Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs

Stefan Savage
Department of Computer Science and Engineering
University of Washington, Seattle

Michael Burrows Greg Nelson Patrick Sobalvarro
Digital Equipment Corporation
Systems Research Center

Thomas Anderson
Computer Science Division
University of California, Berkeley

Abstract In this paper we describe a tool, call&giaser, that dy-
namically detects data races in hinthreaded programs. We

Multi-threaded programming is difficult and error prone. It have implemented Eraser fOtGITAL Unix and used it to

is easy to make a mistake in synchronization that produces adetect data races in a number of programs, ranging from the

data race, yet it can be extremely hard to locate this mistakeAltaVista Web search engine to introductory programming

during debugging. This paper describes a new tool, called exercises written by undergraduates.

Eraser, for dynamically detecting dataces in lock-based Previous work in dynamic race detection is based on Lam-

multl-threadeq programs. Eraser uses binary rewriting teqh- port's happens-beforeslation[Lamport 78] and checks that
niques to monitor every shared memory reference and verify - :
conflicting memory accesses from different threads are sepa-

that consistent locking behavior is observed. We present sev- A ;
L : rated by synchronization events. Happens-before algorithms
eral case studies, including undergraduate coursework and o : .
andle many styles of synchronization, but this generality

multi-threaded Web search engine, that demonstrate the ef- . o
. . comes at a cost. We have aimed Eraser specifically at the
fectiveness of this approach.

lock-based synchronization used in modern multi-threaded
programs. Eraser simply checks that all shared memory ac-
) cesses follow a consistelaicking discipline A locking dis-
1 Introduction cipline is a programming policy that ensures the absence of
data races. For example, a simple locking discipline is to re-
Multi-threading has become a common programming tech- quire that every variable shared between threads is protected
nique. Most commercial operating systems support threads,by a mutual exclusion lock. We will argue that for many pro-
and popular applications like Microsoft Word and Netscape grams Eraser’s approach of enforcing a locking discipline is
Navigator are multi-threaded. simpler, more efficient, and more thorough at catchaxes
Unfortunately, debugging a multi-threaded program can than the approach based bappens-before As far as we
be difficult. Simple errors in synchronization can produce know, Eraser is the first dynamic race detection tool to be
timing-dependent data races that can take weeks or monthsapplied to multi-threaded production servers.
to track down. For this reason, many programmers have re-
sisted using threads. The difficulties with using threads are
well summarized by John Ousterhout in his 1996 USENIX
presentation “Why Threads are a bad idea (for most pur-
poses)”[Ousterhout 96].

The remainder of this paper is organized as follows: After
reviewing what a data race is and describing previous work
in race detection, we present the Lockset algorithm used by
Eraser, first at a high level and then at a level low enough
to reveal the main performance-critical implementation tech-
nigues. Finally, we describe the experience we have had us-
ing Eraser with a number of multi-threaded programs.

*savage@cs.washington.edu

Eraser bears no relationship to the tool by the same name
constructed by John Mellor-Crummey for detecting data
races in shared-memory parallel Fortran programs as part of
the ParaScope Programming Environment[Mellor-Crummey
93].

1.1 Definitions

Thread 1 Thread 2
A lock is a simple synchronization object used for mutual
exclusion; it is eitheavailable or ownedby a thread. The
operations on a lockuarelock(mu) andunlock(mu) lock(mu):

Thus itis essentially a binary semaphore used for mutual ex-
clusion, but differs from a semaphore in that only the owner {
of a lock is allowed to release it.

= v+
A data raceoccurs when two concurrent threads access a vi=vil
shared variable, and: *
o atleast one access is a write, and unlock(mu);
¢ the threads use no explicit mechanism to prevent the
accesses from being simultaneous.
If a program has a potential data race, then the effect of lock(mu);
the conflicting accesses to the shared variable will depend on *
the interleaving of the thread executions. Although program-
mers occasionally deliberately allow a data race when the V= v+l
non-determinism seems harmless, usually a potential data *
race is a serious error caused by failure to synchronize prop-
erly. unlock(mu);
1.2 Related work Figure 1: Lamport's happens-beforerders events in the same

thread in temporal order, and orders events in different threads if

An early attempt to avoid data races was the pioneering Cor‘_the threads synchronized with one another between the events.

