
Teaching Parallel and
Distributed Computing at a

Liberal Arts College
Tia Newhall

Swarthmore College
newhall@cs.swarthmore.edu

Swarthmore College CS
•  Swarthmore has ~1,400 students
•  ~15 CS majors each year (but 42 junior CS majors!)

•  CS Dept has 4 tenure lines (6 in two years)
•  We try to cover a lot of CS with 4-6 faculty
•  I’m the lone systems person
•  Upper level courses offered once every other year

•  CS curriculum not very vertical (typical for LACs)
•  CS1 and CS2 are only pre-reqs to upper level CS
=> cannot assume much/any background in systems
 (we are adding a new course to address this)

Teaching Parallel &
Distributed Computing

•  Wide variation in student preparedness
•  I can’t assume much: need some intro to systems

•  too little for some, and too much for others

•  Want some seminar-style courses in our
curriculum, and this has been one
•  Research paper reading, discussion, independent projects,

presentations, written work, less lecture

•  Expose them to wide-range of issues in
distributed and parallel computing and to a
large number of different systems
•  Sometimes choose broad coverage over deep
•  Project is chance for depth

 What I’ve tried ….

Distributed Systems (CS85, CS97)

Pure seminar-style (only a couple short intro lectures)
•  Discussion of 2-3 papers read each week

•  Broad coverage of field, with some depth
•  Classic theory to current systems
•  Each presented one paper (and related)

•  Assigned a couple lab assignments just to give them
programming tools for projects

•  MPI, and a C client/server socket (talk, string mangler)
•  Independent course project

•  Very open ended, I give them some ideas, but can do
anything related to DS, must have a question

•  Propose, carry out, experiment, written and oral report
•  Like a CS research experience

Distributed Systems (CS85, CS97)

What worked well:
 + format allows for large coverage of field
 + students gain good understanding of field
 + very good at reading papers and discussion
 + good independent projects, but variable
 + particularly good for students going on to grad school
What didn’t work so well:
 - some papers too hard or don’t have background for
 - didn’t always have tools to carry out projects
 - DS seemed too specialized and students didn’t really

know what the course was about
 robotics, graphics, etc. they at least think they know

 - we needed to inject some parallelism into our
curriculum, and this seemed like a place to do it

Parallel & Distributed Computing (CS 87)

•  Very broad coverage of two big fields
•  ~1/3 systems, ~1/3 PL, ~1/3 algorithms

 architecture, algorithms, programming interfaces and languages, systems,
lots of analysis of system components to algorithms, scalability, ...

•  1/2 lecture-based, 1/2 seminar-style
•  Lecture more in 1st half, mostly on parallel
•  “Principles of Parallel Programming”, Lin & Synder

•  5 “short” labs I assign in 1st half
•  Give them more practice with parallel & distributed

programming before project
•  Independent project in 2nd half
•  Weekly lab scheduled meetings added to class
•  teach them SW & tools, help on lab and projects

5 “Short” Lab Assignments
•  Give them exposure and practice with

parallel & distributed programming
•  Give them practice with designing and running

experiments
•  They demo all labs to me

•  Think about correctness and error handling more
•  Learn to discuss how and why of their solution

•  I assign different partners for each lab

Lab 1: C warm-up
•  Pointers, dynamic memory allocation, scope,

pass by reference, file I/O, …
•  Multiple .c files, .h, extern, static
•  gdb, valgrind, make

+ almost all really need this
-  replaced an assignment I really liked:

•  Investigate a parallel system and present it to class
? Hope a new course we are adding to our intro

sequence will solve the problem this addressed

Lab 2: Shared Memory
•  pthreads GOL with 2 thread to board mappings

•  threads, synchronization

•  Scalability analysis Part: experiments and report
•  vary problem size, #threads, # CPUs,

•  Write-up: implementation, experiments,
hypotheses,results, discussion of results
•  Good practice for course project

•  Also more C programming practice:
•  gdb, valgrind, make
•  parsing command line options (getops, -l style)

