part of the overlay tree. Note that liveness properties,
unlike safety properties, apply to an entire program’s execution rather than individual
states. As a result, liveness properties are more difficult than safety properties to eval-
uate for violations. The benefit of using liveness properties is that they more naturally
align with the way developers reason about the state of a system. Defining high-level
liveness properties is easier for a developer since they correspond more directly to de-
sign specifications defined by the developer.

2.2 Specifying Properties

The most effective way to specify safety and liveness properties is to analyze the correct
system behavior under steady-state operation. After identifying the desirable behavior,
the programmer writes liveness properties to verify that the desired behavior is upheld
throughout an execution. If any liveness violations occur, the programmer can lever-
age insight from the violations to specify additional safety properties. Although safety
properties are more difficult to define a priori, these properties contain more specific
checks to help narrow down the bugs causing liveness violations. For example, consider
a bug in which a certain timer becomes unscheduled and causes a liveness property to
fail. After detecting this liveness violation, the programmer adds an additional safety
property to ensure that the timer is always scheduled.

To write the safety and liveness properties, programmers use the Mace compiler’s
grammar. A simplified version of the grammar is in Figure 2. We have used this gram-
mar to write safety and liveness properties for several existing Mace applications and
services (see Table 1). We found that most properties permit concise specifications con-
sisting of a few lines of code. For example, consider the property “AllJoined” in Table 1.
“AllJoined” is an example of a liveness property of the Mace RandTree service, which
is a simple distributed application that constructs a random overlay tree. The purpose of
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Property −> GrandBExpression
GrandBExpression −> (BExpression Join ) BExpression
JoinExpression −> or | and | xor | implies | iff
BExpression −> Equation | BinaryBExpression | Quantification
Equation −> NonBExpression Equality NonBExpression
BinaryBExpression −> ElementSetExpression | SetSetExpression
Equality −> == | != | >= | <= | > | <
NonBExpression −> Variable NonBExpressionOp Variable
NonBExpressionOp −> + | −
ElementSetExpression −> Variable SetOp Variable
SetOp −> in | not in
SetSetExpression −> Variable SetComparisons Variable
SetComparisons −> subset | propertysubset | eq
Quantification −> Quantifier Id Variable : GrandBExpression
Quantifier −> forall | exists | for{Number}

Fig. 2. Simplified grammar for writing MaceODB safety and liveness properties

“AllJoined” is to check that all participating nodes eventually enter the joined state
that signals a valid connection to the overlay. In this case, we express the property in a
single line of code.

Now consider the “Timer” property in Table 1. In “Timer,” recovery is a timer
object defined by the RandTree developer (see Section 4.1). The timer object has a
nextScheduled() method that returns the next time the recovery process will ex-
ecute; the purpose of the property is to verify that once each system participant com-
pletes the init state it executes the recovery timer. The recovery timer ensures
that subsequent failures trigger the recovery process.

2.3 Centralized Property Evaluation in MaceODB

Our initial design of MaceODB uses a centralized approach for evaluating the prop-
erties at runtime. The design uses a central server that is responsible for evaluating
all the properties across the entire system (see Figure 3). The design consists of two
components: the Data Exporter module and the Property Checking module. The Data
Exporter module operates on each node in the system, extracts data that describes the
execution’s current state, and forwards the timestamped data to the central server. The
central server then uses the Property Checking module to evaluate the data’s liveness
and safety properties. Upon receiving data from each Data Exporter module, the central
server invokes the Property Checking module to perform the property evaluation, and
generates a report of property violations.

To understand the Data Exporter and Property Checking modules, consider the
Pastry [4] (a typical Distributed Hash Table) property “LeftRight” in Table 1. This
property compares the size of myleafset to the size of myleft plus the size of
myright. The data of interest is myleafset.size(), myleft.size(), and
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Table 1. Examples of properties that are used in Mace applications (Pastry, Chord, RandTree)

Name Property

LeftRight Test that size of leafset = sum of left and right set size.
(Pastry) \forall n \in \nodes : {

n.myright.size() + n.myleft.size() =
n.myleafset.size()

};

KeyMatch Test the consistency of the key of the node to the right.
(Pastry) \forall n \in \nodes : {

n.getNextHop(n.range.second, −1).range.first =
n.range.second

};

PredNotNull Test that predecessor pointer is eventually not null.
(Chord) \forall n \in \nodes :

\not n.predecessor.getId().isNullAddress();

Timer Test that either the node state is init or recovery timer is scheduled.
(RandTree) \forall n \in \nodes : {

(n.state = init) \or
(n.recovery.nextScheduled() != 0)

};

AllJoined Test that eventually all the nodes will join the system.
(RandTree) \forall n \in \nodes : n.state = joined;

myright.size(); the Data Exporter module extracts these attributes from each par-
ticipating node and sends them to the central server. The Property Checking process
consists of iterating through the data and evaluating whether myleafset.size() is
equal to myleft.size() + myright.size(); if they are not equal, the evaluation
process returns false, indicating a property violation.