cept of amonitorintroduced by C.A.R. Hoare [Hoare 74]. A
monitor is a group of shared variables together with the pro-
cedures that are allowed to access them,aildbed together])
with a single anonymous lock that is automatically acquired ~ The happen§-beforerder Is a partlgl order on all events
and released at the entry and exit of the procedures. Theof all threads in a concurrent execution. Within any single
shared variables in the monitor are out of scope (thatis, invis- thréad, events are ordered in the order in which they oc-
ible) outside the monitor, consequently they can be accessedfurred. Between threads, events are ordered according to the
only from within the monitor's procedures, where the lock is Properties of the synchronization objects they access. If one
held. Thus monitors provide a static, compile-time guarantee thréad accesses a synchronization object and the next access
that accesses to shared variables are serialized and therefor® the object is by a different thread, then the first access is
free from data races. Monitors are an effective way to avoid defined tohappen befor¢he second if the semantics of the
data races if all shared variables are static globals, but theySynchronization object forbid a schedule in which these two
don't protect against dataces in programs witbynami- interactions are gxchangeq in time. For example, F!gure 1
cally allocated shared variables, a limitation that early users Shows one possible ordering of two threads executing the
found was significant[Lampson & Redell 80]. By substitut- Same code segment. The three program statements executed
ing dynamic checking for static checking, our work aims to by Thread 1 are ordered Iyappens-beforbecause they are
allow dynamically allocated shared data while retaining as €xecuted sequentially in the same thread. The lockwlty
much of the safety of monitors as possible. Thread 2 is ordered biappens-beforavith the unlock of
Some attempts have been made to create purely static (thafuby Thread 1 because a locko#ot be acquired before its
is, compile-time) race detection systems that work in the Previous owner has released it. Finally, the three statements
presence of dynamically allocated shared data: for exam-€xecuted by Thread 2 are orderediappens-beforbecause
ple, Sun'dock _lint [SunSoft 94] and the Extended Static they are executed sequentially within that thread.
Checker for Modula-3 [Detlefs et al. 97, Nelson et al. 96]. If two threads both access a shared variable and the ac-
But these approaches seem problematical since they requireesses are not ordered by theppens-beforelation, thenin
statically reasoning about the program’s semantics. another execution of the program in which the slower thread
Most of the previous work in dynamic race detection ran faster and/or the faster thread ran slower, the two ac-
has been carried out by the scientific parallel programming cesses could have happened simultaneously; that is, a data
community [Dinning & Schonberg 90, Netzer 91, Mellor- race could have occurred, whether or not it actually did oc-
Crummey 91, Perkovic & Keleher 96] and is based on Lam- cur. All previous dynamic race detection tools that we know
port’shappens-beforeelation, which we now describe. of are based on this observation. These race detectors mon-

itor every data reference and synchronization operation and
check for conflicting accesses to shared variables that are un-
related by thénappens-beforeelation for the particular exe-
cution they are monitoring.

Unfortunately, tools based dmappens-befordave two y=y+L
significant drawbacks. First, they are difficult to implement {
efficiently because they require per-thread informatiooa lock(mu);
concurrent accesses to each shared memory location. More *
importantly, the effectiveness of tools based lappens-
beforeis highly dependent on the interleaving produced by vi= v+l
the scheduler. Figure 2 shows a simple example where the {
happens-beforapproach can miss a data race. While there is unlock(mu);
a potential data race on the unprotectedesses tp, it will
not be detected in the execution shown in the figure, because
Thread 1 holds the lock before Thread 2, and so the accesses lock(mu);
toy are ordered in this interleaving happens-before A *
tool based omappens-beforevould detect the error only if
the scheduler produced an interleaving in which the fragment
of code for Thread 2 occurred before the fragment of code {
for Thread 1. Thus, to be effective, a race detector based unlock(mu);
on happens-beforaeeds a large number of test cases to test *
many possible interleavings. In contrast, the programming
error in Figure 2 will be detected by Eraser with any test y=y+l
case that exercises the two code paths, because the paths vio-
late the locking discipline foy regardless of the interleaving
produced by the scheduler. While Eraser is a testing tool andFigure 2:The program allows a data race pbut the error is not
therefore cannot guarantee that a program is free femes, detected bjnappens-beforia this execution interleaving.
it can detect more races than tools baseth@appens-before
improvement o the happens-before approach for programs e 125 accessedwas olding at the moret o the ac-
that make heavy use of locks[Dinning & Schonberg 91]. In- cess. When a new variabieis initialized, its candidate set '

. : C'(v) is considered to hold all possible locks. When the vari-

deed, one way to describe our approach would be that WEeable is accessed Erasgpdates”'(v) with the intersection
extend Dinning and Shonberg’s improvement and discard the ’

underlvina hapoens-before apparatus that they were im roV_of C'(v) and the set of locks held by the current thread. This
ing yinghapp PP y P process, calletbckset refinemenensures that any lock that

consistently protects is contained inC'(v). If some lock!
consistently protects, it will remain in C'(v) asC(v) is re-

2 The Lockset algorithm fined. If C'(v) becomes empty this indicates that there is no
lock that consistently protects

Thread 1 Thread 2

V= v+l

In this section we describe how the Lockset algorithm detects [N Summary, here is the first version of the Lockset algo-

races. The discussion is at a fairly high level: the techniques thm:

iunstehdet?o'l'lrgmrg223?06”"_"'gor'thm efficiently willbe described o\ .res_held(t) be the set of locks held by thread
The first anq simplesf[ver;iop Qf the Lockset algorithm For eachv, initialize C'(v)

enforces the simple locking discipline that every shared vari-

able is protected by some lock, in the sense that the lock is On each access toby thread,

held by any thread whenever it accesses the variable. Eraser setC/(v) := C(v) N locks_held(t);

checks whether the program respects this discipline by mon- if C'(v) ={}, then issue a warning.

itoring all reads and writes as the program executes. Since

Eraser has no way of knowing which locks are intended to Figure 3 illustrates how a potential data race is discovered

protect which variables, it must infer the protection relation through lockset refinement. The left column contains pro-

from the execution history. gram statements, executed in order from top to bottom. The
For each shared variable Eraser maintains the séf(v) right column reflects the set of candidate lock§y), after

of candidate locksor ». This set contains those locks that each statement is executed. This example has two locks, so

have protected for the computation so far. Thatis, alotk C(v) starts containing both of them. After is accessed

isin C'(v) if in the computation up to that point, every thread while holding mul, C'(v) is refined to contain that lock.

to the set of all locks.