Lab 3: TCP client server
•  Multi-threaded Web Server
•  They investigate HTTP 1.1 specification, figure

out and implement HEAD and GET protocols
•  C TCP sockets, pthreads, signals, mutex

+ I really like this assignment
+ they learn a lot and its fun

- Bryant and O’Hallaron book student site: full source

to a multi-threaded web server in C

Lab 4: Cuda
Fire simulator

•  replaces an OpenMP lab
•  Many are interested in Cuda-related projects

•  I give them a lot of starting point code including

library to visualize simulation on GPU
•  Gives them practice compiling and running on

the GPU, timing
•  Writing and calling Cuda kernels
•  Copying to-from CPU-GPU
•  Figuring out Cuda programming

& synchronization models

Lab 5: MPI using XSEDE
•  Did as weekly lab instead of assigned
•  Usually fairly simple MPI program
•  Practice with message passing
•  Practice using XSEDE resources
•  I give them examples and documentation

for using XSEDE
•  Simple MPI: code, makefile, job submit script
•  MPI-CUDA Hybrid: makefile (its tricky)

•  Use XSEDE as a resource for projects

Lab Projects
•  Good preparation for course projects
•  I’d like to do more, more parallel

algorithms, different programming
paradigms, etc. but, I only have 1/2 of
the semester for these

•  The labs and the topics covered in the
first half, greatly influence student’s
independent project topics
•  We don’t do a lot of DS until second 1/2

and there are few DS projects

Weekly scheduled labs
Goals:
1.  Learning and practice with SW, Unix

 utilities, programming environments, etc.
2.  Help on lab assignments/projects

Specific Lab Presentations/Topics/Practice:
1.  C programming, multiple modules, make
2.  Setting up and using git repos
3.  Gdb, valgrind, man, appropos
4.  Tools for running experiments: script, screen, bash scripts
5.  Tools for measuring: time, gettimeofday, gprof, …
6.  Obtaining system information: /proc, top, netstat, …
7.  Socket, Cuda, MPI, OpenMP, …
8.  Using XSEDE
9.  Unix SW for documents: latex, gnuplot, …

Independent Project
Assigned near end of first 1/2 of semester
I give them some ideas, but can do anything related to

parallel or distributed computing
Must have research question

Multi-part: I’ve added more parts over the years
1.  Written Proposal and Annotated Bibliography
2.  Mid-way progress report and oral presentation to

class
3.  Project work week: short report
4.  Final oral presentation to class
5.  Final written report (like conference paper) and

project demo

My Thoughts
+ covers important content not covered anywhere else
+ I like teaching both parallel and distributed, and think both important
+ 1/2 lecture helps reinforce basics, better understanding
+ more assigned labs good background, broader learning
+ weekly lab meetings ensure all students getting instruction & practice
+ individual project components help keep them on task
- less good at reading, discussion, reaction notes
-  most lecture in 1st half, maybe no way around this
-  lecture primarily on parallel, readings primarily on distributed
-  fewer papers, so one bad choice has larger effect
-  Broad coverage of 2+ courses into one: lose breadth and depth

-  I always have to cut things I’d like to keep in
-  Maybe need to add an exam on papers and lecture

 Overall: I like this course & I like it better than DS

More Information
•  Links to versions of each course off my

webpage (CS87, CS85, CS97):
•  Schedule: topics and readings
•  Lab assignments, and weekly lab content
•  Project components
•  Links to resources

www.cs.swarthmore.edu/~newhall

•  Feedback, suggestions, ideas, …
 newhall@cs.swarthmore.edu

Thanks. Questions?

New Course Developing
•  Intro to Computer Systems:
•  machine organization, assembly, compilers,

systems, intro to parallelism, C programming

•  Taken after our CS1 course in Python
•  Students can take CS2 or this in any order

•  This will be a pre-req to some courses
•  ~1/2 upper level require: CS1 and CS2
•  Other 1/2: CS1, CS2, plus new course
=> We can assume students have seen this before

OS, parallel and distributed, compilers, graphics,
DBMS, … !

