
2/26/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 8	

Feb 25, 2014	

Administrative Details	

•  Lab 3 is today	

•  Lots of thinking…little typing	

•  Problems can be done in any order! 	

•  Recursion can be frustrating…be patient!	

•  Using late days: Cannot work on last week’s lab
during this week’s lab	

•  Hoping to return graded Lab 1 in lab today	

•  General comments about Lab 1	

Last Time	

•  Finished implementing vectors	

•  Started talking about the time-space

tradeoff…	

Growing Vectors	

•  Two ways to grow when adding n new
elements to Vector:	

•  Increase by 1 (or some other constant factor)	

•  Requires ~n2/2 operations (or copies)	

•  Double	

•  Requires ~n operations	

•  Which is better? 	

•  Is there a tradeoff?	

4	

Vectors	

•  These questions relate to the time and space
tradeoff 	

•  We could just as easily avoid all copy operations

by making a huge Vector/array initially…	

•  …but this wastes space and is inefficient	

5	

Today’s Outline	

•  Wrap up Vectors	

•  Learn about Big-O analysis	

•  Review and discuss recursion	

•  You’ll get another chance to review recursion in

lab this week…	

2/26/14

2

Shrinking the Array	

•  When should we shrink the array in Vector
implementation?	

•  When 1/2 full?	

•  When 1/4 full?	

•  We shrink when 1/4 full…	

•  Can get bad performance if array size changes

too frequently	

7	

Vector Constructors	

private Vector Object elementData[]; // the data !
protected int elementCount; // number of elements in vector !
!
!
public Vector() {!
 this(10); !
} !
!
public Vector(int initialCapacity) { !
 elementData = new Object[initialCapacity]; !
 elementCount = 0; !
!
} !
!
// pre: initialCapacity >= 0, capacityIncr >= 0 !
// post: constructs an empty vector with initialCapacity capacity !
// that extends capacity by capacityIncr, or doubles if 0 !
public Vector(int initialCapacity, int capacityIncr) { !
 elementData = new Object[initialCapacity]; !
 elementCount = 0; !
 capacityIncrement = capacityIncr; !
} !

8	

Vector Constructors	

protected Vector Object elementData[]; // the data !
protected int elementCount; // number of elements in vector !
protected int capacityIncrement; // the rate of growth for vector !
!
public Vector() {!
 this(10); !
} !
!
public Vector(int initialCapacity) { !
 elementData = new Object[initialCapacity]; !
 elementCount = 0; !
!capacityIncrement = 0;!

} !
!
// pre: initialCapacity >= 0, capacityIncr >= 0 !
// post: constructs an empty vector with initialCapacity capacity !
// that extends capacity by capacityIncr, or doubles if 0 !
public Vector(int initialCapacity, int capacityIncr) { !
 elementData = new Object[initialCapacity]; !
 elementCount = 0; !
 capacityIncrement = capacityIncr; !
} !

9	

Observations about Vectors	

•  How long does it take to add an element?	

•  Varies – sometimes takes a lot longer if we have

to grow array before adding element	

•  How long does it take to insert/remove an
element in the middle of the Vector?	

•  Might take a long time if we have to move several

other elements	

•  Key insight: The running time depends on the
size of the Vector! 	
	

10	

Running Time Analysis	

•  We want general tools for understanding how
running time and memory usage changes as
the amount of data increases	

•  Example:	

•  If I double my Vector’s size, how much longer will

it take to:	

•  Find an element?	

•  Insert an element at the front?	

•  Remove an element from the middle?	

•  Etc.	

11	

Measuring Computational Cost	

•  How can we measure the cost of a
computation?	

•  Absolute clock time	

•  Problems?	

– Different machines have different clocks	

– Lots of other stuff happening (network, OS, etc)	

– Not consistent. Need lots of tests to predict

future behavior	

12	

2/26/14

3

Measuring Computational Cost	

•  How can we measure the cost of a
computation?	

•  Count how many “expensive” operations were

performed (i.e., array copies in Vector)	

•  Count number of times “x” happens	

•  For a specific event or action “x”	

•  i.e., How many times a certain variable changes	

•  Problems?	

•  64 vs 65? 100 vs 105? Does it really matter??	