Program locks_held C(v)

{3 {mul,mu2}
lock(mul); rdiwr, first
{mul} wr thread
V= v+l
{mu1} wr, new
unlock(mul); thread
{
lock(mu?2); rd, ne Shared-
{mu2} thread Modified
V= v+l
{
unlock(muz2);
{

i Figure 4:Eraser keeps track of the state of all locations in mem-
Figure 3:If a shared variable is sometimes protected by lowkl ory. Newly allocated locations begin in tMrgin state. As various
and sometimes by loakiu2, then no lock protects it for the whole {hreads read and write a location, its state changes according to the
computation. The figure shows the progressive refinement of the 4 nsitions in the figure. Race conditions are reported only for loca-
set of candidate lock§'(v) for v. WhenC'(v) becomes empty, the tions in theShared-Modifiedtate.
Lockset algorithm has detected that no lock protects

of knowing when initialization is complete. Eraser therefore

considers a shared variable to be initialized when it is first

accessed by a second thread. As long as a variable has been
accessed by a single thread only, reads and writes have no
effect on the candidate set.

2.1 Improving the locking discipline Since simultaneous reads of a shared variable by multiple

threads are not races, there is also no need to protect a vari-

able if it is read-only. To support unlocked read-sharing for
such data, we report races only after aiiatized variable

has become write-shared by more than one thread.

o Initialization. Shared variables are frequently initial- Figure 4 illustrates the state transitions that control when
ized without holding a lock. lockset refinement occurs and when races are reported.

When a variable is first allocated, it is set to Wiggin state,

* Read-shared dataSome shared variables are written jndijcating that the data is new and has not yet been refer-
during initialization only and are read-only thereafter. enced by any thread. Once the data is accessed, it enters
These can be safely accessedhwitt locks. the Exclusivestate, signifying that it is has been accessed,

o Read-write locks. Read-write locks allow multiple buj[by one thread only. In this state, subsequen't rea,ds and
readers to access a shared variable, but allow only a sin-Wmes by the same thread. do not change the' ‘.’af'ab.'e s'state
gle writer to do so. and dq not updgté“(v). This addrg;sgs the |n|t|§l|zat|op is-

sue, since the first thread can initialize the variable without
We will extend the Lockset algorithm to accommodate ini- causingC'(v) to be refined. When and if another thread ac-
tialization and read-shared data, and then extend it further tocesses the variable, then the state changes. A read access
accommodate read-write locks. changes the state &hared In the Sharedstate,C'(v) is up-
dated, but data races are not reported, eveér(if) becomes
empty. This takes care of the read-shared data issue, since
multiple threads can read a variable without causing a race

There is no need for a thread to lock out others if no other to be reported. A write access from a new thread changes

thread can possibly hold a reference to the data being ac-the state fromExclusiveor Sharedto the Shared-Modified

cessed. Programmers often take advantage of this observastate, in whichC'(v) is updated andaces are reported, just
tion when initializing newly allocated data. To avoid false as described in the original, simple version of the algorithm.
alarms caused by these unlocked initialization writes, we de- Our support for initialization makes Eraser’s checking
lay the refinement of a location’s candidate set until after it more dependent on the scheduler than we would like. Sup-
has been initialized. Unfortunately, we have no easy way pose that a thread allocates and initializes a shared variable

Later, v is accessed again, with onfgu2 held. The inter-
section of the singleton sef{snul} and{mu2} is the empty
set, correctly indicating that no lock proteets

The simple locking discipline we have used so far is too
strict. There are three very common programming practices
that violate the discipline yet are free from any data races:

2.2 Initialization and read-sharing

without a lock, and erroneously makes the variadieessi- Eraser treats each 32-bit word in the heap or global data
ble to a second thread before it has completed the initializa- as a possible shared variable, since on our platform a 32-bit
tion. Then Eraser will detect the error if any of the second word is the smallest memory-coherent unit. Eraser does not
thread’s accesses occur before the first thread’s fint#hlin instrument loads and stores whose address mode is indirect
ization actions, but otherwise Eraser will miss the error. We off the stack pointer, since these are assumed to be stack ref-
don't think this has been a problem, but we have no way of erences, and shared variables are assumed to be in global
knowing for sure. locations or in the heap. Eraser will maintain candidate sets
for stack locations that are accessed via registers other than
the stack pointer, but this is an artifact of the implementation
rather than a deliberate plan to support programs that share
Many programs use single-writer, multiple-reader locks as stack locations between threads.

well as simple locks. To accommodate this style we intro- When a race is reported, Eraser indicates the file and line
duce our last refinement of the locking discipline: we require number at which it was discovered and a backtrace listing of

2.3 Read-write locks

that for each variable, some lockm protectsy, meaningn all active stack frames. The report also includes the thread
is held in write mode for every write af, andm is held in ID, memory address, type of memory access, and important
some mode (read or write) for every readvof register values such as the program counter and stack pointer.

We continue to use the state transitions of Figure 4, We have found that this information is usually sufficient for
but when the variable enters tishared-Modifiedtate, the locating the source of the race. If the cause of a racélis s
checking is slightly different: unclear, the user can direct Eraser to log all the accesses to

a particular variable that result in a change to its candidate
Let locks_held(t) be the set of locks held in any mode by lock set.
threadt.

Let write_locks_held(t) be the set of locks held in write. 3.1 Representing the candidate lock sets
mode by thread.