Our performance evaluation shows that the centralized approach is sufficient for
most properties. However, some properties require each participating node to send large
amounts of data to the central server, creating a bottleneck that slows down the property
evaluation process and reduces overall system performance. We include optimizations
to reduce the data sent using a binary diff tool [5] to compare the differences between
snapshots of forwarded data. The optimization significantly reduces the bandwidth, al-
though the central server remains a bottleneck for sufficiently large systems (i.e., more
than 100 nodes) due to the memory and processor time required to process diffs.

2.4 Decentralized Property Evaluation in MaceODB

In this section we describe a decentralized design for MaceODB to address problems
with the centralized design. The decentralized design also uses the Data Exporter and
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Fig. 3. MaceODB centralized design Fig. 4. MaceODB decentralized design

Property Checking modules. However, unlike the centralized approach, the Property
Checking module is now present in all system nodes (see Figure 4), requiring each
node to be responsible for evaluating their individual properties. The design eliminates
the central server bottleneck, and eliminates the single point of failure. Additionally, we
use a membership service to address network and node failures.

In decentralized MaceODB, we represent properties as dataflow graphs. Figure 5
shows an example of this representation for the “LeftRight” property described in Ta-
ble 1. Dataflow graphs consist of three main components: the leaves, the vertices, and
the arcs. The leaves correspond to the data used to evaluate properties, which come
from the local node performing the evaluation or from the Data Exporter modules on
other nodes. The vertices represent the operations that evaluate the properties. Together,
these operations form the basis for the Property Checking module. The arcs represent
the input/output flows, and describe the dependencies between the operations.

At runtime, each node generates instances of these graphs for each timestamp, and
evaluates vertices of the graphs as soon as upstream inputs are available. The Property
Checking module processes each vertex and evaluates vertices that are ready, and eval-
uates vertices of different timestamps simultaneously in a pipelined fashion. Exploiting
the property-level parallelism demonstrates a key benefit of representing properties as
dataflow graphs. The representation separates the data, operations, and input/output de-
pendencies into independent blocks that are evaluated simultaneously in parallel.

Note that, in both the centralized and decentralized approach, the Data Exporter and
the Property Checking modules are automatically generated by MaceODB. Developers
do not write any additional code—only properties—and MaceODB generates all the
low-level code for exporting state data and evaluating properties.

2.5 Globally Consistent Snapshots

For both centralized and decentralized designs, many MaceODB properties must be
evaluated across all participating nodes. In order to evaluate these properties, we need a
consistent snapshot of the state of the entire system. To support this, we added a logical
clock [6] to the Mace language. Each node in the system maintains its own logical
clock that starts at 0, and increases every time there is an event transition. Each time
a node sends a message, it attaches its logical clock to the message. Upon receiving
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Fig. 5. Example of using a dataflow graph to represent the Pastry LeftRight property

the message, the receiving node updates its logical clock to be the maximum of its
local logical clock and the clock attached in the message, establishing the happens-
before relationship. Using this mechanism, MaceODB associates each node’s data with
a global timestamp, thus providing a globally consistent snapshot.

3 Implementation of MaceODB

This section discusses the centralized and decentralized implementations of MaceODB.

3.1 Centralized Implementation

The two key components of the centralized approach are the central Property Checking
module and the distributed Data Exporter module. We now describe how MaceODB
constructs these modules in detail.

Data Exporter Module. As described in Section 2.3, the Data Exporter module is
responsible for sending data from participating nodes back to the central server for
property evaluation. Thus, an important task in building the Data Exporter module is
determining what data to send. In the simplest implementation, MaceODB uses the
grammar specification in Figure 2 to parse through each property, and identify all the
variables associated with that property. Each variable’s value corresponds to the data
sent to the central server. While this works well for most properties, there are edge
cases that are inefficient or that the approach fails to cover.

