Explicit Free Lists (a preview!)
CSCl 237: Computer Organization

Jeannie Albrecht

Slides originally designed by Bryant and O'Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition 8

S
Explicit Free Lists

Allocated (as before) Free
Size | a Size a
Next
Payload and Prev
padding
Size | a Size | a

= Maintain list(s) of free blocks, not all blocks
= The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= Luckily we track only free blocks, so we can use payload area

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—links all blocks

LT T T Tal T el [[T [2[7]

m Method 2: Explicit free list among the free blocks using pointers

/_\
(sl [Tal T T 16l [[T [of]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key

-
Explicit Free Lists

m Logically:

—Aa s = c [

m Physically: blocks can be in any order

Forward (next) links

C _/
’k Back (prev) links

Allocating From Explicit Free Lists

conceptual graphic

Before g
1
(o @
X
After % (with splitting)

| pv |

= malloc(..)

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before

freeg)
Root./| | | |

|||||||||\~Tg

m Insert the freed block at the root of the list

After

Root [V %O :QJE E

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly freed
block?
m LIFO (last-in-first-out) policy
" Insert freed block at the beginning of the free list
® Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

u Address-ordered policy

= Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before £
ree S;)
jE [J

Root./|||||||||][]\§]§[

 E—

[e]&]

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After o

Root Il dlo ﬁ

Freeing With a LIFO Policy (Case 3)

conceptual graphic
Before o free 52)

Root W[T LTI 3l

m Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

After
9

Root [l———[#]0
s SR

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

= Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for different
types of objects

Freeing With a LIFO Policy (Case 4)

conceptual graphic
Before
[ele free}:" [ele

Rootflllllllllll\@g
(o[8[(o[8[

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

After

Root l——>{efo[[[[[[[[]