A naive implementation of lock sets would store a list of
For each, initialize C'(v) to the set of all locks. candidate locks for each memory location, potentially con-
suming many times the allocated memory of the program.
We can avoid this expense by exploiting the fortunate fact
that the number of distinct sets of locks observed in practice
is quite small. In fact, we have never observed more than
On each write of by thread, 10,000 distinct sgts .of locks pccurring in any execution of
setC(v) := C(v) N writedocks_held(1); the Lockset monitoring algorithm. Cpnsequently, we rep-
resent each set of locks by a small integelpekset index
into a table whose entries represent the set of locks as sorted
That is, locks held purely in read mode are removed from VECtors of lock addresses. Hashing is used to eliminate du-
the candidate set when a write occurs, as such locks held b)pllcates in the table and to find a lockset index from a given

a writer do not protect against a data race between the writerS€t Of 10cks. The entries in the table are never deallocated or
and some other reader thread. modified, so each lockset index remains valid for the lifetime

of the program. Eraser also caches the result of each inter-
section, so that the fast case for set intersection is simply a
3 Implementing Eraser table lookup. Each lock vector in the table is sorted, so that
when the cache fails, the slow case of the intersection oper-
Eraser is implemented for tHe#IGITAL Unix operating sys- ation can be performed by a simple comparison of the two
tem on the Alpha processor, using the ATOM [Srivastava & Sorted vectors.
Eustace 94] binary modification system. Eraser takes an un- For every 32-bit word in the data segment and heap, there
modified program binary as input and adds instrumentation is a correspondinghadow wordhat is used to contain a 30-
to produce a new binary that is functionally identical, but in- bit lockset index and a 2-bit state condition. In teclusive
cludes calls to the Eraser runtime to implement the Lockset state, the 30 bits are not used to store a lockset index, but

On each read of by thread,
setC(v) 1= C(v) Nlocks_held(t);
if C'(v) ={}, then issue a warning.

if C'(v) ={}, then issue a warning.

algorithm. used instead to store the ID of the thread with exclusive ac-
To maintainC'(v), Eraser instruments each load and store cess.
in the program. To maintaifvock_held(t) for each thread, All the standard memory allocation routines are instru-

Eraser instruments each call to acquire or release a lock, asnented to allocate and initialize a shadow word éach

well as the stubs that manage thread initialization and final- word allocated by the program. When a thread accesses a
ization. To initializeC(v) for dynamically allocated data, memory location, Eraser finds the shadow word by adding a
Eraser instruments each call to the storage allocator. fixed displacement to the location’s address.

3.2 Performance EraserReuse(address, size)

Performance was not a major goal in our implementation of which instructs Eraser to reset the shadow memory corre-
Eraser; consequently it has many opportunities for optimiza- sponding to the indicated memory range to Vigin state.
tion. Applications typically slow down by a factor of 10 to Finally, the existence of private lock implementations can be
30 while using Eraser. We estimate that half of the slowdown communicated by annotating them with
is due to the overhead incurred by making a procedure call at
every load and store instruction; which could be eliminated
by using a version of ATOM that can inline monitoring code
[Scales et al. 96]. Also, there are many opportunities for us-
ing static analysis to reduce the overhead of the monitoring
code; but we have not explored them. We found that a handful of these annotations usually suf-
In spite of our limited performance tuning, we have found fices to eliminate all false alarms.
that Eraser is fast enough to debug most programs, and there-

fore meets the most essential performance criteria. 34 Race detectionin an OS kernel

EraserReadLock(lock)
EraserReadUnlock(lock)
EraserWriteLock(lock)
EraserWriteUnlock(lock)

3.3 Program annotations We have begun to modify Eraser to detect races irSfAEN
operating system [Bershad et al. 95]. While we do not yet

As expected, our experience with Eraser showed that it canhave results in terms of data racesifd, we have acquired

produce false alarms. Part of our research was aimed at findsome useful experience about implementing such a tool at

ing effective annotations to suppress false alarms without ac-the kernel level, which is different from the user level in sev-

cidentally losing useful warnings. This is a key to making a eral ways.

tool like Eraser useful. If the false alarms are suppressed First, SPIN (like many operating systems) often raises

with accurate and specifieinotations, then when a program the processor interrupt level to provide mutual exclusion to

is modified and the modified program is tested, only fresh shared data structures accessed by device drivers and other

and relevant warnings will be produced. interrupt level code. In most systems, raising the interrupt
In our experience false alarms fell mainly into three broad level ton ensures that only interrupts of priority greater than
categories: nwill be serviced until the interrupt level is lowered. Raising

and then restoring the interruptlevel can be used instead of a
e Memory reuse False alarms were reported because |4ck as follows:

memory is reused without resetting the shadow mem-

ory. Eraser instruments all of the standard C, C++, level := SetinterruptLevel(n);
and Unix memory allocation routines. However, many (* Manipulate data *)
programs implement free lists or private allocators, and RestoreinterruptLevel(level);

Eraser has no way of knowing that a privately recycled

, . However, unlike locks, a particular interrupt level inclusivel
piece of memory is protected by a new set of locks. P P y

protects all data protected by lower interrupt levels. We have

« Private locks False alarms were reported because locks incorporated this difference into Eraser by assigning a lock
are taken without communicating this information to 0 €ach individual interrupt level. When the kernel sets the
the Eraser runtime. This was usually caused by private interruptlevel tan, Eraser treats this operation as if the first

implementations of multiple-reader/single-writerlocks, N interrupt locks had all been acquired. We expect this tech-
which are not part of the standapthreads interface nigue to allow us to detect races between code using standard

that Eraser instruments. locks and code using interrupt levels.
Another difference is that operating systems make greater
¢ Benign races True data races weretind that did not use of post/wait style synchronization. The most common
affect the correctness of the program. Some of these example is the use of semaphores to synchronize execution
were intentional and others were accidental. between a thread and an I/O device driver. Upon receiving
) data, the device driver will perform some minimal process-
For each of these categories, we developed a progna-a jng and then use ¥ operation to signal a thread waiting on
tation tq allow users of Eraser to eliminate the false report. p operation; for example, to wake up a thread waiting for an
For benign races, we added I/O completion. This can cause problems for Eraser if data
is shared between the device driver and the thread. Because
semaphores are not “owned” it is difficult for Eraser to infer
which data they are being used to protect, leading it to issue
which inform the race detector that it shouldn't report any false alarms. Systems that integrate thread and interrupt pro-
races in the bracketed code. To prevent memory reuse racesessing [Kleiman & Eykholt 95] may have less trouble with
from being reported, we added this problem.