First, consider how the simple implementation is inefficient. For the “Timer”
property in Table 1, MaceODB identifies the following variables as exported data:
n.state, init, n.recovery.nextSchedule(), and 0. Exporting this set of
variables is inefficient since they are either constants or variables that come from the
same node. As a result, it is possible to evaluate “Timer” without exporting any data.
Therefore, instead of sending data to the central server, each node evaluates the prop-
erty locally, and forwards only the result. The optimization reduces the data transmitted
to the server. “LeftRight,” “Timer,” “PredNotNull,” and “AllJoined” are all examples of
local properties.

The simple implementation fails to work for properties that include methods with
parameters that require data from other nodes. In this case, MaceODB requires each
node to export the results from executing the method calls to the central server. Unfor-
tunately, the nodes are not capable of completing the method calls independently, since
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they require data from peers. To solve this problem, each node sends its local state to
the central server. The server then deserializes the state and constructs dummy objects
for each node. Using these dummy objects, the server simulates method calls using the
appropriate parameter inputs.

After determining the data to send, the next phase in building the Data Exporter
module is to generate the actual code for sending the data. We leverage functionality
provided directly by Mace’s Message class, which allows programmers to write code
for sending messages between peers.

Property Checking Module. The central server uses the Property Checking module
to evaluate properties and alert the programmer of property violations. The module’s
primary task is to evaluate each property by parsing and breaking them into smaller
expressions as specified by the grammar in Figure 2. These expressions correspond
directly to the operations required in order to evaluate the properties. For example,
consider again the “Timer” property in Table 1. When MaceODB parses that property,
it identifies the following expressions/operations:

• Equation Expression #1 - Compares n.state and init.
• Equation Expression #2 - Compares n.recovery.nextScheduled() and 0.
• Join Expression - Performs a logical OR operation on the results of #1 and #2.
• Quantification Expression - Performs a forall loop operation.

After identifying the above expressions, MaceODB generates a C++ method for each
expression. Together, these methods form the complete Property Checking and Data
Exporter modules that run on the central server.

3.2 Decentralized Implementation

The decentralized implementation also includes Property Checking and Data Exporter
modules, but the implementations are different due to the distributed design. This sec-
tion discusses the key differences in the construction of these modules.

Data Exporter Module. In the decentralized implementation, each node uses its
own Data Exporter module to exchange data with other nodes. MaceODB generates
two classes to accomplish this in the decentralized approach: RequestMessage
and ReplyMessage. These classes extend the Mace Message class. As their
names imply, the RequestMessage class is used for requesting data, and the
ReplyMessage class is used for returning the result.

To understand the approach, consider the “KeyMatch” property in Table 1.
The property has an equality operation that compares range.first and
range.second. The range.second input comes from the node executing the
operation. The range.first input comes from the node specified by the result of
n.getNextHop(n.range.second, -1). Until that input is available, it is im-
possible to execute the equality operation. As a result, the executing node uses the Data
Exporter module to request the needed input. It sends a RequestMessage to node
X , where X is the return value from calling getNextHop(n.range.second,
-1). When node X receives the request message, it replies with a ReplyMessage,
which contains the requested data range.first. Upon receiving ReplyMessage,
the original node extracts the returned data, and uses it as input in the equality operation.
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Property Checking Module. The Property Checking module in decentralized
MaceODB consists of operations that provide instructions for evaluating properties.
In terms of the dataflow graph representation, these operations correspond to the ver-
tices of the graphs. To generate code for the vertices, MaceODB parses the properties
and identifies all operations required to check the properties. For each operation found,
MaceODB then generates a C++ class to represent it. Note the difference from the
centralized approach, where we generate methods instead of classes. Using classes is
a more flexible and object-oriented technique for constructing dataflow graphs. With
classes, we can set up the vertices as objects whose member variables contain data
inputs for the operations, and whose methods are the operations themselves.

At runtime, instances of these classes are created and stored in a queue. In a separate
method, we iterate through the queue, and evaluate any operations that are ready for
execution. In terms of the dataflow graph, this corresponds to the process of traversing
the graph and evaluating any vertices that are ready. This process is done on a per-node
basis, thus allowing the properties to be evaluated in a distributed and parallel manner.

4 Experiences Using MaceODB

We have used MaceODB to test a variety of systems implemented in Mace, including
RandTree, Pastry [4], Chord [7], Scribe [8], SplitStream [9] and Paxos [10]. Most of
these systems are mature, stable, and have been tested extensively in the past. However,
using MaceODB we were still able to find non-trivial bugs in RandTree and Chord.

