Teaching Parallel and
Distributed Computing at a
Liberal Arts College

Tia Newhall
Swarthmore College

newhall@cs.swarthmore.edu

Swarthmore College CS

Swarthmore has ~1,400 students
~15 CS majors each year (but 42 junior CS majors!)

CS Dept has 4 tenure lines (6 in two years)

* We try to cover a lot of CS with 4-6 faculty
* I'm the lone systems person
« Upper level courses offered once every other year

CS curriculum not very vertical (typical for LACs)
« CS1 and CS2 are only pre-reqgs to upper level CS

=> cannot assume much/any background in systems
(we are adding a new course to address this)

Teaching Parallel &
Distributed Computing

* Wide variation in student preparedness
* | can’'t assume much: need some intro to systems
* too little for some, and too much for others
* Want some seminar-style courses in our

curriculum, and this has been one

« Research paper reading, discussion, independent projects,
presentations, written work, less lecture

« Expose them to wide-range of issues in
distributed and parallel computing and to a
large number of different systems

« Sometimes choose broad coverage over deep
 Project is chance for depth

What I've tried

Distributed Systems (csss, cs97)

Pure seminar-style (only a couple short intro lectures)

 Discussion of 2-3 papers read each week
« Broad coverage of field, with some depth
 Classic theory to current systems

« Each presented one paper (and related)
« Assigned a couple lab assignments just to give them
programming tools for projects
 MPI, and a C client/server socket (talk, string mangler)
» Independent course project

* Very open ended, | give them some ideas, but can do
anything related to DS, must have a question

* Propose, carry out, experiment, written and oral report
» Like a CS research experience

Distributed Systems (csss, cs97)

What worked well:

+ format allows for large coverage of field

+ students gain good understanding of field

+ very good at reading papers and discussion

+ good independent projects, but variable

+ particularly good for students going on to grad school
What didn’t work so well:

- some papers too hard or don’t have background for

- didn’t always have tools to carry out projects

- DS seemed too specialized and students didn’t really
know what the course was about
robotics, graphics, etc. they at least think they know

- we needed to inject some parallelism into our
curriculum, and this seemed like a place to do it

Parallel & Distributed Computing (Cs 87)

* Very broad coverage of two big fields
« ~1/3 systems, ~1/3 PL, ~1/3 algorithms

architecture, algorithms, programming interfaces and languages, systems,
lots of analysis of system components to algorithms, scalability, ...

1/2 lecture-based, 1/2 seminar-style
» Lecture more in 1st half, mostly on parallel
* “Principles of Parallel Programming”, Lin & Synder

5 “short” labs | assign in 1st half

» Give them more practice with parallel & distributed
programming before project

Independent project in 2nd half

Weekly lab scheduled meetings added to class
« teach them SW & tools, help on lab and projects

5 “Short” Lab Assignments

Give them exposure and practice with
parallel & distributed programming

Give them practice with designing and running
experiments

They demo all labs to me

Think about correctness and error handling more
Learn to discuss how and why of their solution

| assign different partners for each lab

Lab 1: C warm-up

* Pointers, dynamic memory allocation, scope,
pass by reference, file I/O, ...

* Multiple .c files, .h, extern, static
» gdb, valgrind, make

+ almost all really need this
- replaced an assignment | really liked:

* Investigate a parallel system and present it to class

? Hope a new course we are adding to our intro
sequence will solve the problem this addressed

Lab 2: Shared Memory

pthreads GOL with 2 thread to board mappings

 threads, synchronization

Scalability analysis Part: experiments and report
« vary problem size, #threads, # CPUs,
Write-up: implementation, experiments,
hypotheses,results, discussion of results
« Good practice for course project
Also more C programming practice:
« gdb, valgrind, make
« parsing command line options (getops, -I style)

Lab 3: TCP client server

 Multi-threaded Web Server

* They investigate HTTP 1.1 specification, figure
out and implement HEAD and GET protocols
« C TCP sockets, pthreads, signals, mutex

+ | really like this assignment
+ they learn a lot and its fun

- Bryant and O’Hallaron book student site: full source
to a multi-threaded web server in C

Lab 4: Cuda

Fire simulator
 replaces an OpenMP lab
 Many are interested in Cuda-related projects

« | give them a lot of starting point code including
library to visualize simulation on GPU

« Gives them practice compiling and running on
the GPU, timing

« Writing and calling Cuda kernels
« Copying to-from CPU-GPU

» Figuring out Cuda programming
& synchronization models

Lab 5: MPI using XSEDE

* Did as weekly lab instead of assigned

» Usually fairly simple MPI| program
» Practice with message passing
 Practice using XSEDE resources

* | give them examples and documentation
for using XSEDE

« Simple MPI. code, makefile, job submit script
« MPI-CUDA Hybrid: makefile (its tricky)

« Use XSEDE as a resource for projects

Lab Projects

» Good preparation for course projects

 I'd like to do more, more parallel
algorithms, different programming
paradigms, etc. but, | only have 1/2 of
the semester for these

* The labs and the topics covered in the
first half, greatly influence student’s
independent project topics

« We don’t do a lot of DS until second 1/2
and there are few DS projects

Weekly scheduled labs

Goals:

1. Learning and practice with SW, Unix
utilities, programming environments, etc.

2. Help on lab assignments/projects

Specific Lab Presentations/Topics/Practice:

C programming, multiple modules, make

Setting up and using git repos

Gdb, valgrind, man, appropos

Tools for running experiments: script, screen, bash scripts
Tools for measuring: time, gettimeofday, gprof, ...
Obtaining system information: /proc, top, netstat, ...
Socket, Cuda, MPI, OpenMP, ...

Using XSEDE

Unix SW for documents: latex, gnuplot, ...

© 0NN~

Independent Project

Assigned near end of first 1/2 of semester
| give them some ideas, but can do anything related to

parallel or distributed computing

Must have research question

Multi-part: |I've added more parts over the years

1.
2.

3.

B

Written Proposal and Annotated Bibliography

Mid-way progress report and oral presentation to
class

Project work week: short report
Final oral presentation to class

Final written report (like conference paper) and
project demo

My Thoughts

+ covers important content not covered anywhere else

+ | like teaching both parallel and distributed, and think both important
+ 1/2 lecture helps reinforce basics, better understanding

+ more assigned labs good background, broader learning

+ weekly lab meetings ensure all students getting instruction & practice
+ individual project components help keep them on task

less good at reading, discussion, reaction notes

most lecture in 1st half, maybe no way around this

lecture primarily on parallel, readings primarily on distributed

fewer papers, so one bad choice has larger effect

Broad coverage of 2+ courses into one: lose breadth and depth
- | always have to cut things I'd like to keep in

Maybe need to add an exam on papers and lecture

Overall: | like this course & | like it better than DS

More Information

 Links to versions of each course off my
webpage (CS87, CS85, CS97):
« Schedule: topics and readings
« Lab assignments, and weekly lab content
* Project components
 Links to resources
www.cs.swarthmore.edu/~newhall

* Feedback, suggestions, ideas, ...
newhall@cs.swarthmore.edu

Thanks. Questions?

New Course Developing

* Intro to Computer Systems:

* machine organization, assembly, compilers,
systems, intro to parallelism, C programming

» Taken after our CS1 course in Python
« Students can take CS2 or this in any order

* This will be a pre-req to some courses

« ~1/2 upper level require: CS1 and CS2
« Other 1/2: CS1, CS2, plus new course

=> \We can assume students have seen this before
OS, parallel and distributed, compilers, graphics,
DBMS, ... !