EraserlgnoreOn()
EraserlgnoreOff()

4 Experlence by memory reuse, followed by private locks and benign
races. The benign racesund inNi2 are particularly in-

We calibrated Eraser on a number of simple programs thatteresting, because they exemplify the intentional use of races

contained common synchronization errors (e.g. forgot to to reduce locking overhead. For example, consider the fol-

lock, used the wrong lock, etc.) and versions of those pro- |owing code fragment:

grams with the errors corrected. While programming these # unlocked hint */

tests, we accidentallyimducgd a race, and encouragingly, if (p->ip_fp == (NI2_XFILE *) 0) {
Eraser detected it. These simple tests were extremely use- NI2_LOCKS_LOCK (&p->ip_lock):
ful for finding bugs in Eraser. After convincing ourselves if (p>ip_fp == (NI2_XFILE * 0) {
that the tool worked, we tackled some large multi-threaded p->ip_fp = ni2_xfopen (
servers written by experienced researchers at DEC SRC: the p->ip_name, "rb");
HTTP server and indexing engine from AltaVista, the Vesta }

cache server, and the Petal distributed disk system. We also NI2_LOCKS_UNLOCK (&p->ip_lock);
applied Eraser to some homework problems written by un- }

dergraduate programmers. Co

Eraser found undesirable race conditions in three of the In this code fragment thip _fp field is tested without a
four server programs and in many of the undergraduate|ock held, which creates a data race with other threads that
homework problems. It also produced false alarms, which modify the field with thép _lock lock held. The race was
we were able to suppress with annotations. deliberately programmed as an optimization to avoid locking

The programmers of the servers on which we tested Eraseroverhead in the common case that fp has already been
did not begin with a plan to test Eraser or even to use Eraser'sset. The program is correct even with the race, since the
locking discipline. The fact that Eraser worked well on the ip fp field never transitions from non-zero to zero while
servers is evidence that experienced programmers tend tan the scope of multiple threads, and the program repeats the
obey the simple locking discipline even in an environment test inside the lock in case the field tested zero (thus avoiding
that offers many more elaborate synchronization primitives. the race in which two threads find the field zero and both then

In the remainder of this section we report on the details of initialize it).

our experiences with each program. This kind of code is very tricky. For example, it might
seem safe to access thesip _fp field in the rest of the
4.1 AltaVista procedure (the lines replaced by tHepsis above). Butin

fact this would be a mistake, because the Alpha’s memory

We examined two components of the popular AltaVista [Dig- consistency model permits processors to see memory opera-
ital Equipment 96a] Web indexing serviceyhttpd and tions out of order if there is no intervening synchronization.
Ni2 . Although theNi2 code was correct, after using Eraser the

Themhttpd program is a lightweight HTTP server de- programmer decided to reprogram this part of it so that its
signed to support the extremely high server loads experi- correctness argument was simpler.
enced by AltaVista. Each search request is handled by a We also found a benign race in th&2 test harness pro-
separate thread and relies on locking to synchronize accesgjram, where multiple threads race on reads and writes to a
by concurrent requests to shared data structures. In additionglobal variable calledill _queries . This variable is ini-
mhttpd employs several additional threads to manage back- tialized to false and is set to true to indicate that all threads
ground tasks such as configuration and naahe manage- should exit. Each thread periodically polls the variable and
ment. The server consists of approximately 5000 lines of C exits when it is set to true. Other finalization code had sim-
source code. We testeohttpd by invoking a series of test jlar benign races. To keep the race detector from reporting

scripts from three separate Web browsers. ifitpd test such races, we used tEeaserlgnoreOn/Off() anno-
used approximately 100 distinct locks that formed approxi- tations. Similarly,mhttpd omits locks when periodically
mately 250 different lock sets. updating global configuration data and statistics. These are

TheNi2 indexing engine is used to look up information indeed synchronization errors, but their effect is relatively
in response to index queries. Index data structures are shareghinor, which is perhaps why they were undetected for so
among all of the server threads and explicitly use locks to Jong.
guarantee that updates are serialized. The D&8idibraries Inserting nine annotations in thdi2 library, five in the
contain approximately 20,000 lines of C source code. We ft test harness, and ten in thehttpd server reduced the
testedNi2 separately using a utility calldtl thatsubmitsa number of reported races from more thamuemdred to zero.
series of random requests using a specified number of threads
(we used 10). Th& test used approximately 900 locks that 4.2 \lesta cache server
formed approximately 3600 distinct lock sets.