4.1 RandTree

RandTree implements a random overlay tree that is resilient to node failures and net-
work partitions. It serves as a backbone for a number of high level applications such as
Bullet [11] and RanSub [12]. An important liveness property that RandTree must hold
is that there should be only one overlay tree that includes all participating nodes. In
case of network and node failures, this property does not always hold. To address this
issue, a recovery timer was added that periodically checks to see if there was a network
partition, and invokes the recovery process as needed. Using “Timer” in Table 1, we
were able to find a bug where the recovery timer was not scheduled correctly. When
running RandTree with MaceODB enabled, the property “Timer” evaluated to false,
which indicated that for some nodes, the state was not init and the recovery timer
was not set. Using that knowledge, we went back to the source code for RandTree and
checked where the recovery timer was scheduled. Figure 6 shows an excerpt of the code
that contains the bug.

The most obvious problem with the code shown in Figure 6 is that
recovery.reschedule(TIMEOUT) never gets called if peers is empty. To fix
the bug, we moved that statement out of the else block. Thus the recovery timer is al-
ways scheduled whenever a node joins the overlay network. An interesting note is that
this same property was used previously in the Mace model checker, and yet, the model
checker failed to catch the bug. This failure is caused by the way the system was set
up for the model checking. The programmers set it up in such a way that whenever a
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joinOverlay(const NodeSet& peerSet, registration uid t rid) {
if (peers.empty()) {

state = joined;
. . .

}
else {

state = joining;
. . .
recovery.reschedule(TIMEOUT);

}
}

Fig. 6. RandTree bug found using MaceODB

node joins the system, it always joins together with another peer. Hence, when the code
above is executed, peers.empty() will always return false, causing the execution
flow to go directly to the else block and the recovery timer to be scheduled. This is an
example of the limitations of using model checking: the checking is done in a special-
ized environment, which can be quite different from the environment in which the real
system is deployed. This demonstrates the value of having a tool such as MaceODB
that allows the checks to be done in real time and on real, live systems.

4.2 Chord

Chord is a P2P distributed lookup protocol that supports a single operation of mapping
keys to nodes [7]. Using Chord, the participating nodes create a ring topology. Each
node in this ring has pointers to its successor and predecessor nodes in the ring. To
join the ring, a new node obtains its predecessor and successor from another node.
Then, to insert itself into the ring, it tells the successor node to update its predecessor
pointers. Finally, there is a stabilize process that runs to ensure that global successor
and predecessor pointers are consistent and correct.

The predecessor pointers are used in the lookup and stabilize process in Chord, and
it is important that they are updated correctly even in the presence of node churn and
failures. To test our implementation of Chord, we use the “PredNotNull” liveness prop-
erty (see Table 1) to check that eventually, all the predecessor pointers are not null. This
minimal check ensures that in case of node failures, the predecessor pointers will even-
tually point to other valid nodes. Using this property, we set up an experiment where
we simulate node failures. We observed that in a system of n nodes, if n − 1 nodes go
down, the predecessor pointer of the one remaining node will become null. It will even-
tually fix itself if the failed nodes recover. However, if they remain down indefinitely,
the predecessor pointer will remain null for the rest of the program execution. The cor-
rect behavior is that the remaining node should have updated its predecessor pointer to
be itself. Fortunately, this bug is quite trivial due to the rarity under which there is a
failure of n − 1 nodes. Nevertheless, this is a good demonstration of the effectiveness
of MaceODB in finding rare bugs.
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Table 2. Impact on goodput when using MaceODB

Impact on Goodput
Services Number of Nodes Centralized Approach Decentralized Approach

RandTree

25 nodes 0.01% 0.05%
50 nodes 1.68% 2.53%
75 nodes 1.40% 2.29%

100 nodes 1.58% 3.53%

ScribeMS

25 nodes 0.07% 0.33%
50 nodes 8.35% 6.77%
75 nodes 13.83% 7.16%

100 nodes 20.17% 7.01%

SplitStream

25 nodes 0.93% 0.84%
50 nodes 1.01% 1.07%
75 nodes 2.19% 1.57%

100 nodes 6.78% 2.55%

5 Performance Evaluation

To evaluate MaceODB’s performance, we performed a macro-benchmark that measures
its overhead. Our results show that MaceODB is lightweight, and incurs minimal over-
head on systems. Additionally, we performed a micro-benchmark to quantify the time
to evaluate different types of properties.

