

Administrative Details

- Lab 3 is today
- Lots of thinking...little typing
- Problems can be done in any order!
- Recursion can be frustrating...be patient!
- Using late days: Cannot work on last week's lab during this week's lab
- Hoping to return graded Lab I in lab today
- General comments about Lab I

Last Time

- Finished implementing vectors
- Started talking about the time-space tradeoff...

Growing Vectors

- Two ways to grow when adding n new elements to Vector:
- Increase by I (or some other constant factor)
- Requires $\sim n^{2} / 2$ operations (or copies)
- Double
- Requires ~n operations
- Which is better?
- Is there a tradeoff?

Vectors

- These questions relate to the time and space tradeoff
- We could just as easily avoid all copy operations by making a huge Vector/array initially...
- ...but this wastes space and is inefficient

Today's Outline

- Wrap up Vectors
- Learn about Big-O analysis
- Review and discuss recursion
- You'll get another chance to review recursion in lab this week...

Shrinking the Array

- When should we shrink the array in Vector implementation?
- When $1 / 2$ full?
- When $1 / 4$ full?
- We shrink when I/4 full...
- Can get bad performance if array size changes too frequently

Vector Constructors

private vector object elementData[]; // the data
protected int elementCount; // number of elements in vector
public vector() \{ this(10);
\}
public Vector(int initialCapacity)
elementData $=$ new Object[initialCapacity] elementCount $=0$;
\}

Vector Constructors

protected vector object elementData[]; // the data
protected int elementCount; // number of elements in vector protected int capacityIncrement; // the rate of growth for vector
public vector() \{
this(10);
\}
public vector(int initialCapacity) \{ elementData $=$ new object[initialCapacity];
elementCount $=0$;
\}
// pre: initialCapacity $>=0$, capacityIncr $>=0$
// post: constructs an empty vector with initialCapacity capacity
public vector(int initialcapacity int capabity $)$
elementData $=$ new Object[initialCapacity];
elementCount $=0$;
capacityIncrement = capacityIncr;
\}

Observations about Vectors

- How long does it take to add an element?
- Varies - sometimes takes a lot longer if we have to grow array before adding element
- How long does it take to insert/remove an element in the middle of the Vector?
- Might take a long time if we have to move several other elements
- Key insight: The running time depends on the size of the Vector!

Running Time Analysis

- We want general tools for understanding how running time and memory usage changes as the amount of data increases
- Example:
- If I double my Vector's size, how much longer will it take to:
- Find an element?
- Insert an element at the front?
- Remove an element from the middle?
- Etc.

Measuring Computational Cost

- How can we measure the cost of a computation?
- Absolute clock time
- Problems?
- Different machines have different clocks
- Lots of other stuff happening (network, OS, etc)
- Not consistent. Need lots of tests to predict future behavior

Measuring Computational Cost

- How can we measure the cost of a computation?
- Count how many "expensive" operations were performed (i.e., array copies in Vector)
- Count number of times " x " happens
- For a specific event or action " x "
- i.e., How many times a certain variable changes
- Problems?
- 64 vs 65 ? 100 vs I05? Does it really matter??

Measuring Computational Costs

- Rather than keeping exact counts, we want to know the order of magnitude of occurrences
- 60 vs 600 vs 6000 , not 65 vs 68
- We want to make comparisons without looking at details and without running tests
- Avoid using specific numbers or values
- Look for overall trends

Looking for Trends

- Rule of thumb: ignore constants (most of the time...)
- Examples:
- Treat n and $\mathrm{n} / 2$ as same order of magnitude
- $\mathrm{n}^{2} / 1000,2 \mathrm{n}^{2}$, and $1000 \mathrm{n}^{2}$ are "pretty much" just n^{2} (behave in same way)
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}$ is roughly n^{k}
- The key is to find the most significant or dominant term

Asymptotic Bounds (Big-O Analysis)

- A function $f(n)$ is $O(g(n))$ if and only if there exists positive constants c and n_{0} such that $|f(n)| \leq c * g(n)$ for all $n \geq n_{0}$
- " g " is bigger than " f " for large n
- Example:
- $f(n)=n^{2} / 2$ is $O\left(n^{2}\right)$
- $f(n)=1000 n^{3}$ is $O\left(n^{3}\right)$
- $f(n)=n / 2$ is $O(n)$

Determining Upper Bound

- We usually want the smallest upper bound to estimate running time
- Example:
- $f(n)=3 n^{2}$
- $f(n)$ is $O\left(n^{2}\right)$
- $f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(2^{n}\right)$
- Best estimate of running time is $O\left(n^{2}\right)$
- We only care about c and n_{0} in practice, but focus on size of g when designing structures

Vector Operations

- For Object o, int i , and n elements:
- $\operatorname{set}(i, o)$
- add(o)
- add(i, o)
- remove(i)
- add(o) executed n times
- add(i, o) executed n times

Vector Operations

- For Object o, int i , and n elements:
- $\operatorname{set}(\mathrm{i}, \mathrm{o})-\mathrm{O}(\mathrm{I})$
- $\operatorname{add}(0)-\mathrm{O}(\mathrm{I})$
- $\operatorname{add}(\mathrm{i}, \mathrm{o})-\mathrm{O}(\mathrm{n})$
- remove(i) - O(n)
- $\operatorname{add}(\mathrm{o})$ executed n times $-O(n)$
- $\operatorname{add}(\mathrm{i}, \mathrm{o})$ executed n times $-\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

Common Functions

For $\mathrm{n}=$ number of elements:

- $\mathrm{O}(\mathrm{I})$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- O(n): linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{k}\right)$: cell phone switching algorithms
- $O\left(2^{n}\right)$: color graph with 3 colors, satisfiability
- $O(n!)$: traveling salesman problem

Input-dependent Running Times

- Algorithms may have different running times for different input values
- Best case
- Sort already sorted array in $O(n)$
- Find item in first place that we look $\mathrm{O}(\mathrm{I})$
- Worst case
- Don't find item in list $\mathrm{O}(\mathrm{n})$
- Reverse order sort $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Average case
- Linear search O(n)
- Sort random array O(n log n)

Recursion

- General problem solving strategy
- Break problem into smaller pieces
- Sub-problems may look a lot like original - may in fact by smaller versions of same problem
- Examples

Recursion

- Many algorithms are recursive
- Can be easier to understand (and prove correctness/state efficiency of) than iterative versions
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Factorial

- n ! = n • ($\mathrm{n}-\mathrm{I}$) • (n-2) • ... • I
- How can we implement this?
- We could use a while loop...
- But we could also write it recursively
- $\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-\mathrm{I})$!

Factorial

- In recursion, we always use the same basic approach
- What's our base case?
- $\mathrm{n}=0$; fact $(0)=1$
- What's our recursive case?
- $n>0$; fact(n) $=n \cdot$ fact($n-I)$

Warm Up Problems

- Digit Sum
- public static int digitSum(int n)
- Base case?
- Recursive case?
- Subset Sum
- public static boolean canMakeSum(int set[], int target)
- Helper:
- public static boolean canMakeSumHelper(int set[], int target, int index)
- Base case?
- Recursive case?