We found a large number of reporteates, most of which Vesta [Digital Equipment 96b] is an advanced software con-
turned out to be false alarms. These were primarily causedfiguration management system. Configurations are written

in a specialized functional language that describes the de-the rest of the RPC. Since the main thread and the worker
pendencies and rules used to derive the current state of thehread will never access the data structures concurrently they
software. Partial results, such as * files generated by the don’t need to use locks to serializecess. To Eraser this
C compiler, are cached in the Vesta cache server and usedooks like violation of the locking discipline and is flagged
by the Vesta builder to create a particular configuration. The as a race. With some effort it would be possible to mod-
cache server consists of approximately 30,000 lines of C++ ify Eraser to recognize this locking discipline, but we were
code. We tested the cache server usingsCache util- able to achieve the same effect with tiEmaserReuse()
ity that issues a stream of concurrent random requests. Theannotations.
cache server used 10 threads, acquired 26 distinct locks and In total, ten annotations and one bug fix were enough to
instantiated 70 different lock sets. reduce the race reports from several hundred to zero.

In testing the cache server, Eraser reported a number of
races, mostly revolving aund three data structures. The
first set of races were detected in the code maintaining the4-3 Petal

fingerprints in cache entries. Because computing a finger-pety js a distributed storage system that presents its clients
print can be expensive, the cache server maintab®éan it a huge virtual disk implemented by a cluster of servers
flelel in the eache e.ntr)./ recording Whetherithe flngerprlnt' IS and physical disks [Lee & Thekkath 96]. Petal implements
valid. The fingerprint is computed only if its true value is 5 qisyribyted consensus algorithm as well as failure detec-

needed and its current 'value is inval'id. Unfo'rtunatel)./, the tion and recovery mechanisms. The Petal server is roughly
boolean wasccessed witout a protecting lock, in code like 25 000 lines of C code and we used 64 concurrent worker

this: threads in our tests. We tested Petal using a utility that is-
Combine::XorFPTag::FPVal() { sued random read and write requests.
if (this->validFP) { We found a number of false alarms caused by a private
/* NamesFP changes this->fp */ reader-writer lock implementation. These were easily sup-
NamesFP(fps, bv, this->fp, imap); pressed using annotations. We also detected a real race in
this->validFP = true; the routineGMapChCheckServerThread() . This rou-
} tine is run by a single thread and periodically checks to make
return this->fp; sure that the neighboring servers are running. However, in so
} doing, it reads thgmap->state field without holding the

This is a serious data race, since in the absence of memorﬁmapState lock (that all other threads hold before writing

barriers the Alpha semantics don’t guarantee that the con-9map->state)-) .
tents of thevalidFP field is consistent with thép field. We .found two aces where globa! variables containing
Another set of races revolvedamd free lists in the Statistics were modified without locking. Theseces were
CacheS object. TheCacheS object maintains a free list intentional, based on the premises that locking is expensive
of various kinds of log entries. Our first response was to and that the server statistics need to be only approximately

useEraserReuse() annotations where elements were al- COf'ect.
located off this free list. However, this didn't make all the ~ Finally, we found one false alarm that we were un-
warnings disappear; calls to flush the log still causecks. ~ @ble to annotate away. The functi@mapChWrite2()

Examination revealed that the head of each log was protected©'kS @ number of threads and passes each a refer-
by alock, but not the individual entries. TRéush routines ~ €Nce to & component dBmapChWrite2 's stack frame.
lock the head of the log, store its value in a stack variable, GMapChWrite2() implements a join-like construct to
set the head 0, and release the lock. After this they ac- Keep the stack frame active until the threads return. But
cess the individual entries without any locks held, ultimately Eraser doesn'tre-initialize the shadow memoryeach new
putting them onto the free list. This is corre@dause other ~ Stack frame; consequently the reuse of the stack memory
threads access the log entries with the log head lock held, andor different instances of the stack frame resulted in a false
threads do not maintain pointers into the log. Consequently, 2/arm-
Flush effectively makes the data private to the thread in
which Flush was called. We eliminated the re'port ofthese 4 4 Undergraduate coursework
races by moving th&raserReuse() annotations to the
threeFlush routines. As a counterpoint to our experience with mature multi-
Finally, there were several false alarms related to the threaded server programs, two of our colleagues used Eraser
TCPssock and SRPCobjects that are used to implement to examine the kinds of synchronization errors found in the
server-side RPCs. The cache server uses a main server thredtbmework assignments produced by their undergraduate op-
to wait for incoming RPC requests. Upon receiving a re- erating systems class [Choi & Lewis 97]. We report their
guest, this thread passes the current socket and RPC dateesults here to demonstrate how Eraser functions with a less
structures to a worker thread that is responsible for handling sophisticated code base.

The class was required to complete four standard 5 Additional experience
multi-threading assignments. These assignments can be
roughly categorized as low-level (build locks from test- In this section we briefly touch on two further topics, each
and-set), thread-level (build a small threads package), of which concerns a form of dynamic checking for synchro-
synchronization-level (build semaphores and mutexes), andnization errors in multi-threaded programs that we experi-
application-level (producer/consumer-style problems). Each mented with and believe is important and promising, but
assignment builds on the implementation of the previous as-which we did notimplement in Eraser.
signment. Our colleagues used Eraser to examine each of The first topic is protection by multiple locks. Some pro-
these assignments for roughly 40 groups; a total of about 100grams protect some shared variables by multiple locks in-
runnable assignments were turned in (not all groups com- stead of a single lock. In this case the rule is that every thread
pleted all assignments, some didn’t compile, and a few im- that writes the variable must hold all the protecting locks,
mediately deadlocked). Of these “working” assignments, 10 and every thread that reads the variable must hold at least
percent had data racesuind by Eraser. These were caused ©one protecting lock. This policy allows a pair of simultane-
by forgetting to take locks, taking locks during writes but not 0ous accesses only if both accesses are reads, and therefore
for reads, using different locks to protect the same data struc-prevents data races.
ture at different times, and forgetting to re-acquire locks that ~ Using multiple protecting locks is in some ways similar
were released in a loop. to using reader locks and writer locks, but it is not so much

i aimed at increasing concurrency as at avoiding deadlock in a
Eraser also reported a false alarm that was triggered byprogram that contains upcalls.