5.1 MaceODB Overhead

In this section we analyze the impact that MaceODB incurs on Macedon, a data stream-
ing application that can be run on top of any multicast or unicast service. For our exper-
iments, we run Macedon on top of RandTree, Scribe, and SplitStream. For each of these
services, we run Macedon with and without MaceODB, and compare the differences in
goodput, memory usage, and CPU usage.

We ran our experiments on several different network topologies that range from small
systems of 25 clients to larger systems of 100 clients. These clients are emulated on 17
physical machines with the ModelNet network emulator [13]. Each physical machine
has a dual-core Xeon 2.8 MHz processor with 2GB of RAM. The emulated topologies
consist of an INET network with 5000 total nodes. The emulated clients have band-
widths ranging from 6,000–10,000 Kbps, and latencies ranging from 2–40 ms.

Goodput and Scalability. To evaluate goodput, we measured the number of packets
Macedon sent and received for a specific timeframe (5 minutes). We then calculated the
impact that MaceODB incurs on the system’s goodput (useful throughput) by plotting
the ratio of the loss in goodput when using MaceODB to the goodput of the system when
run without MaceODB. We present the results in Table 2. Based on these results, we see
that MaceODB performs well for systems with 50 nodes or less. For these systems, the
impact in most cases is less than 7%. The results are quite different in larger systems.
Using the centralized design, the performance is poor when running on Scribe and
SplitStream. The impact on the goodput is as high as 13.8% for systems of 75 nodes
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Fig. 7. Memory and CPU usage of Macedon with and without MaceODB

and up to 20.17% for systems of 100 nodes. This poor performance is not a surprise
for us, since we know the centralized approach is not scalable. The performance of
the decentralized design is much better. Its impact on the goodput is approximately
7% or less. More importantly, the results also indicate that as we increase the size of
the system, the impact on performance increases very slowly. This trend allows us to
believe that the decentralized approach of MaceODB is scalable for large systems.

Memory Usage. Besides measuring the goodput, we also measured memory and CPU
usage. Figure 7(a) shows the results of memory usage during the 5 minute Macedon
experiments. Without MaceODB, Macedon used approximately 18 MB of RAM. Using
this as the base value, we compared it against the memory usage of Macedon when it
was run with MaceODB enabled. Our results show that depending on how we evaluated
the properties, the impact on memory usage was quite different. With the decentralized
design, the memory usage was around 20 MB, which is slightly higher than the base
value, but still acceptable. In the centralized design, the memory usage on the central
server is significantly higher. Even with a special memory cleanup mechanism enabled,
the central server still used as much as 200 MB of memory. The reason for such high
memory usage is because the central server is responsible for storing all the data that is
forwarded from the other nodes. This data is stored in memory and cannot be deleted
until it forms a complete snapshot of the whole system. At that point, the central server
evaluates the properties using the newly created snapshot and removes the old data.

CPU Usage. Figure 7(b) shows the CPU usage during the 5 minute Macedon experi-
ments. Without MaceODB, the CPU usage fluctuates around 2–3%. With decentralized
MaceODB, the CPU usage is only slightly higher. On the other hand, with the cen-
tralized approach, the property evaluation process is quite CPU-intensive. During the 5
minute run, there were spikes in the CPU usage that were as high as 28%. This further
confirms the fact that the centralized approach is not scalable.

Summary. Overall, the macro-benchmark provides us with two important implica-
tions. First, the centralized approach is not scalable. When running on large systems,
this approach causes a noticeable drop in goodput, and significant overhead in memory
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and CPU usage. Second, the decentralized approach is scalable and efficient for systems
of at least 100 nodes. The impact on goodput is only 7% or less, and the memory/CPU
overhead is quite low. We expect similar performance for larger systems. In conclusion,
the decentralized approach allows us to satisfy our requirement of making MaceODB
lightweight, thus allowing it to be left running on deployed systems without having a
significant impact on the system’s performance.

5.2 Evaluating Different Types of Properties

Next we measured the time required to evaluate different types of properties in decen-
tralized MaceODB. The goal was to identify properties that are expensive to evaluate.
Similar to the macro-benchmark, we ran our experiments on ModelNet, and this time
we ran 100 instances of Macedon on top of RandTree and Pastry. We modified Macedon
to log the time before and after each property evaluation. The experiments were then run
for 5 minutes. At the end of each run, we processed the logs, and calculated the average
time for each property evaluation. The average times were as follows: LeftRight/Pastry
79 µs, KeyMatch/Pastry 210 ms, Timer/RandTree 60 µs.

