

Introduction

- Undergraduates enrolled in a **Distributed Systems** course at Williams use GENI to gain hands-on experience with computer networks and "big" systems
 - Goal: Teach students how to **design**, **implement**, and **evaluate** distributed systems
 - Without computing platforms like GENI, students at small colleges lack the computing infrastructure necessary to deploy and evaluate distributed systems

Williams College

- About Williams
 - · Liberal arts college in rural western Massachusetts
 - 2200 undergraduate students (no grad students)
 - Student:faculty ratio is 7:1
- CS@Williams
 - Avg (thru 2013): 15 majors per year (~3 women)
- This year: 38 majors in senior class (12 women)
- Many students double major
- ~1/3 of our students go on to top tier graduate programs
- 8 CS faculty members (soon to be 9...)
- Class sizes range from 35-40 in intro courses to 10-20 in upper-level electives (though this is increasing!)

Course Overview

- Goals
 - Introduce students to key design principles
 - Teach students skills necessary to build and evaluate distributed systems
 - Expose students to cutting-edge real-world technologies
 - Improve technical writing skills
- Components
 - Programming projects (x4)
 - Midterm exam
 - Research paper evaluations (x8-10)

Student Profile

- Prerequisites
 - Data Structures
 - Computer Organization
- Non-prerequisites
 - Networks
- Operating Systems First "project" course for many students
- Sample class breakdown
 - S08: 14 students: 2 sophomores, 4 juniors, 8 seniors
 - S12: 15 students: 1 sophomore, 6 juniors, 9 seniors
 - S14: 34 students: 5 sophomores: 14 juniors, 15 seniors

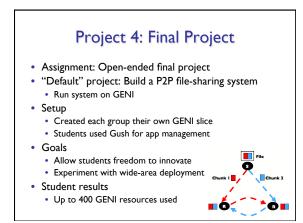
Project Overview

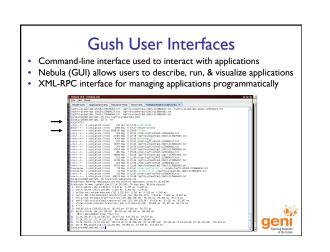
- Projects are 45% of overall grade
- Students work alone or in a small group (encouraged)
- Projects designed to emphasize techniques and technology from lecture topics and reading assignments
- Projects include a technical writing component
- Explore four different architectural models: clientserver, multi-tier client-server, cluster computing, wide-area computing

Project I: Web Server

- Assignment: Build a web server (in C)
- Support GET requests in HTTP1.0 and HTTP1.1
 - Return valid response codes
 - Time allowed: ~2.5 weeks
- Goals
 - Explore simple client-server distributed computing paradigm
 - Gain experience with network/socket programming
 - Evaluate performance of HTTPI.0 and HTTPI.1 under varying conditions—hard to do using only local resources!
- Potential Role of GENI
 - Create topologies (rspecs) with varying network conditions
 - Much like Hello GENI Example!

Project 2: Online Bookstore


- Assignment: Build a multi-tier online bookstore with "proper" synchronization
 - Use Java/Python/??? and XML-RPC
 - Timeline: ~2 weeks
- Goals
 - Explore multi-tier distributed computing paradigm
- Gain experience with RPCs
- Evaluate performance under varying levels of (artificial) load
- Potential Role of GENI
 - Provide varying network conditions
 - (Same as webserver)



Project 3: Contextual Advertising

- Assignment: Given an advertising context, predict which ad is most likely to be clicked (using Hadoop)
 Compute click-through rate for ad id and page URL
 - Timeline: ~3 weeks
- Setup
- Created small clusters on Amazon EC2 platform
- Dataset also comes from Amazon
- Students maintained/configured their own cluster
- Goals
 - Explore "cutting-edge" cluster computing paradigm
 - Gain experience with basic system administration (without getting overly frustrated)

Student Feedback

- "[The final project] was one of the hardest and most rewarding projects I've done at Williams."
- "I really felt like this was one of the most real-life applicable CSCI courses I took at Williams."
- "I loved the papers! This was the first class that required critical responses to papers like that and I was surprised by how much I enjoyed it."
- "Evaluating the papers, while kind of a pain sometimes, was actually quite valuable in retrospect; I learned a lot about distributed systems that way, and I'm glad we did them."

Instructor Feedback

- Students really love Projects I and 4 (several students turned Project 4 into senior theses)
 - Some students appreciate open-endedness of Project 4; some struggle with it (defining "default" project helps!)
- I spend (at least) 5-7 hrs per wk in lab helping students
 Students work an avg of 10-12 hours per week
- Students miss the point of evaluation in early projects when only using local resources
 - GENI helps!
 - Perhaps introduce GENI experimenter tools (Gush, Flack, omni, etc) earlier in semester
- Good writers != good technical writers

Conclusions

- We should teach **undergraduates** how to design, implement, and evaluate real distributed systems
- Shared computing platforms (like GENI and EC2) provide students with the opportunity to gain handson experience with large-scale, wide-area distributed computing environments
 - Use shared platforms as learning laboratories
 - Bring tech-richness of big universities to small colleges
- Frameworks and tools (Hadoop, Gush, Flack, jFed, etc) lower entry barrier for dist systems innovation
 With a little guidance, undergrads are capable of doing
 - great work!

Thanks!

- More info:
 - http://www.cs.williams.edu/~jeannie/cs339
 - jeannie@cs.williams.edu