a queue that implicitly protected elementsancessing the = jging an earlier version of Eraser that detected race con-
gueue through locked head and tail fields (much like Vesta’s ditions in multi-threaded Modula-3 programs, we found that

Caches object). the Lockset algorithm reported false alarms for Trestle pro-
grams[Manasse & Nelson 91] that protected shared locations
with multiple locks, kecause each of two readers could ac-
cess the location while holding two different locks. As an ex-
periment, we dealt with the problem by modifying the Lock-
set algorithm to refine the candidate set only for writes, while
checking it for both reads and writes, as follows:

Since Eraser uses a testing methodology it cannot prove that
a program is free from data races. But we believe that Eraser
works well compared to manual testing and debugging, and
that Eraser’s testing is not very sensitive to the scheduler in- on each write of by thread,
terleaving. To test these beliefs we performed two additional setC'(v) := C'(v) N locks_held(t);

experiments. if C'(v) ={}, then issue a warning.

int\r/xiiugggilxt)ega:?\iasgcs)gtrﬁ;? hgldStggstggl?n E;r;?/iorfs- ver- This prevented the false alarms, but it is possible for this
P modification to cause false negatives. For example, if a

sions. The firt error was an unlocked aceess (o referencqy ooy reads, while holding lockrm,, and a thread
count used to garbage coliect e data structures. 1he othet, yoq) while holding lockms, the violation of the lock-
race was caused by failing to take an additional aacks- . s . .)
sary lock needed to protect the data structures of a subrouting. discipline will be reported only if the write precedes the

y 10! : P fead. In general, the modified version will do a good job only
called in the middle of a large procedure. These races had ex- :
.)) if the test case causes enough shared variable reads to follow
isted in theNi2 source code for several months before they . .

: the corresponding writes.

were manually found and fixed by the program author. Us-

ing Eraser. one of us was able to locate both races in severa Theoretically it would be possible to handle multiple pro-
g Eraser, one otu . . : kecting locks without any risk of false negatives, but the data
minutes without being given any information about where

. res requir f f locks in fj
the races were or how they were caused. It took 30 mlnutesStrUCtu es required (sets of sets of locks instead of just sets

) of locks) seem to have a cost in complexity that is out of pro-
tgggrrtrsed both errors and verify the absence of further race portion to the likely gain. Since we are uncomfortable with

false negatives and the multiple protecting lock technique is
We examined the issue of sensitivity by re-running the not common, the current version of Eraser ignores the tech-
Ni2 andVesta experiments but using only two concurrent nigque, producing false alarms for programs that use it.
threads instead of ten. If Eraser was sensitive to differences The second topic is deadlock. If the data race is Scylla,
in thread interleaving then we would expect to find a dif- the deadlock is Charybdis.
ferent set of race reports. In fact, we found the same race A simple discipline that avoids deadlock is to choose a
reports (albeit sometimes in different order) across multiple partial order among all locks and program each thread so
runs using using either two threads or ten. that whenever it holds more than one lock, it acquires them

4.5 Effectiveness and Sensitivity

On each read of by thread,
if C'(v) ={}, then issue a warning.

in ascending order. This discipline is similar to the locking Wilson Hsieh and Terri Watson provided useful feedback on
discipline for avoiding data races: it is suitable for checking earlier drafts of this paper. The SOSP reviewers and our
by dynamic monitoring, and it is easier to produce a test caseshepherd, Paulo Guedes, also provided many useful com-
that exposes a bach of the discipline than it is to@iluce a ments.
test case that actually causes a deadlock.

As a stand-alone experiment, we chose a large Trestle
application that was known to have complicated synchro- References
nization formsedit , a double-view user interface editor),
logged all lock acquisitions and tested to see if an order ex- [Bershad et al. 95] Bershad, B. N., Savage, S., Pardyak, P.,

isted on the locks that was respected by every thread. A few Sirer, E. G., Fiuczynski, M., Becker, D., Eggers,
seconds intdormsedit startup our experimental moni- S., and Chambers, C. Extensibility, Safety and
tor detected a cycle of locks, showing that no partial order Performance in the SPIN Operating System. In
existed. Examining the cycle closely revealed a potential Proceedings of theifteenth ACM Symposium on
deadlock informsedit . We consider this a promising re- Operating Systems Principlepages 267-284,
sult and conjecture that deadlock-checking along these lines Copper Mountain, CO, Bcember1995.

would be a useful addition to Eraser. But more work is re-

quired to catalog the sound and useful variations on the par-[Choi & Lewis 97] Choi, S.-E. and Lewis, E. C. Uni-

tial order discipline, and to develop annotations to suppress versity of Washington CSE 552 Project.

false alarms. Personal Communication, March 1997.
http://wuw.cs.washington.edu/homes/
sungeun/notes/cseb52/index.html.

