
1

48	

Explicit	Free	Lists	(a	preview!)	
	
CSCI	237:	Computer	Organiza6on	

Jeannie	Albrecht	

Slides	originally	designed	by	Bryant	and	O’Hallaron	@	CMU	for	use	with	Computer	Systems:	A	Programmer’s	Perspec6ve,	Third	Edi6on	 49	

Keeping	Track	of	Free	Blocks	
¢ Method	1:	Implicit	free	list	using	length—links	all	blocks	

¢ Method	2:	Explicit	free	list	among	the	free	blocks	using	pointers	

	
¢ Method	3:	Segregated	free	list	
§  Different	free	lists	for	different	size	classes	

¢ Method	4:	Blocks	sorted	by	size	
§  Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	free	
block,	and	the	length	used	as	a	key	

5 4	 2	6	

5 4	 2	6	

50	

Explicit	Free	Lists	

¢ Maintain	list(s)	of	free	blocks,	not	all	blocks	
§  The	“next”	free	block	could	be	anywhere	

§  So	we	need	to	store	forward/back	pointers,	not	just	sizes	
§  S6ll	need	boundary	tags	for	coalescing	
§  Luckily	we	track	only	free	blocks,	so	we	can	use	payload	area	

Size	

Payload	and	
padding	

a	

Size	 a	

Size	 a	

Size	 a	

Next	

Prev	

Allocated	(as	before)	 Free	

51	

Explicit	Free	Lists	
¢  Logically:	

¢  Physically:	blocks	can	be	in	any	order	

A	 B	 C	

4	 4	 4	 4	 6	6	 4	4	 4	 4	

Forward	(next)	links	

Back	(prev)	links	

A	 B	

C	

2

52	

Alloca6ng	From	Explicit	Free	Lists	

Before	

A(er	

= malloc(…)

(with	spli1ng)	

conceptual	graphic	

53	

Freeing	With	Explicit	Free	Lists	
¢  Inser:on	policy:	Where	in	the	free	list	do	you	put	a	newly	freed	
block?	

¢  LIFO	(last-in-first-out)	policy	
§  Insert	freed	block	at	the	beginning	of	the	free	list	
§  Pro:	simple	and	constant	6me	
§  Con:	studies	suggest	fragmenta6on	is	worse	than	address	ordered	

¢  Address-ordered	policy	
§  Insert	freed	blocks	so	that	free	list	blocks	are	always	in	address	order:		

										addr(prev)	<	addr(curr)	<	addr(next)	
§  	Con:	requires	search	
§  	Pro:	studies	suggest	fragmenta6on	is	lower	than	LIFO	
	

54	

Freeing	With	a	LIFO	Policy	(Case	1)	

¢  Insert	the	freed	block	at	the	root	of	the	list	

free()

Root	

Root	

Before	

A(er	

conceptual	graphic	

55	

Freeing	With	a	LIFO	Policy	(Case	2)	

¢  Splice	out	successor	block,	coalesce	both	memory	blocks	and	
insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Before	

Root	

A(er	

conceptual	graphic	

3

56	

Freeing	With	a	LIFO	Policy	(Case	3)	

¢  Splice	out	predecessor	block,	coalesce	both	memory	blocks,	and	
insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Root	

Before	

A(er	

conceptual	graphic	

57	

Freeing	With	a	LIFO	Policy	(Case	4)	

¢  Splice	out	predecessor	and	successor	blocks,	coalesce	all	3	
memory	blocks	and	insert	the	new	block	at	the	root	of	the	list	

free()

Root	

Before	

Root	

A(er	

conceptual	graphic	

58	

Explicit	List	Summary	
¢  Comparison	to	implicit	list:	
§  Allocate	is	linear	6me	in	number	of	free	blocks	instead	of	all	blocks	

§  Much	faster	when	most	of	the	memory	is	full		
§  Slightly	more	complicated	allocate	and	free	since	needs	to	splice	blocks	in	
and	out	of	the	list	

§  Some	extra	space	for	the	links	(2	extra		words	needed	for	each	block)	
§  Does	this	increase	internal	fragmenta6on?	

¢ Most	common	use	of	linked	lists	is	in	conjunc6on	with	
segregated	free	lists	
§  Keep	mul6ple	linked	lists	of	different	size	classes,	or	possibly	for	different	
types	of	objects	

