Assignments for Networking and Operating Systems Classes Using GENI

Zongming Fei

University of Kentucky
Outline

- Introduction
- A List of Possible Projects
- Three Assignments
 - Path Characteristics of the Internet
 - Reliability Protocols
 - Network Configurations and Automatic Route Control
- Experiences and Lessons
Introduction

- Early adopter of Emulab
 - Build the Kentucky Emulab and started using it in teaching undergraduate courses.
 - An emulated experiment allows you to specify an arbitrary network topology, giving you a *controllable, predictable, and repeatable environment*, including PC nodes on which you have full "root" access, running an operating system of your choice. (from Utah Emulab site)
- Work with Calvin College on the Edulab project
 - A joint project funded by NSF (Jim Griffioen and Zongming Fei from Kentucky and David Laverell from Calvin College) to build Edulab
 - enhance Emulab facilities for educational use
 - set up a smaller scale edulab at Calvin College
 - develop assignments based on Dr. Comer’s Hands-on Networking Labs
The Edulab Project

- A low budget Emulab at Calvin ($15,000 in 2006)
 - 26 PCs (one as boss and one as ops)
 - Two Cisco 2950T switches
 - A Rocketport serial card
 - Web power switches from Digital Loggers

- Simplified project management
 - Create accounts
 - Monitor node usage
 - Schedule project

- Status Monitoring
 - Status of nodes and links (Time scale)
 - Take snapshot of an experiment
GENI Instrumentation and Measurement Tools (INSTOOLS)

- Project Team: Jim Griffioen, Zongming Fei, Hussam Nasir, Xiongqi Wu, Jeremy Reed, Charles Carpenter
- Set up measurement infrastructure for users in ProtoGENI control framework automatically
- Monitor node status and link status
- Develop graphical user interface to display the status data as they change over time
- Implement archive services to store measurement data permanently
- Integrated with ProtoGENI Flack interface
ProtoGENI Flack Interface
INSTOOLS
A List of Possible Projects

- GENI supports at-scale networks
- The number of resources offered
- The types of resources offered
- The geographical scope of the resources offered
- The speed/performance of the resources offered

- An incomplete list of projects (or types of projects)
 1. Conventional OS/networking assignments
 - Make modifications to existing OS and networking code to create their own protocols and network services
 2. Network monitoring assignments
 - Write active and passive monitoring code to measure the performance of the Internet
A List of Possible Projects

3. Data center/cloud assignments
 - Use GENI high-performance clusters to implement data center services with custom or conventional data center software

4. Wireless and/or mobile assignments
 - Implement services using a variety of wireless and mobile resources and technologies supported by GENI

5. Home networking assignments
 - Write home services/applications utilizing the resources of opt-in home users in GENI
A List of Possible Projects

6. High-performance networking assignments
 - Make use of GENI high-performance servers to test the scalability with regard to performance

7. Application-level monitoring assignments
 - Use low-power radar sensors and web cameras that are virtualized and accessible to users and the high-performance network links to move data off of these devices to network servers in real-time

8. Complete network assignment
 - Design and implement a complex/complete network ranging from mobile client nodes connected via wireless links to an optical backbone networks with advanced services built into the network structure, as well as data center computing power offering cloud services
Assignment 1 --Path

Characteristics of the Internet

- Measure delay, bandwidth and loss rate of the links over the Internet and analyze their distributions.

Questions to be answered:

- What is the typical delay of a path from the east coast to the west coast?
- How do delay, bandwidth and loss rate differ between a local link and a wide area link, or among different wide area links?
- Do they change a lot over time? What is the distribution?

GENI vs Guest accounts
Assignment 1 -- Path
Characteristics of the Internet
Assignment 2 -- Reliability Protocols

- Implement reliability protocols at the application layer using UDP.
- Stop and wait
- Go back N
- Selective repeat
- TCP reliability

- Almost no loss in a traditional general purpose lab

- Need a repeatable, predictable and easy to control environment with a certain loss property

- GENI provides an environment to do that
Assignment 2 -- Reliability Protocols
<table>
<thead>
<tr>
<th>Property</th>
<th>Capacity (kb/s)</th>
<th>Latency (ms)</th>
<th>Packet Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender:if0 -> Delay:if0</td>
<td>10</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Delay:if0 -> Sender:if0</td>
<td>10</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Assignment 3 – Network Configuration and Automatic Router Control
(thanks to Dr. Jim Griffioen)
Assignment 3 – Network Configuration and Automatic Router Control

- Manual configuration of network routing using conventional network administration software
- The goal is to gain experience with the basics of IP, ARP and routing
- Types of commands used
 - Discovering network settings
 - `/sbin/ifconfig`, `netstat -rn`, `/sbin/arp`
 - Set routing tables, and enable forward
 - `/sbin/route`,
 - `echo 1 > /proc/sys/net/ipv4/ip_forward`
Assignment 3 – Network Configuration and Automatic Router Control

- Implement a new router that separates routing from forwarding
- Write a Forward Information Base (FIB) controller at each router
 - accept commands from RD services below
 - modify routing tables at the router (execute route by calling system() or exec())
- Write a Routing Decision (RD) server
 - make decision about the routing (e.g., multi-path routing, QoS routing)
 - send commands to FIB controllers
- Communications between FIB controllers and the RD server follow FIB controller protocol (FCP)
Experiences and Lessons

- **Positive**
 - Use cool and most advanced technology
 - Keep pace with most recent development in the real world
 - Easy setup and user friendliness of the tools

- **Improvements needed**
 - Set up the keys and access to the nodes
 - Distinction between experiment network and control network
 - Which part goes wrong? (not a production software)

- **Lesson:** Importance of step-by-step instructions
Thank You!

This material is based upon work supported in part by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of GPO Technologies, Corp, the GENI Project Office, or the National Science Foundation.