6 Conclusion .
[Detlefs et al. 97] Detlefs, D. L., Leino, R. M., Nelson, G.,

Hardware designers have learned to design for testability. and Saxe, J. B. Extended Static Checking. Tech-
Programmers using threads must learn the same. It is not nical Report 149, Digital Equipment Corpora-
enough to write a correct program; the correctness must tion, Systems Research Center, to appear 1997.

be demonstrable, ideally by static checking, realistically by
a combination of partial static checking followed by disci-
plined dynamic testing.

This paper has described the advantages of enforcing a
simple locking discipline instead of checking for races in
general parallel programs that employ many different syn-
chronization primitives, and has also demonstrated that with
this technique it is practical to dynamically check production

multi-threaded programs for dataces. [Dinning & Schonberg 90] Dinning, A. and Schonberg, E.
Programmers in the area of operating systems seem to An Empirical Comparison of Monitoring Algo-
view dynamic race detection tools as esoteric and imprac- rithms for Access Anomaly Detection. Pro-

tical. Our experience leads us to believe instead that they are ceedings of the Second ACM SIGPLAN Sym-

a practical and effective way to avoid data races, and that dy- posium on Principles and Practice of Parallel

namic race detection should be a standard procedure in any Programming pages 1-10, Seattle, WA, March

disciplined testing effort for a multithreaded program. As 1990.

the use of multi-threading expands, so will the unreliability

caused by data races, unless bettehoes are used to elimi- [Dinning & Schonberg 91] Dinning, A. and Schonberg, E.

nate them. We believe that the Lockset method implemented Detected Access Anomalies in Programs with

in Eraser is promising. Critical Sectons.Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debug-
ging, published in ACM SIGPLAN Notiges

[Digital Equipment 96a] Digital Equipment. AltaVista
Search. http://altavista.digital.com/,
1996.

[Digital Equipment 96b] Digital Equipment. Vesta Home
Page.http://wuw.research.digital.com/
SRC/vesta/, 1996.

Acknowledgments 26(12):85-96, Bcember1 991.

We would like the thank the following individuals for [Hoare 74] Hoare, C. Monitors: An Operating System
their contributions to this project. Sung-Eun Choi and E. Structuring Concept. Communications of the
Christoper Lewis were responsible for all of the undergrad- ACM, 17(10), October 1974.

uate experiments. Alan Heydon, Dave Detlefs, Chandu

Thekkath and Edward Lee, provided expert advice on Vesta[Kleiman & Eykholt 95] Kleiman, S. and Eykholt, J. Inter-
and Petal. Puneet Kumar worked on a earlier version of rupts as ThreadsACM Operating Systems Re-
Eraser. Cynthia Hibbard, Brian Bershad, Michael Ernst, view, 29(2):21-26, April 1995.

[Lamport 78] Lamport, L. Time, clock, and the ordering of
events in a distributed syster@ommunications
of the ACM 21(7), July 1978.

[Lampson & Redell 80] Lampson, B. and Redell, D. Ex-
periences with Processes and Monitors in Mesa.
Communications of the ACM23(2):104-117,
February 1980.

[Lee & Thekkath 96] Lee, E. K. and Thekkath, C. A. Petal:
Distributed virtual disks. IfProceedings of the
Seventh International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS-VYI1996.

[Manasse & Nelson 91] Manasse, M. S. and Nelson, G.
Trestle Reference Manual. Technical Report Re-
search Report 68, Digital Equipment Corpora-
tion's Systems Research Center, Palo Alto, Cali-
fornia, Decembefl991.

[Mellor-Crummey 91] Mellor-Crummey, J. On-the-fly
Detection of Data Races for Programs with
Nested Fork-Join Parallelism. FProceedings of
the 1991 Supercomputer Debugging Workshop
pages 1-16, November 1991.

[Mellor-Crummey 93] Mellor-Crummey, J. Compile-time
Support for Efficient Data Race Detection in
Shared-Memory Parallel Programs. Rroceed-
ings of the ACM/ONR Workshop on Parallel and
Distributed Debugging pages 129-139, May
1993.

[Nelson et al. 96] Nelson, G., Leino, K. R. M., Saxe, J.,
and Stata, R. Extended Static Checking Home
Page.http://www.research.digital.com/
SRC/esc/Esc.html, 1996.

[Netzer 91] Netzer, R. H. B. Race Condition Detec-
tion for Debugging Shared-Memory Parallel
Programs PhD dissertation, University of
Wisconsin-Madison, 1991.

[Ousterhout 96] Ousterhout, J. K. Why Threads Are
A Bad Idea (for most purposes). Invited
talk at the 1996 USENIX Conference, January
1996.http://www.smli.com/people/john.
ousterhout/threads.ps.

[Perkovic & Keleher 96] Perkovic, D. and Keleher, P. On-
line Data-Race Detection via Coherency Guar-
antees. InProceedings of the Second USENIX
Symposium on Operating Systems Design and
Implementation (OSDJ)pages 47-58, Seattle,
WA, October 1996.

[Scales et al. 96] Scales, D. J., Gharachorloo, K., and
Thekkath, C. A. Shasta: A Low Overhead,

Software-Only Approach for Supporting Fine-
Grain Shared Memory. IfProceedings of the
Seventh International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS-Y1P96.

[Srivastava & Eustace 94] Srivastava, A. and Eustace, A.

ATOM: A System for Building Customized Pro-
gram Analysis Tools. IIProceedings of thϢ
ACM SIGPLAN Conference on Programming
Language Design and Implementatiopages
196-205, 1994.

[SunSoft 94] SunSoftlock _lint User’s Guide. SunSoft

Manual, August 1994.

