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Explicit Free Lists
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= Maintain list(s) of free blocks, not all blocks
= The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—links all blocks
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m Method 2: Explicit free list among the free blocks using pointers
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m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key
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Explicit Free Lists

m Logically:
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m Physically: blocks can be in any order
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Allocating From Explicit Free Lists
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Freeing With a LIFO Policy (Case 1)
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m Insert the freed block at the root of the list
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Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly freed
block?
m LIFO (last-in-first-out) policy
" Insert freed block at the beginning of the free list
® Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

u Address-ordered policy

= Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 2)
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m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)

conceptual graphic
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m Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list
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Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

= Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for different
types of objects

Freeing With a LIFO Policy (Case 4)
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m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list
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