CSCI 136 Data Structures & Advanced Programming

Jeannie Albrecht Lecture 8 Feb 25, 2014

Administrative Details

- Lab 3 is today
 - Lots of thinking...little typing
 - Problems can be done in any order!
 - Recursion can be frustrating...be patient!
- Using late days: Cannot work on last week's lab during this week's lab
- Hoping to return graded Lab I in lab today
 - General comments about Lab I

Last Time

- Finished implementing vectors
- Started talking about the time-space tradeoff...

Growing Vectors

- Two ways to grow when adding n new elements to Vector:
 - Increase by I (or some other constant factor)
 Requires ~n²/2 operations (or copies)
 - Double
 - Requires ~n operations
 - Which is better?
 - Is there a tradeoff?

Vectors

- These questions relate to the time and space tradeoff
 - We could just as easily avoid all copy operations by making a huge Vector/array initially...
 - ...but this wastes space and is inefficient

Today's Outline

- Wrap up Vectors
- Learn about Big-O analysis
- · Review and discuss recursion
 - You'll get another chance to review recursion in lab this week...

Shrinking the Array

- When should we shrink the array in Vector implementation?
 - When I/2 full?
 - When I/4 full?
- We shrink when 1/4 full...
- · Can get bad performance if array size changes too frequently

Vector Constructors

private Vector Object elementData[]; // the data protected int elementCount; // number of elements in vector

public Vector() {
 this(10); 3 public Vector(int initialCapacity) { elementData = new Object[initialCapacity];
elementCount = 0;

- element in the middle of the Vector?
- Might take a long time if we have to move several other elements
- Key insight: The running time depends on the size of the Vector!

Π.

Measuring Computational Cost

- How can we measure the cost of a

 - Different machines have different clocks
 - Lots of other stuff happening (network, OS, etc) - Not consistent. Need lots of tests to predict

12

10

14

Measuring Computational Cost

- How can we measure the cost of a computation?
 - Count how many "expensive" operations were performed (i.e., array copies in Vector)
 - Count number of times "x" happens
 For a specific event or action "x"
 - i.e., How many times a certain variable changes
 - Problems?
 - 64 vs 65? 100 vs 105? Does it really matter??

13

15

Measuring Computational Costs

- Rather than keeping exact counts, we want to know the order of magnitude of occurrences
 60 vs 600 vs 6000, not 65 vs 68
- We want to make comparisons without looking at details and without running tests
- Avoid using specific numbers or values
- Look for overall trends

Looking for Trends

- Rule of thumb: ignore constants (most of the time...)
- Examples:
 - Treat n and n/2 as same order of magnitude
 - $n^2/1000,\,2n^2,\,and\,1000n^2$ are "pretty much" just n^2 (behave in same way)
 - $a_0n^k + a_1n^{k-1} + a_2n^{k-2} + \cdots a_k$ is roughly n^k
- The key is to find the most significant or dominant term

A function f(n) is O(g(n)) if and only if there exists positive constants c and n₀ such that

$|f(n)| \le c * g(n)$ for all $n \ge n_0$

- "g" is bigger than "f" for large n
- Example:
 - $f(n) = n^2/2$ is $O(n^2)$
 - f(n) = 1000n³ is O(n³)
 - f(n) = n/2 is O(n)

Vector Operations

- For Object o, int i, and n elements:
 - set(i, o)
 - add(o)
 - add(i, o)
 - remove(i)
 - add(o) executed n times
 - add(i, o) executed n times

18

20

Vector Operations

- For Object o, int i, and n elements:
 - set(i, o) O(1)
 - add(o) O(1)
 - add(i, o) O(n)
 - remove(i) O(n)
 - add(o) executed n times O(n)
 - add(i, o) executed n times O(n^2)

19

21

Common Functions

For n = number of elements:

- O(1): constant time and space
- O(log n): divide and conquer algorithms, binary search
- O(n): linear dependence, simple list lookup
- O(n log n): divide and conquer sorting algorithms
- O(n²): matrix addition, selection sort
- O(n³): matrix multiplication
- O(n^k): cell phone switching algorithms
- O(2ⁿ): color graph with 3 colors, satisfiability
- O(n!): traveling salesman problem

Input-dependent Running Times

- Algorithms may have different running times for different input values
- Best case
 - Sort already sorted array in O(n)Find item in first place that we look O(1)
- Worst case
- Don't find item in list O(n)
- Reverse order sort O(n²)
- Average case
 - Linear search O(n)
 - Sort random array O(n log n)

Moving on...

Recursion

- · General problem solving strategy
 - Break problem into smaller pieces
 - Sub-problems may look a lot like original may in fact by smaller versions of same problem
- Examples

• n! = n • (n-1) • (n-2) • ... • I

- How can we implement this?
 We could use a while loop...
- But we could also write it recursively
 n! = n (n-1)!

Factorial

- In recursion, we always use the same basic approach
- What's our base case?
 n=0; fact(0) = 1
- What's our recursive case?
 n>0; fact(n) = n fact(n-1)

fact.java

- public static int fact(int n) {
 if (n==0) {
 return 1;
 }
 else {
 return n*fact(n-1);
 }
 }
- }

public class fact{

public static void main(String args[]) {
 System.out.println(fact(Integer.valueOf(args[0]).intValue()));
}

}

Warm Up Problems

- Digit Sum
 - public static int digitSum(int n)
 - Base case?
 - Recursive case?
- Subset Sum
 - public static boolean canMakeSum(int set[], int target)
 - Helper:
 - public static boolean canMakeSumHelper(int set[], int target, int index)
 - Base case?
 - Recursive case?