13	

Measuring Computational Costs	

•  Rather than keeping exact counts, we want to
know the order of magnitude of occurrences	

•  60 vs 600 vs 6000, not 65 vs 68	

•  We want to make comparisons without
looking at details and without running tests 	

•  Avoid using specific numbers or values	

•  Look for overall trends	

14	

Looking for Trends	

•  Rule of thumb: ignore constants (most of the
time…)	

•  Examples:	

•  Treat n and n/2 as same order of magnitude	

•  n2/1000, 2n2, and 1000n2 are “pretty much” just n2
(behave in same way)	

•  a0nk + a1nk-1 + a2nk-2 + … ak
 is roughly nk	

•  The key is to find the most significant or
dominant term 	

15	

Asymptotic Bounds (Big-O Analysis)	

•  A function f(n) is O(g(n)) if and only if there
exists positive constants c and n0 such that 	

|f(n)| ≤ c * g(n) for all n ≥ n0	

•  “g” is bigger than “f” for large n	

•  Example:	

•  f(n) = n2/2 is O(n2)	

•  f(n) = 1000n3 is O(n3)	

•  f(n) = n/2 is O(n)	

16	

Determining Upper Bound	

•  We usually want the smallest upper bound to
estimate running time	

•  Example:	

•  f(n) = 3n2	

•  f(n) is O(n2)	

•  f(n) is O(n3)	

•  f(n) is O(2n)	

•  Best estimate of running time is O(n2)	

•  We only care about c and n0 in practice, but focus

on size of g when designing structures	

17	

Vector Operations	

•  For Object o, int i, and n elements:	

•  set(i, o)	

•  add(o)	

•  add(i, o)	

•  remove(i)	

•  add(o) executed n times	

•  add(i, o) executed n times	

18	

2/26/14

4

Vector Operations	

•  For Object o, int i, and n elements:	

•  set(i, o) – O(1)	

•  add(o) – O(1)	

•  add(i, o) – O(n)	

•  remove(i) – O(n)	

•  add(o) executed n times – O(n)	

•  add(i, o) executed n times – O(n^2)	

19	

Common Functions	

For n = number of elements:	

•  O(1): constant time and space	

•  O(log n): divide and conquer algorithms, binary search	

•  O(n): linear dependence, simple list lookup	

•  O(n log n): divide and conquer sorting algorithms	

•  O(n2): matrix addition, selection sort	

•  O(n3): matrix multiplication 	

•  O(nk): cell phone switching algorithms	

•  O(2n): color graph with 3 colors, satisfiability	

•  O(n!): traveling salesman problem	

20	

Input-dependent Running Times	

•  Algorithms may have different running times for

different input values	

•  Best case	

•  Sort already sorted array in O(n)	

•  Find item in first place that we look O(1)	

•  Worst case	

•  Don’t find item in list O(n)	

•  Reverse order sort O(n2)	

•  Average case	

•  Linear search O(n)	

•  Sort random array O(n log n)	

21	

Moving on…	

Recursion	

•  General problem solving strategy	

•  Break problem into smaller pieces	

•  Sub-problems may look a lot like original - may in

fact by smaller versions of same problem	

•  Examples	

2/26/14

5

Recursion	

•  Many algorithms are recursive	

•  Can be easier to understand (and prove

correctness/state efficiency of) than iterative
versions	

•  Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms	

Factorial	

•  n! = n • (n-1) • (n-2) • … • 1	

•  How can we implement this?	

•  We could use a while loop…	

•  But we could also write it recursively	

•  n! = n • (n-1)!	

fact(3)	

fact(2)	

fact(1)	

fact(0)	

1	

1*1=1	

2*1 = 2	

3*2 = 6	

Factorial	

2/26/14

6

Factorial	

•  In recursion, we always use the same basic
approach	

•  What’s our base case?	

•  n=0; fact(0) = 1	

•  What’s our recursive case?	

•  n>0; fact(n) = n • fact(n-1)	

fact.java	

public class fact{!
!
 public static int fact(int n) {!
! if (n==0) {!
! return 1;!

 }!
! else {!
! return n*fact(n-1);!

 }!
 }!
!
 public static void main(String args[]) {!
! System.out.println(fact(Integer.valueOf(args[0]).intValue()));!

 }!
!
}!
!

Warm Up Problems	

•  Digit Sum	

•  public static int digitSum(int n)	

•  Base case?	

•  Recursive case?	

•  Subset Sum	

•  public static boolean canMakeSum(int set[], int target)	

•  Helper:	

•  public static boolean canMakeSumHelper(int set[], int target, int index)	

•  Base case?	

•  Recursive case?	