These results show that the cost of evaluation varies greatly among the properties. To
understand the reason behind this variance, consider how the properties are evaluated.
The properties with the shortest times are the ones that can be evaluated locally. These
properties contain operations that do not require any data inputs from other nodes. Ex-
amples of such properties are “LeftRight” and “Timer.” With this type of property, the
cost of evaluation is a function of how fast the CPU can process each operation. For our
particular setup, this value is approximately 70 microseconds on average.

Now consider properties that are more expensive to evaluate, such as “KeyMatch.”
Expensive properties contain operations that require data from other nodes. For these
properties, the cost of evaluation is a function of how fast the operations can be ex-
ecuted and how fast the data can be transferred. Typically, the latter is the dominant
factor, so that the speed of evaluating the properties depends directly on the bandwidth
and latency of the network on which the system is deployed. For our particular network
topology, the time it takes to send a ping message from one node to another is approx-
imately 80–100 ms. The round trip time for sending and receiving a message is then
160–200 ms. This value aligns with our results since the cost of evaluating “KeyMatch”
is slightly more than 200 ms.

6 Related Work

There are several related techniques for debugging distributed systems. We group these
techniques into four categories: model checking, replay-based checking, log analysis,
and on-line debuggers.

Model Checking. Prior work has proposed model checking as a mechanism for de-
bugging distributed systems [2]. With model checking, the programmer defines system
specifications, and uses the model checker to systematically explore the state-space
of the system while checking for specification violations. The approach is a powerful
debugging tool since it is possible to traverse large state-spaces in small timeframes,
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allowing the programmer to discover difficult-to-find bugs. However, the checking pro-
cess is typically done in a controlled and virtualized environment that does not accu-
rately reflect the deployment environment. MaceODB addresses the limitation and is
able to detect bugs that appear during deployment.

Replay-based Checking. Much research has gone into replay-based checking where
the programmer has the ability to replay a program while replicating its order and en-
vironment. A notable example of replay-based checking is liblog [14], which addresses
large distributed systems. Liblog logs the execution of deployed application processes,
and allows programmers to replay them deterministically. The benefit of using liblog
or any replay tool is the ability to consistently reproduce bugs from previous execu-
tions. While the capability enables offline analysis, its weakness lies in the high cost
of logging and replaying an entire execution, especially for large systems. However,
MaceODB and replay tools are complementary. A programmer may use MaceODB to
detect runtime bugs, and then use replay-based checking for offline analysis.

Log Analysis. Many systems focus on parsing through logs to perform postmortem
analysis. A notable example of this methodology is Pip [15]. With Pip, programmers
specify expectations about a system’s structure, timing, and other properties. At run-
time, Pip logs the actual behavior. Pip then provides the programmer with the capabil-
ity to query the logs and a visual interface for exploring the expected and unexpected
behavior. The main problem with Pip, and many other log-based analysis tools, is the
high overhead incurred by logging the data.

Other On-line Debuggers. MaceODB is similar in spirit to D3S [16]. Both share the
ideas of using predicates and representing predicates using dataflow graphs. MaceODB
differs from D3S in the way predicates are written. D3S predicates are written in a
mixture of C++ and a scripting language, requiring programmers to specify the stages
and the input/output dependencies. MaceODB predicates are written in the Mace lan-
guage, and the compiler generates the C++ code to represent the stages and dependen-
cies. As a result, MaceODB is easier to use. However, in some cases MaceODB is less
efficient than D3S since MaceODB has the potential to send more data than what is
necessary. CrystalBall [17] is a concurrently developed extension of MaceMC [2] with
similar goals as MaceODB. Both perform property checking of live running distributed
systems. CrystalBall focuses on looking forward during execution, where MaceODB
focuses on minimizing overhead and the distribution of property checking.

7 Conclusions

Debugging distributed systems is a challenging task. In this paper we present
MaceODB, a tool that makes the task easier by providing programmers with the ability
to perform online property checking for services written in Mace. MaceODB is easy to
use, yet flexible and powerful enough to catch several non-trivial bugs in the existing
Mace services. Our results show that MaceODB tolerates node and network failures
inherent to distributed systems, and has low overhead, which makes it possible to use
on live systems without significant performance degradation.
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